IEEE802.3at Task Force

Vport ad hoc

Fusing equation: how it was derived in 802.3af September 2007

> Yair Darshan Microsemi Corporation

Objectives

■ To explains the considerations behind the fusing equation used in IEEE802.3/af figure 33C.4 and in 802.3at figure 33-9a

Equation derivation

- Earlier number for TLIM was 100msec in 802.3af draft.
- ILIM was set to 0.45A in the specifications and rounded up to 0.5A.
 - PCB traces and connector contacts are designed to meet at least 0.5A continuous current
- The goal was that max. energy limitation will be kept for any time duration below TLIM_MAX=100msec.
- The Fusing equation $I=(K/t)^0.5$ is well describing the above inputs Hence $I^2*t = K = 0.5^2*100$ msec = 0.025 A^2xSec
- \rightarrow I=(0.025/t)^0.5
- The 802.3af standard ended with Tlim_max=75msec which adds additional margin for K.
- In reality K is much higher then 0.025 A^2xSec (by a factor of at least 3-4) due to the following reasons:
 - PCB traces can handle more then 0.5A/trace and each pair use two of it.
 - In normal operation the energy for 60sec time (long term) duration is 0.35A²*60sec=7.35 A²xSec for Type 1 and 31.1 A²xSec for Type 2 while during short circuit it will be 0.45²*0.075=0.015 A²xSec for type 1 and 0.229 A²xSec for Type 2 which is sufficient design margin to prevent damage.
- Note: The units for K is $A^2xSec = Joule/ohm$ and not Joule as presented in previous version of this presentation

