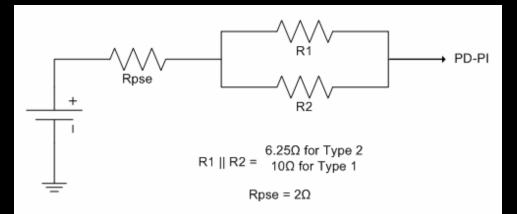
# . | | | | | | | CISCO

## Ripple and Noise IEEE 802.3at Task Force



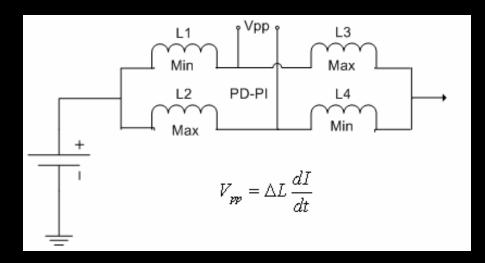
**Anoop Vetteth** 

Ripple and Noise


## **Ripple Specification in the Draft**

The specification for ripple and noise in Table 33-17 shall be for the common-mode and/or differential pair-to-pair noise at the PD PI generated by the PD circuitry.

Table 33-17 Item 10


| <b>Ripple and Noise</b> | Unit | Max Value |
|-------------------------|------|-----------|
| <500 Hz                 | Vpp  | 0.5       |
| 500Hz to 150 KHz        |      | 0.2       |
| 150kHz to 500 kHz       |      | 0.15      |
| 500kHz to 1MHz          |      | 0.1       |

#### **Common Mode – Worst Case**



|                         | Vpp  | Ipp (Type 1) | Ipp (Type 2) |
|-------------------------|------|--------------|--------------|
| <b>Ripple and Noise</b> | V    | mA           | mA           |
| <500 Hz                 | 0.5  | 42           | 61           |
| 500Hz to 150 KHz        | 0.2  | 17           | 24           |
| 150kHz to 500 kHz       | 0.15 | 12.5         | 18           |
| 500kHz to 1MHz          | 0.1  | 8            | 12           |

#### **Differential Mode – Worst Case**



OCL(max) = 1.4mH  $\Delta$ L(max) = 3% of 0.7mH = 0.021mH di/dt(max) = 15mA/us

Vpp(max) = 0.021mH x 15mA/us = 0.315V 0.315V > Permissible Vpp for 500Hz to 1MHz Permissible max Vpp for any freq = 0.1V Margin to account for di/dt caused by transient at PSE = 50% di/dt(max) for ripple current = 0.1V x 50% / 0.021mH = 2.4mA/us

#### Recommendations

- Change Vpp in Table 33-17 to Ipp as shown in table on slide 3 of this presentation
- Maximum permissible transient current for a PD is 2.4mA/us

### Section 33.3.7.4 (Peak Operating Power)

Definition of Iport in case of ripple current is incorrect

$$I_{port} = \sqrt{(I_{port\_dc})^2 + (I_{port\_ac})^2}$$

Equation 33-6

- Ripple current does not draw any additional average power from the PSE
- Add following equation to 33.2.9.5:

$$P_{port\_PSB} = \left(\frac{V_{PSB} - \sqrt{V_{PSB}^2 - 4(R_{ck})(P_{PD\_Class} + (R_{ck}I_{port\_ac}^2))}}{2(R_{ck})}\right) \times V_{PSB}$$