IEEE802.3at Task Force

Vport ad hoc Proposal for Short Circuit Curves Rev 006 July 2007

Yair Darshan Microsemi Corporation

Objectives

- Flexible Implementation in PSE.
 - PSE should limit its current sourcing capability in order not to exceed the SOA curve. (Improved margins and flexibility compared to 802.3af)

Flexible Implementation in PD (Same concept as in 802.3af)

- For Cpd<180uF PD is not required to limit its input current else PD is required to limit its input current.
- Meeting the objective of ~30W at the PD
 - Supporting loads and applications as presented during the CFI, Study Group and Task Force and confirmed as economical and technically feasible
 - Supporting PD low frequency AC current superimposed on the DC current to allow PD load dynamics and yet utilizing full permitted average power (29.52W) (Same concept as in 802.3af)
- Keeping the same cost per watt or lower as in 802.3af
- Supporting known system corner cases scenarios (PSE dv/dt simultaneously with PD max. peak current)

Objectives..

- Ensuring Interoperability
- Utilizing the experience gained in 802.3af concepts and saving standard developing time
 - We don't have to invent the wheel again
 - Reuse of 802.3af concepts whenever possible
 - Corner cases should have simple solutions and should not create problems for the main project objectives such as wide application support, utilizing max. power etc.

Summary of System Concerns

- Can we allow long term ILIM (segment 4) to be horizontal for ever
 - Pro's: It is a corner case. Design margin is required. We would like that system will decide what to do and when.
 - Con's: In case of PD or infrastructure fault, IPORT = ILIM_MAX ϵ for ever.
 - Cabling thermal issues.
 - PSE driver, Power supply thermal issues.
 - Clear violation of max. DC current specifications
 - Liability issues
- How to allow utilizing full available PD power as derived from 720mA number at low accuracy and resolution costs of PD circuitry
 - 720mA allows 29.5W at the PD input.
- How to support PD application load current transients and variations with low cost circuitry, and yet allowing max. 29.5W average to be used.
 - 15% circuits accuracy and max. AC load changes of 100mApp (total of lcut_max=823mA peak) at low frequency up to 50msec and 5% duty cycle max allow meeting this objective. This concept is already successfully used in 802.3af

Summary of System Concerns..

- How to support Inrush Current due to PSE dv/dt simultaneously with PD application load peak current when PSE implements constant current limit protection.
 - Example for a corner case which the net charging current may be zero so Cpd will not be able to be charged by dv=7V within TLIM_MIN.
 - *Solution A:* Max. Load PD current should be lcut_min = 720mA peak.

→ Average DC current < 720mA by ~ 15% due to circuit and application tolerances.

→ Max. Power <= 25W..

- Solution B: The same concept as in 802.3af: Max Load PD current should be lcut_max for 50msec. 5% duty max. PSE vendor will set its ILIM>Icut_max and TLIM_MIN to support PSE dv/dt inrush current.
- Solution C: Similar to 802.3af concept i.e. ILIM_MIN=ICUT_MAX and TLIM_MIN>50msec:
- Solution D: Both options B and C are valid since it is PSE vendor decision which is not PD dependent decision.

Detailed Derivation Of the curve

SOA

802.3at PSE/PD short circuit behavior. See separate drawing for startup behaviour

PD input current due to PD load

PD input current due to PD load

•No thermal effects at overload range for 5% duty for 50msec duration.

How P.S. cost and power are not affected

$$Iport_rms = \sqrt{\left(Idc^2 + Iac_rms^2\right)}$$

From 802.3: Iport shall not exceed
350mA (720mA) rms or
350mA (720mA) DC

- Hence
 - •P.S. average power is not increased

•No additional resistive loses due to RMS current

•5% Duty Cycle allows 95/5 ratio of cooling time for 15% current peak above DC level while 95% of the time DC current<720mA...

PD input current due to PD load..

What happen if Iport=720mA peak max ?

- Practical power at PD input will be <25W</p>
- Less potential applications
- Reduced cost effectives of the standard in terms of \$/Watts
- Giving up precious watts w/o gaining anything..
 - (See how we handle PSE dv/dt next slides)

PD input current due to PD load..

Why the additional triangle area 2A,3msec doesn't add value to handle load variations?

50A

5A

6

10us 3msec

1msec

 $10uSec \le t \le 8.16mSec$

Limited Power Source per UL60950

4

time

60sec

Power Shall

be Removed

3

D load changes

ax 29.5W average power

x. average operating PD current

8 16mSec 50mSec

Тсит мім

TCUT_MAX TLIM_MAX 75mSec

Iport =

PSE or PD may or may

IN=f (I⊔M)

PD AC Current due

TLIM

- It is limited to 3msec max. while low frequency variations are at the 20-50Hz → <=50msec..</p>
- It adds only 2A*3msec/2=3mAdc

 It adds only 2A*3msec/2=3mAdc

 ILIM_MAX=0.93A ---

 It adds only 2A*3msec/2=3mAdc

 ILIM_MAX=0.93A ---

 It adds only 2A*3msec/2=3mAdc

 It adds only 2
- In this concept Ipeak=720mA, not enough margin to circuit accuracy limitations..
- This concept is more practical to all applications (823mA, 50msec, 5%)
 - ... And there is no need to support 2A peak at PD input due to PD load changes

PD load examples

PTZ / security camera generate current transients at the PD DC/DC output for 0.5A to 1.5A (other values possible) and for 0.3msec, 6.3msec and 10msec time constants pending on type etc. At lin, Ipeak is kept by design of Cin/Cout,Iout_peak, Vout etc.

PD input current due to PSE dv/dt

Microsemi

Summary - PSE/PD Current limit Curve Derivation

Translating Curve to Standard's Language

- PSE shall remove power if current exceeds SOA curve.
 - (To define each segment by equation and/or current / time coordinates)
- PSE ICUT_MAX = 823mA
- PSE ICUT_MIN = 720mA
- PSE shall not remove power up For I=lcut for 50msec min.5% duty min.
- TLIM_MIN should be adjusted by PSE vendor to be higher then 3msec if
 - If PSE vendor is using constant current limit within the triangle area (2A, 3msec)
 - TLIM_MIN in this case will be function of ILIM.
- PSE ILIM_MAX= 930mA at t>=75mSec up to 60sec max and then it is ICUT_MAX.
- PD max peak current =823mA for 50msec max, 5% duty max.
- PD max DC or RMS current =720mA

PD max average power =29.5W

