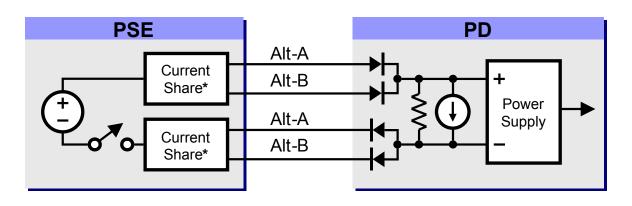
Extended Detection Protocol for 4P PSE

Steve Robbins

Overview

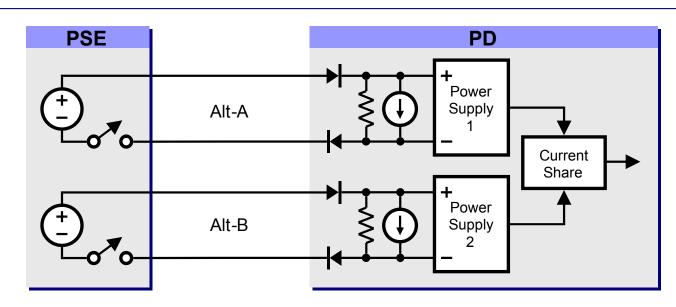

- If a 4P PSE uses a single power source, then there is a potential for putting too much current on some of the wires.
- This paper explains the problem and offers a possible solution, based on a minor extension of the detection protocol.
- This is intended to provide just one piece in the 4P puzzle, and is not in any way a total solution.
- A complete comparison of single-source vs. dual-source topologies is outside the scope of this presentation.

Quick Review of 4P Topologies

The Two Major Topology Categories

Single-Source Topology

*Could be active or passive.



Dual-Source Topology

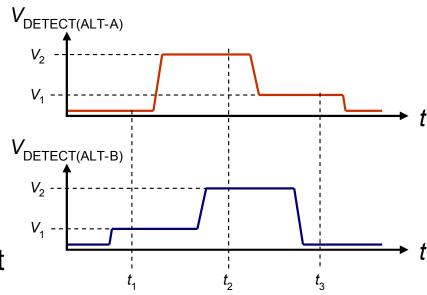
Symbol Legend

= Class Signature

■ Exercision Signature

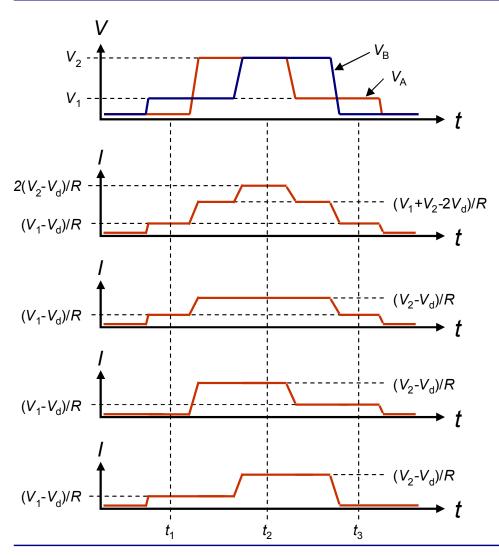
One Key Difference

- In the case where the PD requires very high power, a Single-Source 4P PSE might put too much current on the wiring, possibly causing overheating.
 - ☐ A midspan could block 2 pairs.
 - □ Some cables might have only 2 pairs.
 - The pairs could be split between two PDs.
- A Dual-Source 4P PSE wouldn't overheat the wiring.
 - □ Each source would be current-limited to a level that 2P can reliably carry.
 - ☐ If only 2 pairs are present in the wiring, then only one supply sources current.

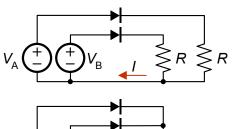

Fixes For Single-Source

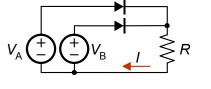
To Eliminate a Key Advantage of Dual-Source

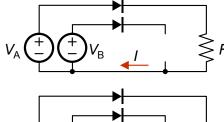
- One possible solution could be to use the currentsharing circuits as sensors.
 - □ If a severe imbalance occurs on both top and bottom circuits during classification, then only 2 pairs are present in the wiring.
 - □ But this method wouldn't tell you if the 4 pairs have been split between two PDs.
- A better solution is to sense the wiring during detection.
 - □ Several schemes are possible.
 - □ To show technical feasibility, one scheme is detailed on the next 4 slides. (This is for example only; I'm not suggesting that the standard should define any specific waveforms.)

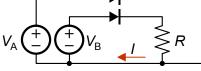

One Possible Implementation

- A 2P PSE would still follow the original 802.3af protocol.
- But a single-source 4P PSE must look for detection signatures on both Alt-A and Alt-B.
- This example scheme probes Alt-A and Alt-B concurrently, but with one waveform reversed and shifted.




 By looking at the combined return current at only 3 points, all possible scenarios are determined.


Example Waveforms



I = The total combined current through both sources.

CASE 1
Two separate PDs

(Don't turn on)

CASE 2

PD on all 4 pairs

(Turn on, allow full power)

CASE 3
PD on Alt-A only
(Turn on, allow half power)

CASE 4
PD on Alt-B only
(Turn on, allow half power)

Error Analysis

- The worst-case analysis for cases 2 thru 4 from the previous slide is unchanged from 802.3af.
- But can case 1 be mistaken for case 2? No.
 - The PSE sees

$$R_{\text{MEASURED}} = \frac{R(V_2 - V_1)}{2(V_2 - V_d) - (V_1 - V_d)}$$

 $\ \square$ The worst-case is when R_{MEASURED} is maximized

$$R_{\text{MEASURED}} = \frac{26.25 \text{k} (10 - 2.8)}{2(10 - 2) - (2.8 - 2)} = 12.43 \text{k}$$

□ The minimum threshold in the PSE is 15k, so it will reject this signature.

Calculations and Logic

- Resistance range tests
 - \square Measurements: Let $i_1=I(t_1)$, $i_2=I(t_2)$, $i_3=I(t_3)$
 - □ Constants: Let $\Delta I_{\text{MIN}} = (V_2 V_1)/R_{\text{MAX}}$ and $\Delta I_{\text{MAX}} = (V_2 V_1)/R_{\text{MIN}}$
 - Calculations:
 - Let **A** be true if $\{\Delta I_{\text{MIN}} < i_2 i_3 < \Delta I_{\text{MAX}}\}$ and false otherwise
 - Let **B** be true if $\{\Delta I_{\text{MIN}} < i_2 i_1 < \Delta I_{\text{MAX}}\}$ and false otherwise
- Interpreting the results

A	В	PD Detected	Proceed to Classification	Grant PD Power Requests up to:
F	F	Two 2P or none	No	 N/A
F	Т	2P on Alt-B	Yes	Half power
T	F	2P on Alt-A	Yes	Half power
T	Τ	Single 4P	Yes	Full power

Classification may

Summary

- If a Single-Source topology is used for 4P, then it must be able to sense the wiring in order to avoid potential overheating.
- The maximum power request that can be granted must be a function of how many conductors are actually present.
- The example detection protocol presented here would allow a 4P single-source PSE to:
 - □ Determine if the wiring has 4 pairs or just 2.
 - □ Verify all 4 pairs go to the same PD.
- Impact on system cost and complexity is minimal:
 - □ 2P PSE and PDs are not affected at all.
 - 4P PSE must be able to probe both Alt-A and Alt-B (but that was inevitable).
 - □ Only 3 data points per detection cycle.
 - □ None of the timing or voltage parameters in 802.3af need to change.
- This extended protocol would link Detection and Classification.