

Baseline Comment Bucket

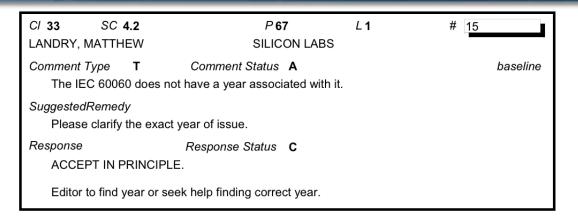
Contributors

Matthew Landry — John Jetzt — Geoff Thompson

Hugh Barrass — David Law — Clay Stanford

Agenda

- Patent Policy
 - http://standards.ieee.org/board/pat/pat-slideset.pdf
- Comments



Comment Bucket Buckets

- Easy stuff
 - > Comments 15, 12, 141
- Detection stuff
 - > Comments 124, 13

Easy Comment 15

Reference in question:

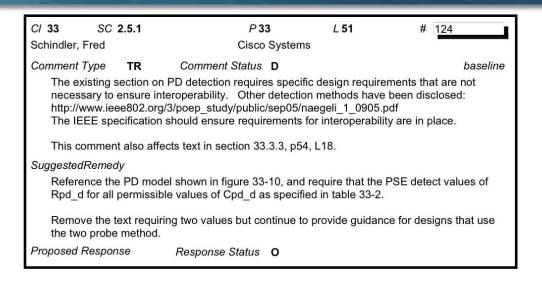
Each wire pair shall withstand, without damage, a 1000V common-mode impulse applied at Ecm of either polarity (as indicated in Figure 33–13). The shape of the impulse shall be $(0.3/50) \mu s$ (300 ns virtual front time, 50 μs virtual time or half value), as defined in IEC 60060, where Ecm is an externally applied AC voltage as shown in Figure 33–13.

- If no year referenced, refer to most recent year
- We should create a "year of the standard" bucket for appropriate consideration by knowledgeable parties

Easy Comment 12, 141

Class	Usage	Range of maximum power used by the PD
0	Default, Type 1	0.44 W to 12.95 W
1	Type 1	0.44 W to 3.84 W
2	Type 1	3.84 W to 6.49 W
3	Type 1	6.49 W_to 12.95 W
4	Type 2	12.95 W to 29.5 W

"Usage" column of similar Table 33-3 was removed with D0.9/#163


3.84 6.49 12.95 TBD

- "Range of maximum power" phraseology, while technically accurate, is definitely confusing to the average reader (and customer)
- Accept both in principle, resulting in:

Class	Maximum Power Available to PD
0	12.95 W
1	3.84 W
2	6.49 W
3	12.95 W
4	29.5 W

Detection Comment 124

- As Fred points out, other methods have been shown
- Other methods are actually on the market
- We define what a PD must look like and what a PSE must identify
- Why should we mandate how to do it?
- Recommend someone works on an alternate text proposal for group evaluation
- Eagerly await suggested text

Detection Comment 13

CI 33 SC 2.5 P 33 L 5 # 13

LANDRY, MATTHEW SILICON LABS

Comment Type TR Comment Status D baseline

A PSE performing detection should be able to provide two characteristics.

- (1) Probing into a short circuit won't destroy the PSE or the source of the short.
- (2) Two PSEs probing the same link segment should not result in a 25kohm differential impedance.

The probing voltage (Vvalid and Voc) and short circuit current limit defined in Table 33-2 accomplish (1). A simple shall statement can accomplish (2).

Instead we have some schematics (Figs 33-8 and 33-9) and a normative statement requiring conformance to them. This sure sounds like mandating an implementation -- and unnecessarily at that.

SuggestedRemedy

Strike Figs 33-8 and 33-9 or add a NOTE mentioning that they are informative only.

Strike Thevenin shall statement on line 45.

Add the following shall: A PSE shall present a non-valid signature as defined in Table 33-9 in all detection states.

Note that current PSEs conforming to the Thevenin circuits currently mandated will still satisfy this new shall.

Proposed Response Response Status O

- Not required for current limitation
- Does not force misdetects
- Does not force detects
- PICs testable?
- Suggested remedy "shall" statement may also be difficult to test
- Eagerly await suggested text

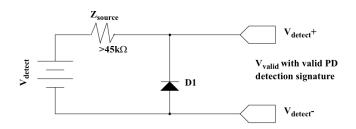


Figure 33–8—PSE detection source

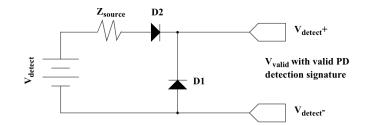


Figure 33-9—Alternative PSE detection source

The PSE shall exhibit Thevenin equivalence to one of the detection circuits shown in Figure 33–8 or Figure 33–9 in all detection states.

