IEEE P802.3at Task Force Power Via MDI Enhancements Midspan Adhoc

Midspan Requirements below 1MHz Jan 2008 Yair Darshan / Microsemi Corporation

Meeting Participants

David Law	3COM
Rick Frosch	Phihong
Vick Mccormack	T.I
Keith Hopwood	Phihong
Peter Johnson	Sifos
Christophe Gouwy	AMIS
Randy K Rannow	Tyco Electronics
Mlaggiolino Joseph	Broadcom
Thuyen Dinh	Pulse
Eran Bello	Microsemi
Sanita' Gianluca	NSN
Stephen Sedio	Foxconn
Reshef Tamir	Microsemi
Pavlik Reimboim	Microsemi
Larry Shorthill	NXP

Microsemi.

To define the requirements for a Midspan at the signal path for 100BT operation

Background

- The IEEE802.3at task force approve using ALT A Midspan.
 - Powering the PD through the signal path
- The IEEE802.3 requires that when a Midspan is inserted in the channel it shall not alter the channel performance.
 - The channel performance is defined from 1MHz and up by 33.4.8
 - The 802.3 doesn't not define requirements for the channel below 1MHz.
- In addition, there is the inductance requirements as specified in ANSI X3.263-1995 (TP-PMD) subclause 9.1.7 which may be affected when a ALT A Midspan is sued in the channel for 100BT
- As a result, the droop of the signal may increased which may affect the BER
- In addition, the effect of BLW on the BER may increase as well
- All of the above may further affected by the presence of DC bias due to the cabling imbalance

Solution alternatives - Option 1

- Defining a transfer function for the Midspan at the signal path from TBD Hz to 1MHz
- Step 1:Measuring the transfer function of standard compliant channel with out Midspan and without DC bias
- Step 2:Building channel model for frequencies below 1MHz with out Midspan and without DC bias
- Step 3: Align the model to the measurements
- Step 4: Repeat steps 1-3 with DC bias (8mA + IEEE802.3af DC bias)
- At this point we created a reference TF for a channel meeting 802.3af
- Step 5: Insert to the model the minimum requirements for the inductance per ANSI X3.263-1995 (TP-PMD) subclause 9.1.7 under the conditions of 802.3af and worst case channel parameters.
- Step 6: Define TF according to Step 5.
- Compliant Midspan gain shall be above the TF gain vs frequency.

Solution alternatives - Option 1

Channel Model w/o DC bias - Preliminary

Channel Model w/o DC bias - Preliminary

www.microsemi.com

Channel TF w/o a) DC bias b) with Linear Transformer. Preliminary. Final Model will use non linear transformer

Microsemi.

Channel Reference Model measurements w/o DC bias

Next steps

- To add DC bias to measurements and Model
- To add transformer non linearities to the model
- Run tests for different cable length and inductances
- Finalize TF
- To present other work of BER results for a channel with and without Midspan
 - Evaluate data
 - How it affects design margins
 - How it affects relaxation of 350uH under DC bias

Discussions/Summary

- Three groups are working on the project: TF function group and two BER tests groups.
- Preliminary model and lab test results were presented.
- We discuss the differences between the preliminary model and the expected final model.
 - Model parasitics (Leakage, winding capacitance) has negligible effect at the low frequency band under discussion.
 - Current model and lab test results are w/o DC bias and magnetic non-lineary effects which expected to change the TF at very low frequencies
- There is no difference in low frequencies between transformers and auto transformers with the same inductance. The differences appear at high frequencies (above 1MHz).
- Tests and simulations shows negligible differences in TF gain/frequency at well below 100KHz. Final results will be presented with the DC bias as planned.

BER tests Results and Conclusions:

- Preliminary BER tests shows similar behavior for channel with and without Midspans in most tested equipment.
- In general, it seems that if a device passes a BLW test without a Midspan in-line, it will pass with the addition of the midspan.
- There are a few cases where the addition of the Midspan caused the device to go from passing to failing.
- If the device fails the test without the Midspan, the addition of a Midspan introduces minimal error.
- For the handful of devices tested it seems that if the device can handle BLW packets properly, the addition of a Midspan will not introduce enough error to cause significant packet loss.
- All tests done for 100BT for 100BT equipment in different OCLs for 10 random equipment samples and different length. No knowledge if the equipment under test had BLW compensation.
- Ad hoc acknowledge preliminary results as similar to the current knowledge and experience from the field.
- Ad hoc is OK with continuing the proposed concept of TF definition and compliance criteria
- Next steps as proposed

