

Two Pair Power Considerations

Bill Delveaux – Cisco Chad Jones – Cisco

Supporters:

Joe Berry - Bel Rick Frosch – Phihong John Jetzt – Avaya

Keith Hopwood - Phihong

- Four pairs energized used in cable studies
- Two pairs energized used in spec
- What are we leaving "on the table"?

Cisco.com

- When comparing 4-pair energized heat dissipation to 2-pair energized
 - Heat increase has a root 2 factor
- More Power2 pair power = 4 pair power * root(2)
- More Temp Range
 Temperature derating based on 4-pair, additional temp range when using 2-pair

We can get more power...

Cisco.co		
derating	4-pair	2-pair
5C	480 mA	679 mA
10C	600 mA	849 mA
15C	720 mA	1018 mA

We can get more temp range...

Cisco.coi			
	current	4-pair	2-pair
	480mA	5 C	x C
	600mA	10 C	2.7 C
	720mA	15 C	6.2 C

Concerns and Possible Solutions

Cisco.com

- Some installations share two Ethernet ports in one wire (10/100 only) – eg Germany
 - Does not work for Gig
 - Preclude from PoE Plus
- Prevents 4-pair power
 - 4-pair power with same heating effect acceptable
- ISO/TIA assumes 4-pairs are powered
 - Need to work with TIA/ISO
- Max current is 720mA in the ISO/TIA spec
 - Use root 2 factor to improve temperature range and max out at 720mA

Cisco.com

- We should take advantage of knowing 2pair power
- We can get more power at higher temperatures
- Looking for "Birds of a Feather"