The term "nAUI" should be used rather than XLAUI / CAUI when talking about the optional physical instantiation in general terminology rather than "XLAUI / CAUI".

Also, given industry work on developing higher speed electrical interfaces, a number should be added at the end of the name to indicate the lane width.

Suggested Remedy
- replace XLAUI / CAUI with nAUI when talking about the optional physical instantiation in general terminology.
- Use CAUI-10 for 10 lane wide CAUI.
- Use XLAUI-4 for 4 lane wide XLAUI.
- Modify definitions in 1.4 accordingly.

Response

This comment was WITHDRAWN by the commenter.

The term XLAUI or CAUI clearly distinguishes between the physical instantiations of 40G instantiation and 100G instantiation of the PMA service interface. Moreover this also shows that these two interfaces are not interoperable even though they share the same electrical characteristics on each of the lanes.

Using the term nAUI does not allow this distinction, because the term might imply three different possibilities: XALUI, CAUI or both. A device implementation needs to still clearly specify if that device supports either XLAUI, or CAUI, or both.

Moreover since there is already XAUI for 10G, so the term nAUI may be (mis)interpreted as encompassing this interface as well.

Suggested Remedy

- Modify editing instructions to only describe what the editor is to do on a merge. In many cases (e.g., Clause 45 edits), complete tables are not reproduced and that would be appropriate to indicate (e.g., "Change indicated rows of Table 45-x as follows."). Correct table float (or anchor) problems.

Response

ACCEPT IN PRINCIPLE.

Scrub the editing instructions for existing Clauses/Annexes and add additional description or change instructions as appropriate (applies to Clauses 1, 4, 30, 45, 52, 69, 73, 74, and Annexes A, 4A, 51B, 69A, 69B).

For example change instruction for 73.9.1 (page 101) does not indicate the text that has changed from the base document. If the entire 73.9.1 needs to be removed and replaced with the new text then this should be a Replace instruction.

Suggested Remedy

- Clauses 84 through 88 show clause 83A XLAUI/CAUI as optional in Tables 84-1, 85-1, 86-2, 87-1 and 88-1. However, clause 83B could be used also and in some cases is more appropriate than 83A.

Response

ACCEPT IN PRINCIPLE.

Show 83B as optional for 87-1 and 88-1.
Show 83B as optional for 86-1 with note b
In Table 80-1 add a note to CR and KR PMDs to say that 83B is not optional for them with editorial licence.
<table>
<thead>
<tr>
<th>Cl 00</th>
<th>SC 0</th>
<th>P</th>
<th>L</th>
<th># 352</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grow, Robert</td>
<td>Intel</td>
<td>Comment Type</td>
<td>ER</td>
<td>Comment Status</td>
</tr>
<tr>
<td>We have a general problem with numbering. Not all projects are following the same convention, for example, P802.3av is inserting clauses and instructing renumbering, but this project attempts to follow the Style Guide (laudable but difficult for us). As is shown by this draft, the Style Manual convention doesn't support adding a new subclause when it is the first at that level (add 45.2.1.4.1a before 45.2.1.4.1), and it doesn't support alphabetic subclause ordering when doing this more than once (something we frequently do). For example in Clause 45, a second amendment would typically place a new bit definition for example as 45.2.1.4.1b before 45.2.1.4.1a which is before 45.2.1.4.1, but place a new register definition 45.2.1.12b after 45.2.1.12a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>Work with WG Chair to better coordinate projects and use consistent style for indicating changes. Though it can get painful (and was why I build a spreadsheet for clause 45 to manage amendments), I think we need to not follow the Style Guide for subclause insertions (which is add letters without renumbering) but rather insert and renumber, but I'll leave that decision to the WG Chair and if he chooses to the WGAC.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>Response Status</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Editorial license to find numbering that does not conflict with the finalized 802.3av amendment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 00</th>
<th>SC 0</th>
<th>P</th>
<th>L</th>
<th># 336</th>
</tr>
</thead>
<tbody>
<tr>
<td>D'Ambrosia, John</td>
<td>Force10 Networks</td>
<td>Comment Type</td>
<td>ER</td>
<td>Comment Status</td>
</tr>
<tr>
<td>Limit lines made up of 2 or more equations are numbered differently throughout the text. 1. each equation is numbered with its own equation # 2. a group of equations making up a limit is given one equation #. This was commented before, and an editor pointed out that use of #2 above follows Clause 47. However, subsequent reviews of projects that came after 802.3ae showed that</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>Adopt one style 1. Number each equation or 2. Put a bracket next to equations related to a single limit line. #1 is preferred.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>Response Status</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt the formatting style of equation 55-12 from the 2008 version of the base standard throughout the draft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 00</th>
<th>SC 0</th>
<th>P</th>
<th>L</th>
<th># 313</th>
</tr>
</thead>
<tbody>
<tr>
<td>D'Ambrosia, John</td>
<td>Force10 Networks</td>
<td>Comment Type</td>
<td>ER</td>
<td>Comment Status</td>
</tr>
<tr>
<td>Annexes 83B and 85A have equations but have not illustrated these equations via figures. This is inconsistent with other clauses where equations have been illustrated. Also in Annex 83B actual equations have been entered into table entries (see Table 83B-2 and 83B-4), rather than being added as equations into the text body, where the equation # is referenced in the table)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>Equations that define limits should be plotted in order to be consistent with the rest of the draft. Equations should not be entered as actual table entries. Instead, equations should be entered in text, and then the actual equation # referenced in the table entry.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>Response Status</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify inconsistencies and change as suggested.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clause 86 and 85 are not consistent in their PCB loss budgets. The CR4/CR10 PCB loss allowances are not sufficient for future PCB board designs, and do not support at least 4" of standard PCB trace.

SuggestedRemedy

- Change the reach objective for CR4/10 to 7m (from 10m) to allow for more loss be assigned to the PCB.
- Change clause 85A.4 from 4.74dB total loss for tx / rx host boards to 5dB per side for the PCB + connector + impairments budget.
- Change clause 86A.6 to 5dB per side for the PCB + connector + impairments. Note that this is an informative change since the PCB budget is informative, and this channel is jitter limited.
- Change Eq 86A-20 to reflect 3.5dB (Host trace) + 0.87dB (connector) + 1.26dB (HCB trace) + 0.83dB (impairments) = 6.26dB at 5.15625 GHz.

See gustlin_04_0709 for details of the changes.

Response

- ACCEPT IN PRINCIPLE.

Using gustlin_04_0709 as reach objective guidance and subsequent input for insertion loss allocation clause 85 comment resolution below.

Use Healey_03A_0709.pdf slide 14

6.26 dB loss TP0-TP2 and TP3-TP5 change to 6.5 dB

TP0-TP5 changes from 23.96 to 24.44 dB

Represents the loss budget from TP0 to TP5.

In addition, the methodology and assumptions of Healey_03A_0709.pdf slide 14 are accepted.

For TP0-TP2 and TP3-TP5 change to 6.5 at nyquist - use scaled 86A-20 only maximum.

Specification frequency range: 50 MHz to 10000 MHz.

In addition, give editor license to implement changes to tx/rx pcb losses to reflect loss basis for scaled 86A-20 equation.

In summary, the link loss budget accommodates at least 7 m reach and an IL of 6.5 dB between TP0-TP2.

For changes to equation 86A-20 see response to comment 223
Comment Type: TR
Comment Status: D

The process to resolve comment in CL 85 is broken, with meeting running past scheduled time past mid-night, decision are made with just 5-6 people in the room, comments are subjectively rejected by the editor, with meeting running late the editor gives himself permission to change the comment database since the meeting was already past midnight.

Suggested Remedy:
We need to adhere to scheduled time, editors should not enter resolution to comments outside the meeting time, do not reject a person comments attending different track without giving him opportunity to come by specifically Piers Dawes comments.

REJECT.
This comment was WITHDRAWN by the commenter.

Comment Type: TR
Comment Status: D

Clause 85 has fundamental budget problem where its reach has to be reduced to about 5 m then not meeting the 10 m objective.

Suggested Remedy:
As alternative to KR the group can use the 10GSFP+Cu as the baseline currently supporting 8.5 m and supporting in excess of >100m with acrive cables without the need to change the objective. 10GSFP+Cu electrically fully compatible with CL86 unlike Clause 85.

see ghiasi_04_0709

REJECT.
This comment was WITHDRAWN by the commenter.
IEEE P802.3ba Draft 2.1 40Gb/s and 100Gb/s Ethernet comments

Cl 00 SC 0

Ghiasi, Ali
Broadcom

Comment Type TR

Clause 85 started without being well thought and with very aggressive cable reach 10m, which is not feasible based on KR. Here are major issue with CL85 specificaitons:
A- PCB loss of 2.3 dB from TP0 to TP1 and TP4 to TP5
B- Reduction of KR ILD by 3 dB and increasing cable IL is not supported with cable return loss specificaitons and stacked connecters
C- Reference 10 m QSFP cable used for basaseline simualtion has 10 dB better return loss than cable SDDxx return loss
D- Reference 10 m QSFP cable with lowest loss was used for the cable loss specifications
E- Worst case FEXT are either not included or omitted from CR4/CR10 specificatinos

Suggested Remedy
Here are suggested resolution:
A- Increase PCB loss to 5 dB from 2.3 dB
B- Do not change KR ILD and make max cable IL the same as KR
C- Propose to use CL86 SDDii EQ 86A-1 and SCC22 EQ 86-A2 or stay with current RL anc cut the cable reach more
D- Worst case cable pair has 23.7 dB loss or about 2.27 dB/m
D- Include worst case FEXT for QSFP and CXP

With above changes the cable reach is assuming KR loss 23.3= 2.27*X + 1 dB (2 connectors) 10 dB (2x PCB trace), which result with reach of 5.4 m.

See ghiasi_01_0709

Response C

ACCEPT IN PRINCIPLE.

A: see comment #96 for PCB IL
B: see comment#96 and comment#236
C: Now use CL86 SDDii EQ 86A-1
D: 7 meter reach objective (IL and PSXT- (NEXT and FEXT) met with measured 7 meter cable assembly.

Booth, Brad
AMCC

Comment Type TR

IEEE P802.3ba has selected nomenclature that conflicts with previous uses of the same nomenclature letter. There has been an effort in the past decade to establish a consistent use of letters for port type nomenclature. Unfortunately, this was not noticed until the task force was in working group ballot.

IEEE P802.3ba should strive to keep its nomenclature consistent with IEEE Std. 802.3-2008. Maintaining a consistency will easily permit additional PMD types to be added to the 40GbE and 100GbE family.

See booth_01_0709.pdf for more information on nomenclature.

Suggested Remedy
In all uses of SR, change from short reach to be short wavelength.
In all uses of LR, change from long reach to be long wavelength.
In all uses of ER, change ER to be HR, and change from extended reach to be high-power long wavelength.

Response U

ACCEPT IN PRINCIPLE.

There was no agreement to change the nomenclature (see straw poll below) Replace the two paragraphs starting "The letter C in the port type ..." in 80.1.4 with a description including a table similar to Table 52-1 and including reach.

The nomenclature was adopted by the Task Force in May 2008 (see motion #2). The adopted nomenclature was presented to the WG by the TF Chair during Jul'08 opening plenary.

The nomenclature was discussed in the task force which also included 802.3 WG members. The requirement for 802.3ba was to distinguish reach for different PMDs, and previous distinctions based on wavelength was not considered sufficient. Hence the current nomenclature was adopted. The nomenclature is also documented clearly in Clause 80.

The task force did discuss the consistency issue; during the discussions it was pointed out that the base document already uses same letter(s) to identify different characteristics. (e.g., B, L, S). Also in the base document numeric suffix identifies either number of lanes/wavelengths or distance. After considerable discussion there was consensus in the Task Force to adopt S, L and E to represent reach.

Also see comment #97.

Straw Poll: The Task force was asked to indicate a preference between the options:
Draft 2.1 Comments

IEEE P802.3ba D2.1 40Gb/s and 100Gb/s Ethernet comments

Working Group ballot

Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected
RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn

Leave the nomenclature unchanged
change the nomenclature to one of 100GBASE-LRE4, 100GBASE-LR4E, 100GBASE-LR4-E
All in the room
Unchanged - 25
Change - 25
802.3 voters
Unchanged - 26
Change - 26

802.3 voters
Unchanged - 26
Change - 26

Cl 00 SC 0 P1 L 20 # 169
Ghiasi, Ali Broadcom

Comment Type: TR Comment Status: D
Ghiasi, Ali Broadcom

It was not agreed in the meeting to incorporate "Measured with effect of ILTP2(f) loss equation 85-2 mathematically removed from the signal at TP2 using software FIR filter that is no more then 6 UI long"

Suggested Remedy
Please remove it

Proposed Response
REJECT.

This comment was WITHDRAWN by the commenter.

Incorporation of text per D2.0 comment resolutions; see >> http://www.ieee802.org/3/ba/public/may09/P8023ba-D20-Final_Responses_byClsa.pdf

comment resolution number 697 and reference Moore01_0509.pdf (http://www.ieee802.org/3/ba/public/may09/moore_01_0509.pdf) to incorporate table and notes.

note > b) Measured with effect of ILITP2 loss mathematically removed from the signal at TP2 using a software FIR filter that is no more then 6 UI long.

Cl 00 SC 0 P1 L 20 # 164
Ghiasi, Ali Broadcom

Comment Type: TR Comment Status: R

KR does not close the 10 m link! Clause 85 has fundamental issues which I have raised them with my comments against D2.0 and D1.2 but the fundamental issue not addressed. CL85 is about 1 year behind other clause by my estimate.

Suggested Remedy
I propose to spin CL85/86 into a new project

Response
REJECT.

The commenter informed the Task Force that the suggested remedy should have read "I propose to spin CL85 into a new project"

The suggested remedy is not in the ballot scope which is to comment against the entire P802.3ba/D2.1 draft.

See response to Comment #96

Cl 00 SC 45 P38 L 37 # 765
Grow, Robert Intel

Comment Type: TR Comment Status: A
Grow, Robert Intel

As specified, edits from P802.3av could be lost. The content of the table on the row for bit 1.12 is being modified by P802.3av, and the content isn’t “Reserved for 802.3av”. You should use base text from 802.3av in this case.

Suggested Remedy
Change 1.12 row to the contents of P802.3av (nothing underscore), and correct the Change instruction to “Change indicated rows of Table 45-3 (P802.3av/D3.4).”. Delete table row at line 40 as it is an 802.3-2008 row as it is being changed by P802.3av and doesn’t need to be changed again.

Response
ACCEPT IN PRINCIPLE.

Also see related comment #356 regarding changing editing instruction with respect to amended text in 802.3av.

Change 1.12 row to the contents of P802.3av (nothing underscore).

Correct the Change instruction to "Change indicated rows of Table 45-3 (as modified by 802.3av)". Delete table row at line 40 as it is an 802.3-2008 row as it is being changed by P802.3av and doesn’t need to be changed again.
Cl 01 SC 1.1.3.2 P 24 L 22 # 248
Szczepeanek, Andre HSZ Consulting Ltd

Comment Type ER Comment Status A
40GBASE-SR10
SuggestedRemedy
40GBASE-SR4
Response Response Status W
ACCEPT.

Cl 01 SC 1.3 P 25 L 3 # 348
Grow, Robert Intel

Comment Type E Comment Status A
Actually they need to be inserted in alphanumeric order.
SuggestedRemedy
Change alphabetic to alphanumeric.
Response Response Status C
ACCEPT.

Cl 01 SC 1.3 P 25 L 5 # 395
Law, David 3Com

Comment Type T Comment Status A
For dated references, only the edition cited applies, although we do state that users are encouraged to investigate the possibility of applying the most recent edition. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

In the Normative references subclause IEC 60793-1-42 is dated referencing the 2007 edition yet in the body of the draft, in subclause 87.8.6.2 Channel requirements the reference to IEC 60793-1-42 undated.

The same is true for IEC 60793-2-50, IEC 61280-1-1, IEC 61280-1-4, G.694.1, G.694.2, G.694.2, G.959.1 and TIA-455-127-A.

SuggestedRemedy
Clarify is a dated or undated reference is intended.
Response Response Status C
ACCEPT IN PRINCIPLE.

For G.694.1 and G.694.2 remove the dates from clause 1.4

Where a date appears in the reference in 1.4, a dated reference was intended even where the date was not included in the citation. This applies to IEC 60793-2-50, IEC 61280-1-1, IEC 61280-1-4, G.959.1 and TIA-455-127-A
There are some inconsistencies between nomenclature between this section and the rest of 802.3. In clause 1.4.41 of 802.3-2008, it says "S" is for short wavelength optics while it says short reach in definition in 1.4 and no mention of S in 80.1.4.

The document should be consistent throughout regarding nomenclature if possible and should show some examples of the nomenclature.

Suggested Remedy
Use consistent nomenclature/definitions in the document. Add a graphic in 80.1.4 to show how the the media notation works. I will make a presentation on this and submit it to the group. Even if we can't use common terminology for the whole document, we should do it in ba.

Response
ACCEPT IN PRINCIPLE.

In clause 1.4 change the text such as "with extended reach" to "with reach up to at least 40 km"

See also response to comment #255
Comment Type: E Comment Status: R
Excessive capitalization (IEEE style uses lower case, only with justified exceptions for defined terms that otherwise would be confused, e.g., idle being something distinct on the MII to/from the generic usage of idle). (Just following what was done in 802.3ae doesn't make it right.)

Suggested Remedy
Though out of scope recommend:
AUI is attachment unit interface and MII is media independent interface, unfortunately all subsequent xAUIs and xMIIs use title case, consider correcting this generation, you are defining enough interfaces to change the preponderance

DIC is my fault, the one expansion in the base document should not have been capitalized. Also correct p.149, l.48.

HCB, LSB, MCB, MSB, OTN, OPU3 have no need to use capitalization, search document for expansion and make consistently lower case.

Response
REJECT.

The BRC discussed the capitalization issue in 1.5 w.r.t. IEEE style guide during response to comment #668 in D2.0. The consensus decision was to leave it capitalized for LSB, MSB and other definitions.

Comment Type: T Comment Status: A
The note states that '.. the received interPacketGap .. can have a minimum value of 8 BT (bit times) .. due to interPacketGap shrinkage..'. It is not due to interPacketGap shrinkage, that is what it is, it is due to clock tolerance and lane alignment requirements.

Suggested Remedy
Suggest the text '.. due to interPacketGap shrinkage.' be change to read '.. due to clock tolerance and lane alignment requirements.'

Response
ACCEPT IN PRINCIPLE.

In addition to 4.4.2, make the suggested change to Annex 4A (4A.4.2).
IEEE Std 802.3-2008 subclause 30.1.4 ‘Management model’ states that ‘. . . items are defined . . . in terms of the template requirements of ISO/IEC 10165-4: 1991.’ In ISO/IEC 10165-4, under the Attribute template subclause 8.7.3.2 ‘WITH ATTRIBUTE SYNTAX type-reference’, it is stated that ‘This construct, present only if the DERIVED FROM construct is absent, identifies the ASN.1 data type that describes how instances of this attribute are carried in protocol’.

We should therefore be using ASN.1 notation in APPROPRIATE SYNTAX, and I believe that the correct ASN.1 notation for an array is ‘SEQUENCE’. For an existing example see subclause 30.3.1.1.30 ‘aCollisionFrames’.

Further we need to define a

SuggestedRemedy

Suggest that the text ‘Array of generalized nonresetable .’ be changed to read ‘A SEQUENCE of generalized nonresetable .’.

Make the same change for subclause 30.5.1.1.16, page 34, line 49.

Response ACCEPT.

The counter increment rate needs to be added for 40Gb/s and 100 Gb/s operation.

SuggestedRemedy

Add the counter increment rate for 40Gb/s and 100 Gb/s operation.

Make the same change for subclause 30.5.1.1.16, page 34, line 51.

Response ACCEPT IN PRINCIPLE.

Change "and 5 000 000 counts per second for 10 Gb/s implementations"

to "5 000 000 counts per second for 10 Gb/s and 40Gb/s implementations, and 2 500 000 counts per second for 100Gb/s implementations"
Comment Type T Comment Status A
LP coefficient update, LP status, LD coefficient update and LD status should be grouped and not interleaved. Current interleaving increases MDIO interactions when reading the registers.

Suggested Remedy
Remove interleaving.

Response Response Status C
ACCEPT.
Note: Make corresponding changes in clause 74.

Comment Type TR Comment Status A
Table can be made simpler to read.

Also, the changes to the table may imply that a 10GBASE-R device is required to have the lane 0 copies.

Suggested Remedy
Change BASE-R FEC ability and BASE-R FEC control to just be FEC ability and Fec control, respectively.

Change register 1.172-1.175 back to being just 10GBASE-R registers. Add a note to the descriptions that in 40G and 100G, implementers may reflect a copy of the information contained in lane 0.

Eliminate references that may imply existing 10G devices would be required to create a "copy" in another register location.

Change BASE-R FEC corrected to be 40G/100G FEC corrected from lane 0-19 in register space 1.176-215.

Change BASE-R FEC uncorrected (lanes 1-19) to be 40G/100G FEC uncorrected from lane 0-19 in register space 1.216-255.

Response Response Status W
ACCEPT IN PRINCIPLE.

Itemizing the comment into 5 paragraphs:

1. The "BASE-R" descriptor is required to distinguish from 10P/2B FEC.

2. Change register 1.172-1.175 back to being just 10GBASE-R registers (no changes to register & subclause names). Delete the (added) first sentence and last sentences of the first paragraph of 45.2.1.86 & 45.2.1.87. Change the additional paragraph for both subclauses:
 "For a multi-lane PHY, this register may be a copy of register 1.176 (1.216) BASE-R FEC corrected (uncorrected) blocks counter, lane 0. If implemented, all accesses to the copy shall have identical behavior as the original register."

3. The changes described in 2. eliminate any such implication.

4. & 5. Accept the proposed changes.
45.2.1.4

Comment Type: E
Comment Status: A

These inserts are not in logical order. (We typically define our bits starting with Bit 0 but describe the bits starting from the highest numbered defined bit (with the possible exception of P802.3ap). Consequently newly defined bits require a new 45.x.x.x.1 and renumbering of other bit subclauses. While 45.1.4.8 is serendipidously the correct next subclause number (since P802.3av/D3.4 renumbers the current 45.2.1.4.6 to be 45.2.1.4.7), that puts the bit definitions of bits 8 and 9 after bit 0 and if followed as a precedent would place the bits in what would appear to most readers as random order.

Suggested Remedy:
Insert at beginning of 45.2.1.4 and renumber as required. (And, no reference to the most recent amendment is required in this case.)

Search for similar occurrences and correct as needed.

Response:
Response Status: C

ACCEPT IN PRINCIPLE.

Update change instruction to read: "Insert 45.2.1.4.1a and 45.2.1.4.1b before 45.2.1.4.1 as follows:"

45.2.1.4.8

Comment Type: TR
Comment Status: A

As shown, edits from 802.3av could be lost. Change base text to 802.3av.

Suggested Remedy:
Correct instruction on p.42, l.44 to read:
Change Table 45-6 as follows (P802.3av/D3.4):
- Correct first line of your Table 45-6 so that it is strikethrough text of "1.4.15:8".
- Delete row for bit 1.4.7 because it is defined in P802.3av/D3.4.

Response:
Response Status: W

ACCEPT IN PRINCIPLE.

Prior to the final sentence of first paragraph 45.2.1.7.4, insert:

The description of the transmit fault function for the 40GBASE-KR4 PMDs is given in 84.7.10. The description of the transmit fault function for the 40GBASE-CR4 and 100GBASE-CR10 PMDs is given in 85.7.10. The description of the transmit fault function for the 40GBASE-SR4 and 100GBASE-CR10 PMDs is given in 86.5.10. The description of the transmit fault function for the 40GBASE-LR4 PMDs is given in 87.5.10. The description of the transmit fault function for the 100GBASE-LR4 and 100GBASE-ER4 PMDs is given in 88.5.10.

Prior to the final sentence of 45.2.1.7.5, insert:

The description of the receive fault function for the 40GBASE-KR4 PMDs is given in 84.7.11. The description of the receive fault function for the 40GBASE-CR4 and 100GBASE-CR10 PMDs is given in 85.7.11. The description of the receive fault function for the 40GBASE-SR4 and 100GBASE-CR10 PMDs is given in 86.5.11. The description of the receive fault function for the 40GBASE-LR4 PMDs is given in 87.5.11. The description of the receive fault function for the 100GBASE-LR4 and 100GBASE-ER4 PMDs is given in 88.5.11.

Type: TR/technical required
Comment Status: D/dispatched
Response Status: O/open
Response: W/written
Cl 45 SC 45.2.1.86 P 57 L 38 # 26
Dawe, Piers Avago Technologies

Comment Type E Comment Status A
zeroes
SuggestedRemedy
zeros (9 times, including the only two in the base document).
Response Response Status C
ACCEPT.

Cl 45 SC 45.2.1.86 P 58 L 4 # 375
Ganga, Ilango Intel

Comment Type E Comment Status A
Fix typo:
Page 58, line 4: this register
Page 60, line 40: controlled
Page 60, line 43: controlled
Page 61, line 9: fix double period
Page 62, line 5: fix double period
Page 85, line 15: abilities
Page 85, line 18: abilities
SuggestedRemedy
Per comment
Response Response Status C
ACCEPT IN PRINCIPLE.
Page 58, line 4: thes register -> this register
Page 60, line 40: controled -> controlled
Page 60, line 43: controled -> controlled
Page 61, line 9: fix double period
Page 62, line 5: fix double period
Page 85, line 15: abilities -> abilities
Page 85, line 18: abilities -> abilities

Cl 45 SC 45.2.1.89 P 58 L 52 # 354
Grow, Robert Intel

Comment Type T Comment Status A
With all the gearboxes doesn't this need to be more specific than multi-LAN PHYs (though there is probably only one place in the architecture where the lanes get 20 wide) and only for 40 and 100 Gb/s operation, not for 10 Gb/s operation? It is less certain for the narrower interfaces.
SuggestedRemedy
Include text describing where lane 0 is specified "For multi-lane BASE-R PHYs, the even-numbered registers in this set are defined similarly to register 1.174 (see 45.2.1.87) which is used for lane 0, but for lanes 1 through 19 respectively. The odd-numbered registers in this set are defined similarly to work with register 1.175 (see 45.2.1.87) expanding the capability for lanes 1 through 19 respectively. Registers corresponding to lanes that are not used for the implemented PHY shall return all zeros."
Appropriately modify if determined to be appropriate to better specify where within the PHY it becomes this wide.
Make corresponding clarifications for other register descriptions expanding capability for multi-lane PHYs.
Response Response Status C
ACCEPT IN PRINCIPLE.
Change the first 2 sentences of 45.2.1.88 to
For multi-lane BASE-R PHYs, the even-numbered registers in this set are defined similarly to register 1.172 (which is used for lane 0, see 45.2.1.86) but for lanes 1 through 19 respectively of multi-lane PHYs. The odd-numbered registers in this set are defined similarly to register 1.173 (see 45.2.1.86) but for lanes 1 through 19 respectively of multi-lane PHYs.
Make corresponding clarifications for 45.2.1.89, 45.2.1.90, 45.2.1.91, 45.2.1.92, 45.2.1.93.

Cl 45 SC 45.2.1.95 P 61 L 5 # 353
Grow, Robert Intel

Comment Type ER Comment Status A
Strange order, inserted clause specify Register 1.307, then 1.309, then 1.308.
SuggestedRemedy
Correct order moving 309 after 308.
Response Response Status W
ACCEPT.
Comment Type: T
Comment Status: A
Table 45-82 Register name entries for register addresses 3.32, 3.33, 3.42 and 3.43 continue to employ "10G/40G/100G.." nomenclature which was previously removed from the corresponding text in subclauses 45.2.3.11, 45.2.3.12, 45.2.3.15 and 45.2.3.16, respectively.

SuggestedRemedy
Remove four instances of "10G/40G/100G" in Table 45-82 register name entries.

Response
ACCEPT.

Comment Type: T
Comment Status: A
Definition of hi_ber variable needs added reference to Clause 82 PCS.

SuggestedRemedy
Change "This bit is a direct reflection of the state of the hi_ber variable in the 64B/66B state diagram and is defined in 49.2.13.2.2.*" to:

"This bit is a direct reflection of the state of the hi_ber variable in the 64B/66B state diagram defined in 49.2.13.2.2 for 10GBASE-R and in 82.2.19.2.2 for 40/100GBASE-R.*"

Response
ACCEPT.

Comment Type: T
Comment Status: A
Definition of block_lock variable needs added reference to Clause 82 PCS.

SuggestedRemedy
Change "This bit is a direct reflection of the state of the block_lock variable in the 64B/66B state diagram and is defined in 49.2.13.2.2 for 10GBASE-R*" to:

"This bit is a direct reflection of the state of the block_lock variable in the 64B/66B state diagram defined in 49.2.13.2.2 for 10GBASE-R and in 82.2.19.2.2 for 40/100GBASE-R.*"

Response
ACCEPT.
Comment Type: ER

During comment resolution on Draft2.0 it was agreed that PRBS9 checking would be removed to resolve my comment on the lack of a defined implementation for the PRBS9 checker.

The text in Table 45-64a for 1.307.5 and in 45.2.1.94 for 1.307.5 do not reflect the removal of PRBS9 checking.

Suggested Remedy:
- In the table description column for 1.307.5 change to:
 1 = PRBS9 pattern generation supported
 0 = PRBS9 pattern generation not supported

- Change text on line 46 to "and register 1.307, bit 5 indicates that the device supports PRBS9 generation. In both cases, if" (ie remove "or checking")

Response: ACCEPT.

Suggested Remedy:
- Modify the editing instruction on p.43, l.21 to read: "Change indicated rows of Table 45-7 as follows (P802.3av/D3.4):", and get the change instruction closer to the Table (anchor or float problem).
- Line 5 as a modification to P802.3av/D3.4 have strikethrough bit number "1.7.15:5".
- Line 18 is wrong, and needs to be replaced with the Table 45-7 code points defined in P802.3av/D3.4 (no longer underscored).
- Recommend moving 40 Gb/s code points to start with 011011, and starting 100Gb/s code points at 1000000 (leaving 011111 Reserved and available for the rumored 40 Gb/s serial PMA/PMD type). (If 40 Gb/s code points are not moved, the rows indicating "Reserved" would also be copied from P802.3av/D3.4). Change 100 Gb/s code points to start at 100000.

Response: ACCEPT IN PRINCIPLE.

Change Table 45-7 (as modified by 802.3av) for 40 Gb/s and 100 Gb/s PMA/PMD type selections:

- Make Table 45-7 an active link.
- Line 5, make strikethrough text "1.7.15:5".
- Line 8, make strikethrough text "1.7.4:0".
- Column for bit 4 is not underlined.

Replace line 18:

(0 1 x x x x = Reserved for 802.3av)

1 1 1 x x x = reserved
1 1 0 1 1 = reserved
1 1 0 1 0 = 10GBASE-PR-U3
1 1 0 0 1 = 10GBASE-PR-U1
1 1 0 0 0 = 10/1GBASE-PRX-U3
1 0 1 1 1 = 10/1GBASE-PRX-U2
1 0 1 1 0 = 10/1GBASE-PRX-U1
1 0 1 0 1 = 10GBASE-PR-D3
1 0 1 0 0 = 10GBASE-PR-D2
1 0 0 1 1 = 10GBASE-PR-D1
1 0 0 1 0 = 10GBASE-PRX-D3
1 0 0 0 1 = 10GBASE-PRX-D2
1 0 0 0 0 = 10GBASE-PRX-D1

Table 45-8

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>E</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add editing instruction "Change indicated row of Table 45-8 as follows:". Then you don't need the row with the ellipse.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response
Response Status C

ACCEPT IN PRINCIPLE.

There is a change instruction for 45.2.1.7 (that includes Table 45-8).

Change the change instruction to make this explicit:

"Change 45.2.1.7 and change the indicated row of Table 45-8 for naming:"

Delete row 3.74 through 3.89. Last row should become an edit of the last row of P802.3av/D3.4.

Response
Response Status C

ACCEPT IN PRINCIPLE.

"Change Table 45-82 (as modified by 802.3av) for 40 Gb/s and 100 Gb/s PCS registers:"
Delete row 3.74 through 3.89
Replace with change row:

3.83 through 3.32 767 Reserved
becomes

3.83 through 3.89 Reserved

Use P802.3av/D3.4 as base text.

SuggestedRemedy
Modify change instruction by adding "(P802.3av/D3.4)". Change marking to be consistent with that base text. (Especially, include P802.3av/D3.4 specification for the 0010 line.)

Response
Response Status W

ACCEPT IN PRINCIPLE.

"Change Table 45-83 (as modified by 802.3av) for 40 Gb/s and 100 Gb/s speed selection:"
Line 52:

0 0 1 0 = 10/1 Gb/s

Note also, line 50, the text is changed from:

x x 1 1 = Reserved
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>52.9.10</td>
<td>91</td>
<td>1</td>
<td>535</td>
</tr>
</tbody>
</table>

D'Ambrosia, John
Force10 Networks

Comment Type TR **Comment Status** R
This is outside the scope of the IEEE P802.3ba PAR

Suggested Remedy
Discuss with Task Force as service to humanity effort.

Response Response Status C
REJECT.
There is no consensus to change the draft due to this comment
A vote of the task force on whether to remove clause 52 from the draft was:
Yes 7
No 12

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>69.1.3</td>
<td>94</td>
<td>1</td>
<td>258</td>
</tr>
</tbody>
</table>

Booth, Brad
AMCC

Comment Type TR **Comment Status** R
In response to comment #560 on D2.0, the editor has seen fit to take it upon themselves to institute a change to a previously approved draft.

Comments #560, 575 and 577 were attending to call out that this is inconsistent with most of 802.3. Only EFM used the port type nomenclature with the PCS. The port name at the bottom of the stack indicates the type of 64B/66B or 8B/10B PCS that should be used.

Suggested Remedy
Return the previously approved text back to its original form.

Change all architecture diagrams to be consistent with the majority of IEEE Std. 802.3-2008 where the coding scheme is only shown with PCS, not the port type.

Response Response Status W
REJECT. Comment 560 against D2.0 was resolved in a full meeting of the task force on the 4th May when anslow_05_0509 was discussed. Comment 560 was given due consideration and the final response represents a consensus view of the meeting rather than the view of any particular editor.

Within 802.3ba Figures 69-1, 84-1, 85-1, 86-1, 87-1 and 88-1 are all consistent in how they represent the stack.

In the existing standard Figures 51-1, 53-1 (LX4) and 54-1 (CX4) use the port type nomenclature with the PCS so there is precedent for doing this. It is the notation that was used in the original Figure 69-1 that was anomalous.

Straw Poll: Does the task force wish to make the changes below?

- **In Figure 69-1**
 - change "1000BASE-X PCS" to "8B/10B PCS"
 - change "10GBASE-X PCS" to "8B/10B PCS"
 - change "10GBASE-R PCS" to "64B/66B PCS"

 Yes - 1
 No - 22

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected **RESPONSE STATUS:** O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line
Comment Type: T Comment Status: A

fb is the upper limit for requiring ILD compliance. So between 5.15625 and 6 GHz there can be as much crosstalk as you like. I don't think practical equalisers can stand this; fb should be little higher than the Nyquist frequency.

Suggested Remedy
For 40GBASE-KR4, change 5.15625 GHz to 6 GHz (as in 85.10.8 for CRn).

Response Response Status: C

ACCEPT IN PRINCIPLE.

ILD is already specified out to 6 GHz so there is no need to change Clause 69 for this.

It is f2 that is the upper limit for ILD (not fb). f2 is 6 GHz which is slightly above nyquist.

Crosstalk is bounded by ICR, and -KRn and -CRn are both consistent in that they bound crosstalk up to Nyquist. See fb in Table 69B-1 and stated frequency range for Equation 85A-6.

85.10.8 describes the cable assembly rather than the channel.

Add paragraph number 85A.8 to line 23 on page 404

Comment Type: TR Comment Status: A

This is a pile on to unsatisfied comment 416 against draft 2.1.

AN_LINK.indication is an asynchronous signal that goes from the PCS to the AN function. There has been confusion expressed in the task force about how it should be routed. It does not make sense to route it through the PMA and PMD as this would unnecessarily complicate implementation and the specification as well as potentially adding cost.

It does not do any harm to add text to the spec to say AN_LINK.indication may be implemented as an out-of-band signal when the PCS and AN function are on separate chips.

Suggested Remedy
Add sentence at end of 73.9.1:
This primitive is an out-of-band asynchronous signal.

Response Response Status: C

ACCEPT IN PRINCIPLE.

This was discussed in the BRC of the logic task force and it was decided that it would be inappropriate to add this text as it directly concerns implementation. Hence there is no change to the base standard.

There is no change to base text in 73.9.1. So delete the change instruction and 73.9.1 from 802.3ba draft.

Comment Type: E Comment Status: A

spelling fec_bock_lock

Suggested Remedy
change fec_bock_lock to fec_block_lock

Response Response Status: C

ACCEPT.
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Suggested Remedy</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>A</td>
<td>GBd (twice). Underline "for 10G and 40G; and 5.15625 GBd for 100G.." Remove the second full stop.</td>
<td>ACCEPT.</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>Fix typo: Page 105, Line 30: delete double period</td>
<td>ACCEPT.</td>
</tr>
<tr>
<td>TR</td>
<td>TR</td>
<td>The last paragraph of 74.7.3 mentions 16 bit data coming from the PCS so is not generic for BASE-R. This last paragraph is not relevant in a subclause headed 'Composition of the FEC block' and repeats information given in previous subclauses so it makes sense to delete it.</td>
<td>Delete the last paragraph of 74.7.3 from base text (see Section 5, page #493)</td>
</tr>
<tr>
<td>TR</td>
<td>TR</td>
<td>Need to underline added text</td>
<td></td>
</tr>
</tbody>
</table>

Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected
RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
Cl 80 SC 80.1.3 P 124 L 27 # 92
Gustlin, Mark Cisco

Comment Type E Comment Status A
CGMII = 100 Gb/s MEDIA INDEPENDENT INTERFACE PMA = PHYSICAL MEDIUM ATTACHMENT runs together in figure 80-1.

SuggestedRemedy
Put a space between the word Interface and PMA. Also applies to 81-1, 82-1 and 83-1.

Response Response Status C
ACCEPT.

Cl 80 SC 80.1.4 P 125 L 34 # 267
Trowbridge, Stephen Alcatel-Lucent

Comment Type E Comment Status R
This may have been discussed before, but as there are no single-lane PMDs, it may be better to describe the terminology in the abstract.

SuggestedRemedy
Replace "No numeric suffix in the port type implies a single lane PMD." with "No numeric suffix in the port type would imply a single lane PMD."

Response Response Status C
REJECT.

Overtaken by events, see comment #255

Cl 80 SC 80.2.1 P 126 L 41 # 298
D'Ambrosia, John Force10 Networks

Comment Type E Comment Status A
Choice of wording is inconsistent -

The Media Independent Interface is not intended to be electrically instantiated, rather it can logically connect layers within a device.

Interfaces are physically instantiated, not electrically instantiated

SuggestedRemedy
Change sentence to:

The Media Independent Interface is not intended to be physically instantiated, rather it can logically connect layers within a device.

Response Response Status C
ACCEPT.
Comment Type: TR Comment Status: A

The delay constraint on MAC Control/MAC/RS for 40G is still needlessly tight. The increase from 10 pause quanta to 20 pause quanta falls short of what is needed. A delay constraint of 32 pause quanta will allow a broader range of implementations, without causing any harm.

The primary value of the delay constraint is to bound the reaction time to a received PAUSE frame. Bounding the delay helps limit the size of receive buffers. An unbounded delay would result in an unbounded buffer size. However, the biggest component of the delay is the round trip propagation delay of the link. The round trip propagation delay of a 10 km optical link at 40G dwarfs the 40G component delay constraints in table 80-1.

Suggested Remedy:
- Increase the MAC Control/MAC/RS delay constraint for 40G to 32 pause quanta.

Response Response Status: C
ACCEP'T.

Also see comment #275.

Comment Type: E Comment Status: A

Should the "n"s as well as the "x"s be italicized? I think other clauses do this.

Suggested Remedy:
- Italize the lower case "n"s (multiple occurrences)

Response Response Status: C
ACCEP'T.

Comment Type: E Comment Status: A

Typo:
"The XLMII and the CMII is an optional logical interface" should be "The XLMII and the CMII are optional logical interfaces".

Suggested Remedy:
- Change "The XLMII and the CMII is an optional logical interface" to "The XLMII and the CMII are optional logical interfaces".

Response Response Status: C
ACCEP'T.
Draft 2.1 Comments

IEEE P802.3ba D2.1 40Gb/s and 100Gb/s Ethernet comments

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Comment Type</th>
<th>Suggested Remedy</th>
<th>Response Status</th>
<th>Comment Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>81.1</td>
<td>139</td>
<td>46</td>
<td>6</td>
<td>E</td>
<td>grammar</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>change "The XLGMII and the CGMII is" to "The XLGMII/CGMII is"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response

ACCEPT IN PRINCIPLE.

See the resolution to comment #408

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Comment Type</th>
<th>Suggested Remedy</th>
<th>Response Status</th>
<th>Comment Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>81.1.4</td>
<td>140</td>
<td>38</td>
<td>29</td>
<td>T</td>
<td>Four lines already given in 80.4. This long justification should not be repeated for each sublayer because a sublayer by itself cannot control MAC-to-MAC delay. See another comment addressing 87.3.1 and 88.3.1.</td>
<td>Delete first two sentences of 81.1.4, 82.5, 83.5.4, 84.4, 85.4. Delete first sentence of 87.3.1 and 88.3.1. At end of 81.1.4, 84.4, add "See 80.4 for additional details." or "See 80.4." or "A description of overall system delay constraints can be found in 80.4." In 85.4, line 27, change the reference to 85.4 to point to 80.4.</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

Response

ACCEPT IN PRINCIPLE.

Change the delay statements in each clause according to gustlin_05_0709.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Comment Type</th>
<th>Suggested Remedy</th>
<th>Response Status</th>
<th>Comment Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>81.1.4</td>
<td>140</td>
<td>52</td>
<td>275</td>
<td>TR</td>
<td>The delay constraint on MAC Control/MAC/RS for 40G is still needlessly tight. The increase from 10 pause quanta to 20 pause quanta falls short of what is needed. A delay constraint of 32 pause quanta will allow a broader range of implementations, without causing any harm.</td>
<td>increase the MAC Control/MAC/RS delay constraint for 40G to 32 pause quanta.</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

Response

ACCEPT.

See response to comment #274

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Comment Type</th>
<th>Suggested Remedy</th>
<th>Response Status</th>
<th>Comment Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>81.2.3</td>
<td>146</td>
<td>16</td>
<td>300</td>
<td>E</td>
<td>The data <data> in a well-formed frame shall consist of a set of data octets.</td>
<td>unnecessary wording</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

Response

ACCEPT.

The data <data> in a frame shall consist of a set of data octets.
Comment 81: Cl 81 SC 81.3.1.2 P147 L9 #7

Marris, Arthur
Cadence

Comment Type: E **Comment Status:** A
grammar

Suggested Remedy:
Change "a XLGMII" to "an XLGMII"

also on page 150 line 34

Response
Response Status: C
ACCEPT.

Comment 81: Cl 81 SC 81.3.1.3 P147 L53 #401

Law, David
3Com

Comment Type: T **Comment Status:** A

In table 81-3 above TXC = 1 and TXD = 0xFE is described as 'Transmit error propagation' yet on this line it is called 'Error control characters'.

Suggested Remedy
Suggest that '.. or Error control characters.' be changed to read '.. or Transmit error propagation characters.'.

Response
Response Status: C
ACCEPT IN PRINCIPLE.
Change table 81-3
From
"Transmit error propagation"
To
"Error"
This makes it consistent with line 53.

Comment 81: Cl 81 SC 81.3.2.3 P152 L49 #402

Law, David
3Com

Comment Type: T **Comment Status:** A

In table 81-4 above RXC = 1 and TXD = 0xFE is described as 'Receive error' yet on this line it is called 'Error control character'.

Suggested Remedy
Suggest that '.. or Error control characters.' be changed to read '.. or Receive error characters.'.

Response
Response Status: C
ACCEPT IN PRINCIPLE.
Change the entry in table 81-4:
From:
"Receive error"
To:
"Error"
This makes it consistent with line 49, and makes it consistent with Table 81-3 also.
The term ‘.. preserve the column alignment of the transmitting RS ..’ is the first use of the term column in the draft. I don’t see column defined in the definitions of the base IEEE Std 802.3-2008 or being added by this draft.

To add to the confusion is its use in Table 81-5 where it is stated that ‘Values in Lane 1-7 columns are in hexadecimal ..’. What is defined as a column is actually illustrated in a row in the table.

Suggested Remedy
Add a definition of column before its use.

Response
Add a definition of column before its use.

ACCEPT IN PRINCIPLE.

Change:
The PCS is required to either preserve the column alignment of the transmitting RS, or align the Start control character to lane 0. The RS shall not indicate DATA_VALID to the MAC for a Start control character received on any other lane. Error free operation will not change the SFD alignment in lane 7. A MAC/RS implementation is not required to process a packet that has an SFD in a position other than lane 7 of the column containing the Start control character.

To:
The RS shall not indicate DATA_VALID to the MAC for a Start control character received on any lane other than lane 0. Error free operation will not change the SFD alignment in lane 7. A MAC/RS implementation is not required to process a packet that has an SFD in a position other than lane 7 in the XLGMII/CGMII transfer containing the Start control character.

In Table 81-5:
Change:
NOTE-Values in Lane 1-7 columns are in hexadecimal, most significant bit to least significant bit (i.e., <7:0>).

To:
NOTE-Values in hexadecimal, most significant bit to least significant bit (i.e., <7:0>).

Add the following after the first paragraph of 81.3.4:
Clause 46 uses the term column when describing data transfer on the XGMII. The eight lanes of data and control transferred per clock cycle on XGMII/CGMII are equivalent to a column in the following description of link fault signaling.
We now have two error counting mechanisms that can be used on 64B/66B-like signals: errored blocks and BIP errors. For isolated errors at error rates of interest, they will give near-identical results. If burst errors are involved, the errored block counter will typically count 1 per burst while the BIP error counters will typically count the number of errors in the burst.

It would be useful to be clearer which is meant by BER. As MTTFPA is so important and burst errors are a threat to it, BIP counting seems preferable. Also, it is preferable to be able to count errors the same way with live traffic as with the normative scrambled idle test pattern.

Suggested Remedy

Say that BER for 64B/66B signals is defined by BIP error counting. Consider removing (for 40G/100G) or making optional the block error counter mechanism and the errored blocks counters.

Do we want a counter of BIP errors summed across the lanes?

Response

REJECT.

BIP is not a great way to measure burst errors, and the BIP saturates at a much lower BER (10^-6 approximately). This lower BER saturation is not consistent with the current high BER SM that kicks in at a 10^-4 BER.

As far as the accumulated BIP error count, the consensus is to leave that to the SW if desired.

45.2.3.12.4 Errored blocks (3.33.7:0) says that the errored blocks counter is according to 49.2.14.2, but that's information not specification. Neither 82 nor the rest of 49.2 refer to 49.2.14.

Suggested Remedy

If the counter definitions in 49.2.14.2 Counters are needed, refer to them somehow from 82, or copy them.

The same issue may apply to the test-pattern error counter.

Response

ACCEPT IN PRINCIPLE.

Add in the following to the counter definitions on page 183:

- **errored_block_count**: 8-bit counter. When the receiver is in normal mode, errored_block_count counts once for each time RX_E state is entered. This counter is reflected in MDIO register bits 3.33.7:0.

- Also add:
 - **test_pattern_error_count**: 16-bit counter. When the receiver is in test-pattern mode, the test_pattern_error_count counts errors as described in 82.2.18. This counter is reflected in MDIO register bits 3.43.15:0.

Comment

I believe that the PCS is sublayer of the Physical layer - see Figure 82-1.

Suggested Remedy

Suggest that 'The 40GBASE-R PCS can connect to one of the following Physical Layers ..' be changed to read 'The 40GBASE-R is a sublayer of the following Physical Layers ..'.

Response

ACCEPT.

Suggest that '.. defined here.' be changed to read '.. defined in this Clause.'.

Suggested Remedy

See comment.

Response

ACCEPT.
<table>
<thead>
<tr>
<th>Comment</th>
<th>Type</th>
<th>Comment Status</th>
<th>Response</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl 82 SC 82.1.2 P 163 L 17</td>
<td>T</td>
<td>A</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Law, David</td>
<td>3Com</td>
<td>Comment Type</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Comment Status</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Line 17 states that 'Data striping is introduced to support multiple lanes in the Physical Layer' yet line 28 states that '.. distribute data to multiple lanes in order to support PMAs and PMDs with multiple lanes.'.
| Isn't it actually the need to support multiple lanes on the medium - be it multiple fibres, copper links or wavelengths - that drives this.
| **Suggested Remedy**
| Reword the line 17 and 28 to be consistent - and suggest that it should refer to the need for multiple lanes on the medium.
| **Response**
| **Response Status** | C |
| **ACCEPT IN PRINCIPLE.**
| Change the following text.
| From:
| "In addition to 64B/66B encoding is a methodology to add alignment markers and distribute data to multiple lanes in order to support PMAs and PMDs with multiple lanes."
| To:
| "In addition to 64B/66B encoding is a methodology to add alignment markers and distribute data to multiple lanes."
| Cl 82 SC 82.1.2 P 163 L 23 | E | A | | C |
| Law, David | 3Com | Comment Type | E |
| Comment Status | A |
| Suggest that '.. Ethernet MAC and reconciliation layers, ..' should read '.. Ethernet MAC and reconciliation sublayers,..' as both are sublayers (see Figure 82-1).
| **Suggested Remedy**
| See comment.
| **Response**
| **Response Status** | C |
| **ACCEPT.**
| Cl 82 SC 82.1.4 P 165 L 9 | T | A | | C |
| Marris, Arthur | Cadence | Comment Type | T |
| Comment Status | A |
| There is redundancy in the descriptions of the inter-sublayer interfaces and 82.1.4 reads awkwardly.
| **Suggested Remedy**
| Delete the first paragraph of 82.1.4.
| Move 82.2.1 to be under 82.1.4 and renumber to 82.1.4.1.
| Renumber 82.1.5 to 82.1.4.2.
| **Response**
| **Response Status** | C |
| **ACCEPT.**
Comment Type: TR **Comment Status:** A

BIP errors should be counted like SDH RS-B1 rather than MS-B1 so that the error count will not be skewed in the case where 40GBASE-R is transported over OTN with transcoding and bit errors in the sync header or control block types cause replacement of an entire 66B block with an error control block. A supporting presentation will be provided. This falls under the OTN support objective.

Suggested Remedy:
Replace "... the appropriate BIP error counter register is incremented for each BIP bit in error (registers 3.90 through 3.99)" with "... the appropriate BIP error counter register is incremented for each 8-bit BIP value in error (registers 3.90 through 3.99)"

Response Status: C **Response:**
ACCEPT.

Comment Type: T **Comment Status:** A

I don't think the PCVS client can be anything other than the RS.

Suggested Remedy:
Change the text 'A PCS client is generally the Reconciliation Sublayer.' to read 'The PCS client is the Reconciliation Sublayer.'.

Response Status: C **Response:**
ACCEPT.

Comment Type: T **Comment Status:** A

r_block_type can only contain the value returned from R_TYPE

Suggested Remedy:
Create a variable called r_block_type_next that contains the value of R_TYPE_NEXT

Response Status: C **Response:**
ACCEPT IN PRINCIPLE.

Change:
r_block_type
This variable contains the rx_coded<65:0> vector classification results, returned by the R_TYPE or R_TYPE_NEXT functions. It can assume one of the following five values {C,S,T,D,E}, as defined by the R_TYPE function.

To:
r_block_type_next
This variable contains the rx_coded<65:0> vector classification results, returned by the R_TYPE function. It can assume one of the following five values {C,S,T,D,E}, as defined by the R_TYPE function.

Add:
r_block_type_next
This variable contains the rx_coded<65:0> vector classification results, returned by the R_TYPE function. It can assume one of the following five values {C,S,T,D,E}, as defined by the R_TYPE function.

Change:
R_TYPE_NEXT function to refer to the new variable.

Comment Type: T **Comment Status:** A

The two high order sync bits bypass the scrambler.

Suggested Remedy:
as above.

Response Status: C **Response:**
ACCEPT.
Comment Type: E Comment Status: A
Old function definition
Suggested Remedy
Remove the definition of T_BLOCK_TYPE because it has been replaced with T_TYPE.
Response Response Status: C
ACCEPT.
Should be a T type comment, duplicate of #18.

Comment Status: A
Response Status: C
Estes, Dave UNH - IOL

Comment Type: TR Comment Status: A
Function T_BLOCK_TYPE no longer exists.
Suggested Remedy
Delete T_BLOCK_TYPE.
Response Response Status: C
ACCEPT.
Dupe of #412

Comment Status: A
Response Status: C
Muller, Shimon Sun Microsystems, Inc

Comment Type: E Comment Status: A
"T_TYPE = tx_raw<71:0>" should be "T_TYPE(tx_raw<71:0>)"
Suggested Remedy
"T_TYPE = tx_raw<71:0>" should be "T_TYPE(tx_raw<71:0>)"
Response Response Status: C
ACCEPT IN PRINCIPLE.
Change to:
T_TYPE(tx_raw<71:0>)

Comment Status: A
Response Status: C
Estes, Dave UNH - IOL

Comment Type: E Comment Status: A
"T_TYPE = tx_raw<71:0>" should be "T_TYPE(tx_raw<71:0>)"
Suggested Remedy
"T_TYPE = tx_raw<71:0>" should be "T_TYPE(tx_raw<71:0>)"
Response Response Status: C
ACCEPT IN PRINCIPLE.
Change to:
T_TYPE(tx_raw<71:0>)
Comment Type: T Comment Status: A

Since the PCS can connect directly to a PMA or FEC sublayer, change all "PMA:IS_" to "inst:IS_" with inst in italics (this matches what we have in clause 83). Also add a note to the last paragraph on page 166 that the inst can be replaced with PMA or FEC.

Where is says "PMA service interface" Change to "service interface".

Change figure 82-2's bottom block to read "PMA or FEC sublayer" (just says PMA sublayer now.

Change the title of 82.2.10 from "PMA Interface" to "PMA or FEC Interface"

Suggested Remedy
as above.

Response
ACCEPT.

Comment Type: E Comment Status: A

This footnote should be just a note.

Suggested Remedy
Change the text 'These streams originate from a common clock in each direction, but may vary in phase and skew dynamically.' to read 'Note- These streams originate from a common clock in each direction, but may vary in phase and skew dynamically.' placed under paragraph two of subclause 82.2.2.

Response
ACCEPT.

Comment Type: ER Comment Status: A

"When the receive channel is in normal mode ..."
This simplies that deskew is not required when the receiver is in test pattern mode, which is not the case.
The only PCS testpattern is scrambled idles which requires all the synchronization steps listed in this paragraph.

Suggested Remedy
"When the receive channel is in normal or testpattern mode ..."

Response
ACCEPT.

Comment Type: E Comment Status: A

Typo.

Suggested Remedy
Change '0x1e' to read '0x1E'.

Response
ACCEPT IN PRINCIPLE.
Change all hex instances to capitals:
The one on page 168, line 19, figure 82-5, table 82-1, table 82-2, table 82-3 etc.
<table>
<thead>
<tr>
<th>Cl 82</th>
<th>SC 82.2.4.1</th>
<th>P 168</th>
<th>L 9</th>
<th># 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marris, Arthur</td>
<td>Cadence</td>
<td>Comment Type: TR</td>
<td>Comment Status: A</td>
<td></td>
</tr>
</tbody>
</table>
| /O/ refers to an ordered set not a control character. The control character for an ordered set is either /Q/ or /Fsig/.

Also need to explain Z notation here.

Suggested Remedy

Change:

"Control characters other than /O/, /S/ and /T/ are labeled C0 to C7. The control character for ordered set is labeled as O0 since it is only valid on the first octet of the XLGMII/CGMII. The control character for start is labeled as S0 for the same reason. The control character for terminate is labeled as T0 to T7."

To:

"The control characters /I/ and /E/ are labeled C0 to C7. The control characters, /Q/ and /Fsig/, for ordered sets are labeled as O0 since they are only valid on the first octet of the XLGMII/CGMII. The control character for start is labeled as S0 for the same reason. The control character for terminate is labeled as T0 to T7. The four trailing zero data octets in ordered sets are labeled as Z4 to Z7."

also delete the sentence "Control codes fixed to all zeros are identified as a Z code." in 82.2.4.4 on page 171 line 46.

Response

Response Status: C

ACCEPT.

<table>
<thead>
<tr>
<th>Cl 82</th>
<th>SC 82.2.4.10</th>
<th>P 173</th>
<th>L 27</th>
<th># 411</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estes, Dave</td>
<td>UNH - IOL</td>
<td>Comment Type: E</td>
<td>Comment Status: A</td>
<td></td>
</tr>
</tbody>
</table>
| Function names have changed

Suggested Remedy

Change R_BLOCK_TYPE to R_TYPE and T_BLOCK_TYPE to T_TYPE

Response

Response Status: C

ACCEPT.

<table>
<thead>
<tr>
<th>Cl 82</th>
<th>SC 82.2.4.2</th>
<th>P 168</th>
<th>L 27</th>
<th># 417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estes, Dave</td>
<td>UNH - IOL</td>
<td>Comment Type: T</td>
<td>Comment Status: A</td>
<td></td>
</tr>
</tbody>
</table>
| There is a PICS but no shall

Suggested Remedy

Change "Block bit transmission order is illustrated" to "Block bit transmission order shall be as illustrated"

Response

Response Status: C

ACCEPT.

<table>
<thead>
<tr>
<th>Cl 82</th>
<th>SC 82.2.4.3</th>
<th>P 168</th>
<th>L 42</th>
<th># 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marris, Arthur</td>
<td>Cadence</td>
<td>Comment Type: T</td>
<td>Comment Status: A</td>
<td></td>
</tr>
</tbody>
</table>
| 'Each control block contains eight characters.' Is this really true?

Suggested Remedy

Preferably delete the sentence:

'Each control block contains eight characters.'

or change to

Each control block encodes eight characters.

Response

Response Status: C

ACCEPT IN PRINCIPLE.

Change to:

Each control block encodes eight characters.

<table>
<thead>
<tr>
<th>Cl 82</th>
<th>SC 82.2.4.3</th>
<th>P 171</th>
<th>L 1</th>
<th># 414</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estes, Dave</td>
<td>UNH - IOL</td>
<td>Comment Type: T</td>
<td>Comment Status: A</td>
<td></td>
</tr>
</tbody>
</table>
| Unused values of block type are defined twice.

Suggested Remedy

Change "All unused values of block type field are reserved" to "All unused values of block type field are invalid" to match the new wording in 82.2.4.5.

Response

Response Status: C

ACCEPT.
Comment Type: T Comment Status: A

’Control codes fixed to all zeros are identified as a Z code’ does not make sense.

Suggested Remedy: Delete this sentence.

Add explanation of Z in 82.2.4.1 Notation conventions

Response: ACCEPT IN PRINCIPLE.

Sentence will be deleted. See comment #9 for the definition of Z.

Comment Type: E Comment Status: A

It is confusing to refer to /O/ as a character when it is in fact a set of characters. Also you cannot find /O/ in Table 82-1 which is confusing.

Suggested Remedy: Change:

"The ordered_set control characters (/O/) indicate the start of an ordered_set. Block type field plus the O code encodes the specific /O/ character for the ordered_set."

To:

"The ordered_set control characters (/Q/ and /Fsig/) indicate the start of an ordered_set. The block type field plus the O code encode the specific control character for the ordered_set."

Response: ACCEPT.

Comment Type: T Comment Status: A

There isn’t a shall or PICS associated with alignment markers

Suggested Remedy: Add a shall statement and a PICS statement for the insertion of alignment markers.

Response: ACCEPT IN PRINCIPLE.

Change:

“The alignment markers are inserted after every 16383 66-bit blocks on each PCS lane”

To:

“The alignment markers shall be inserted after every 16383 66-bit blocks on each PCS lane”

And add appropriate PICS.

Change from:

“The content of the alignment markers is shown in Table 82-2 for 100GBASE-R and in Table 82-3 for 40GBASE-R.”

To:

“The content of the alignment markers shall be as shown in Table 82-2 for 100GBASE-R and in Table 82-3 for 40GBASE-R.”

And add appropriate PICS

Comment Type: E Comment Status: A

Style guide says to avoid "will" (although I think we use it in a particular formula of words in Clause 30), and this use in an example may be fine.

Suggested Remedy: Check style guide. Can change "will contain" to "contains".

Response: ACCEPT style guide. Can change "will contain" to "contains".
Comment 1

Comment Type: TR

Comment Status: A

This text was changed in Draft 2.1 from "In addition, the PCS shall transmit" to "In addition, the PCS may transmit". This means that the behaviour of the PCS in loopback is poorly defined as we cannot be sure what data is passed to the layers below. If the implementer were to choose all zeros or all ones, then it is not clear how an optical PMD would behave. It might emit CW light or possibly shut down. This may cause issues to the link as the far end receiver may just see noise and would almost certainly cause alarms. If the intent was to remove the shall, then the Suggested remedy below achieves this.

Suggested Remedy

Change "In addition, the PCS may transmit what it receives from" to "In addition, the PCS transmits what it receives from".

Response

Response Status: C

ACCEPT IN PRINCIPLE.

Change:

In addition, the PCS may transmit what it receives from the XLGMIICGMII to the PMA sublayer, and shall ignore all data presented to it by the PMA sublayer.

To:

In addition, the PCS shall transmit what it receives from the XLGMIICGMII to the PMA sublayer, and shall ignore all data presented to it by the PMA sublayer.

Add appropriate PICS.

Comment 2

Comment Type: E

Comment Status: A

Note in Figures 82-10, 82-11,

Note - block_lock<x> refers to the received PCS lane x, where x = 0:3 or 0:19

Suggested Remedy

Modify note

Note - block_lock<x> refers to the received PCS lane x, where x = 0:3 (for 40GBASE-R) or 0:19 (for 100GBASE-R).

Response

Response Status: C

ACCEPT.
The PICS for state machines should include separate line items for 40GBASE-R and 100GBASE-R to match the requirements of 82.2.19.3. Where there is difference in requirements for 40GBASE-R and 100GBASE-R then these should be captured as separate line items in 82.2.19.3 and in PICS.

Also the PCS deskew process requirements depicted in figure 82-12 is a requirement for 40GBASE-R and 100GBASE-R. So change line 25 to shall statement(s) to capture this requirement and add a corresponding PICS.

The BER process requirements are different for 40GBASE-R and 100GBASE-R. Change line 31 to "shall" statements to capture this requirement (500us window and 1.25ms window).

PCS_R_Status (page 197, line 18) appears to be a carry over from Clause 49. This signal is not used in Clause 82. So delete this PICS SM6.

Suggested Remedy

Change PICS as follows:

<table>
<thead>
<tr>
<th>Item: Feature</th>
<th>Value/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM1: 40GBASE-R PCS lane lock.</td>
<td>Implements 4 PCS lane lock process as depicted in Figure 82-10</td>
</tr>
<tr>
<td>SM2: 100GBASE-R PCS lane lock.</td>
<td>Implements 20 PCS lane lock process as depicted in Figure 82-10</td>
</tr>
<tr>
<td>SM3: 40GBASE-R PCS alignment marker lock.</td>
<td>Implements 4 alignment marker lock process as depicted in Figure 82-11</td>
</tr>
<tr>
<td>SM4: 100GBASE-R PCS alignment marker lock.</td>
<td>Implements 20 alignment marker lock as depicted in Figure 82-11</td>
</tr>
<tr>
<td>SM5: 40GBASE-R and 100GBASE-R PCS deskew.</td>
<td>Meets the requirements of Figure 82-12</td>
</tr>
</tbody>
</table>

Also change 82.2.19.3 line 25 to include "shall" to capture the deskew requirement.

SM6: 40GBASE-R BER monitor. Meets the requirement of Fig 82-12 with xus_timer_done equals 1.25ms

SM7: 100GBASE-R BER monitor. Meets the requirement of Fig 82-12 with xus_timer_done equals 500us.

Also change 82.2.19.3 line 31 to include shall statements to capture the difference in xus_timer requirement for 40GBASE-R and 100GBASE-R.

Change/renumber Transmit and Receive PICS as follows

SM8 40GBASE-R and 100GBASE-R Transmit process

SM9 40GBASE-R and 100GBASE-R Receive process

Delete PCS_R_Status from 82.7.6.1 (SM6) as this is not defined or used in Clause 82.

Comment Type: TR

Comment Status: A

The 40GBASE-R PMA(s) can support any of the 40 Gb/s PMD as specified in Table 80-1. The 100GBASE-R PMA(s) can support any of the 100 Gb/s PMDs as specified in Table 80-1.

Suggested Remedy

Replace

"The 40GBASE-R PMA(s) can support any of the following PMDs: 40GBASE-SR4, 40GBASE-LR4, 40GBASE-CR4, or 40GBASE-KR4. The 100GBASE-R PMA(s) can support any of the following PMDs: 100GBASE-SR10, 100GBASE-LR4, 100GBASE-ER4, or 100GBASE-CR10."

"The 40GBASE-R PMA(s) can support any of the 40 Gb/s PMDs listed in Table 80-1. The 100GBASE-R PMA(s) can support any of the 100 Gb/s PMDs listed in Table 80-1."

Comment Type: T

Comment Status: A

Change physical description of PMD service interface to include XLPPI/CPPI as suggested

Suggested Remedy

The physical instantiation of the PMD service interfaces for 40GBASE-SR4 and 100GBASE-SR10 PMDs, known as XLPPI/CPPI, are defined in Annex 86A. The PMD service interfaces for other PMDs are defined abstractly.

Response

ACCEPT.
The purpose of the PMA is to adapt the PCS Lanes (PCSL) to an appropriate number of abstract or physical lanes and to optionally provide test signals and loopback.

Suggested Remedy

Replace "The purpose of the PMA is to adapt the PCS Lane (PCSL) formatted signal to an appropriate number of abstract or physical lanes and optionally to provide test signals and loopback." with "The purpose of the PMA is to adapt the PCS Lanes (PCSLs) to an appropriate number of abstract or physical lanes and to optionally provide test signals and loopback."

Comment Type: E **Comment Status**: A

Response

Response Status: C

ACCEPT IN PRINCIPLE.

Replace "The purpose of the PMA is to adapt the PCS Lane (PCSL) formatted signal to an appropriate number of abstract or physical lanes and optionally to provide test signals and loopback."

with

"The purpose of the PMA is to adapt the PCS Lanes (PCSLs) to an appropriate number of abstract or physical lanes and to optionally provide test signals and loopback."

Comment Type: E **Comment Status**: A

Description for CGMII overlaps that of PMA. Create more space between the two columns.

Suggested Remedy

As per comment

Response

Response Status: C

ACCEPT.

Comment Type: E **Comment Status**: A

Line 46: double period, delete one.

Line 50: capitalization: change clause 45 to Clause 45

Line 53: add missing cross-reference link to Figure 83-2

Suggested Remedy

As per comment

Response

Response Status: C

ACCEPT.
Cl. 83 SC 83.1.4 **P 201** L 44 # 576
Ganga, Ilango Intel

Comment Type: ER
Comment Status: A

The generic interface is now called inter-sublayer service interface defined in 80.3, so rephrase as suggested.

Suggested Remedy

Rephrase item (a) as follows:

a) The inter-sublayer service interface defined in 80.3, is used for the PMA, FEC and PMD service interfaces supporting a flexible architecture with optional FEC and multiple PMA sublayers.

Rephrase item (c) as follows:

c) The abstract inter-sublayer service interface can be physically instantiated as a XLAUI or CAUI, using associated PMAs to map to the appropriate number of lanes.

Response: ACCEPT.

Cl. 83 SC 83.1.4 **P 201** L 53 # 284
Ofelt, David Juniper Networks

Comment Type: TR
Comment Status: A

The lane speeds for XLAUI and CAUI are referred to as 10 Gb/s, but this is inconsistent with the description in 83A.1.1 where the nAUI lanes are described as being 10.3125 Gb/s.

Suggested Remedy

Assuming that the Annex describes the speeds correctly, change the text from:

2) XLAUI is a 10 Gb/s by 4 lane physical instantiation of the respective 40 Gb/s connection
3) CAUI is a 10 Gb/s by 10 lane physical instantiation of the respective 100 Gb/s connection

To:

2) XLAUI is a 10.3125 Gb/s by 4 lane physical instantiation of the respective 40 Gb/s connection
3) CAUI is a 10.3125 Gb/s by 10 lane physical instantiation of the respective 100 Gb/s connection

Response: ACCEPT IN PRINCIPLE.

change the text from:

2) XLAUI is a 10 Gb/s by 4 lane physical instantiation of the respective 40 Gb/s connection
3) CAUI is a 10 Gb/s by 10 lane physical instantiation of the respective 100 Gb/s connection

To:

2) XLAUI is a 10.3125 Gbaud by 4 lane physical instantiation of the respective 40 Gb/s connection
3) CAUI is a 10.3125 Gbaud by 10 lane physical instantiation of the respective 100 Gb/s connection

Cl. 83 SC 83.2 **P 202** L 33 # 506
Ganga, Ilango Intel

Comment Type: E **Comment Status**: A

Sentence fragment. Rephrase as suggested.

Suggested Remedy

See 83.5.2 and Figure 83-4 for details.

Also add missing cross-reference to 83.5.2

Also rephrase line 35 as follows:

Figure 83-5 provides the functional block diagram of a PMA.

Response: ACCEPT.
Cl 83 SC 83.2 P 202 L 33 # 20
Muller, Shimon
Sun Microsystems, Inc

Comment Type E Comment Status A

Style.

Suggested Remedy
"See 83.5.2 for more details Figure 83-4."
with
"For more details see 83.5.2 and Figure 83-4."

Response Response Status C
ACCEPT IN PRINCIPLE.
Overtaken by comment 366

Cl 83 SC 83.3 P 204 L 43 # 377
Ganga, Ilango
Intel

Comment Type ER Comment Status A

Add a sentence to indicate SIGNAL_OK parameter can take a value of OK or FAIL. Also specify the condition when this parameter takes a value of OK and under what condition this parameter takes a value of FAIL. (alternatively define this condition in 83.5.7 Link Status subclause and refer to it in 83.3).

Indicate the validity of the PMA:IS_UNIDATA_x.indication when the PMA:IS_SIGNAL.indication primitive indicates FAIL in 83.3.

Suggested Remedy
As per comment

Response Response Status C
ACCEPT IN PRINCIPLE.

Replace
"When these conditions are met,
PMA:IS SIGNAL.indication (SIGNAL_OK) is sent to the PMA client." with
"When these conditions are met,
the SIGNAL_OK parameter sent to the PMA client via the PMA:IS SIGNAL.indication primitive will have the value OK. Otherwise, the SIGNAL_OK parameter will have the value FAIL."

Cl 83 SC 83.4 P 205 L 2 # 365
Ganga, Ilango
Intel

Comment Type E Comment Status A

Typo: change "promitives" to "primitives"

Suggested Remedy
As per comment

Response Response Status C
ACCEPT.

Cl 83 SC 83.5.10 P 210 L 51 # 262
Szczepanek, Andre
HSZ Consulting Ltd

Comment Type TR Comment Status R

PMA test patterns (optional)

PRBS31 generation and checking in the 100GBASE-LR4/ER4 PMA is a requirement to allow implementation of the 100GBASE-LR4/ER4 optical tests using standard (BERT) test equipment.

Suggested Remedy
Reword as PRBS31 generation and checking is mandatory for 100GBASE-LR4/ER4 PMAs

Response Response Status W
REJECT.

It has been confirmed through several meeting cycles that test patterns are optional, adding further clarification of this in sub-clause headers, PICS, etc.
The PMA receive side PRBS31 checker would be much more useful if it could check a signal that had been through a gearbox, e.g. when testing whole modules or whole gearbox ICs. This is more of a concern for 100G than for 40G.

Also it is desirable to do the same test with the same pattern in module factory, and in host factory, and in service. See dawe_01_0509.pdf and subsequent work.

Note that the change of words below makes no difference to the high speed silicon of e.g. a 40G serial PMA or a 10-lane PMA pattern generator because a PRBS31 when 2-way 4-way bit-demuxed is four PRBS31s (with offsets >31 UI). So far the analysis shows that interleaved PRBS31s have similar characteristics to single PRBS31s.

Suggested Remedy

Change "on each of the lanes" to "on each of the PCS lanes" here and at line 19.

Change "one lane and any other lane" to "one PCS lane and any other PCS lane"

In the paragraphs beginning line 25 and line 34, change "lane" or "lanes" to "PCS lane" or PCS lanes.

Delete "Note that bit multiplexing of per-lane PRBS31 may produce a signal which is not meaningful for downstream sublayers."

Provide 20 PRBS31 error counters in each direction, one per PCS lane.

Response REJECT.

This comment was not accepted based on dawe_01_0509. Subsequent investigation as shown in anslow_05_0709 gives some concern over this approach.

There is no limit to the potential increment rate of the PRBS31 checker referenced in 49.2.12.

The checker implementation is difficult to match at high increment rates or in the presence of burst errors (the source synchronous descrambler implementation error multiplication factor depends on burst pattern).

For most practical purposes stringent matching of the 49.2.12 implementation is not necessary. It would be sufficient to match the result of a 49.2.12 implementation only for isolated single bit errors and at error rates better than 1 in a thousand.

Suggested Remedy

Replace:

(see 49.2.12)

With:

The PRBS31 checker shall match the results of the checker implementation in 49.1.12 for isolated single bit errors and at error rates better than 1 in a thousand.

Response REJECT.

While it is arguable that the existing PRBS31 checker is not ideal, it has stood the test of time for 10G interfaces and it is not compelling to diverge from this for 40/100GBASE-R
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>ER</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>The following requirement is specified in 83.5.2 without a "shall" statement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggested Remedy</td>
<td>Add a "shall" to indicate this requirement and add a corresponding PICS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>ACCEPT IN PRINCIPLE. Replace "The only requirement is that from the time the link is brought up, each PCSL from an input lane is mapped to a particular output lane, and the input lane to output lane mapping of PCSLs is maintained." with "From the time the link is brought up, the mapping of each PCSL from an input lane to a particular output lane shall be maintained." Add new "LANE_MAPPING" PICS to 83.7.3 table with reference to 83.5.2, mandatory.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>E</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>To be consistent change "nominal rate R" to "nominal signaling rate R" in two instances (line 6 and line 8).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggested Remedy</td>
<td>As per comment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>ACCEPT.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>TR</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>Include a "shall" statement to capture the PMA link status requirements in 83.5.7. Also add a corresponding PICS to 83.7.3 to capture this requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggested Remedy</td>
<td>Change 83.5.7 line 8 as follows: The PMA shall provide link status information to the PMA client using the PMA:IS_SIGNAL.indication primitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>ACCEPT.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Comment

Link Status does not have a corresponding SHALL statement or PIC.

Suggested Remedy

modify sentence

The PMA provides link status information to the PMA client using the PMA:IS_SIGNAL.indication primitive.

to

The PMA shall provide link status information to the PMA client, as described in this subclause (83.5.7), using the PMA:IS_SIGNAL.indication primitive.

Add PIC

Response

Response Status W

ACCEPT IN PRINCIPLE.

Dup 383.

Comment

The PMA control variables should be defined in Clause 83. If MDIO is implemented then these PMA control variables shall map to the MDIO control variables as shown in Tables 83-2 and 83-3. Since MDIO is optional the control and status variables should still be defined in PMA clause that will be used to control and monitor the status of the PMA sublayer. Also the error counters should be defined in Clause 83 that will map to the MDIO registers. See Clause 74 in the base document as reference for defining counters/variables.

Modify the corresponding subclauses to define these variables.

Add PCIS as appropriate. See 74.11.4 as an example for implementing management PCIS.

Suggested Remedy

Define control/status variables and add to last column of Table 83-2 as follows. Also define these variables in appropriate subclauses where these functions are described:

Remote_loopback_enable; Add to Table 83-2 and describe this variable in last paragraph of 83.5.9

Local_loopback_enable; Add to Table 83-2 and describe this variable in last paragraph of 83.5.8

PRBS31_enable; Add to Table 83-2
PRBS9_enable; Add to Table 83-2
Tx_PRBS_gen_enable; Add to Table 83-2
Tx_PRBS_checker_enable; Add to Table 83-2
Square_wav_enable_0 to Square_wav_enable_9; Add to Table 83-2

Change description in 83.5.10 to include the above control variables instead of directly writing to the register bits. Since implementing MDIO is optional, the operation should be described without dependency to these MDIO register bits.

Add the following variables to Table 83-3. Define the variables in corresponding subclauses where the function is described:

Remote_loopback_ability;
Local_loopback_ability;
PRBS_pattern_ability;
PRBS31_pattern_ability;
PRBS9_pattern_ability;
PRBS.Tx_gen_ability;
PRBS.Tx_checker_ability;
PRBS.Rx_gen_ability;
PRBS.Rx_checker_ability;
Square_wav_ability
The error counters are now combined in status variable mapping. Instead move these counters to a separate table 83-4 as follows:

Table 83-4 MDIO/PMA counters mapping

Define the following error counters in 83.5.10 and add to Table 83-4

Ln0_PRBS_Tx_pattern_test_err_counter to Ln9_PRBS_Tx_pattern_test_err_counter;
Ln0_PRBS_Rx_pattern_test_err_counter to Ln9_PRBS_Rx_pattern_test_err_counter;

These variables and counters need to be implemented in PMA sublayer even if MDIO is not implemented, so add corresponding management PICS to Clause 83

Add subclause 83.7.7 Management
Add PICS corresponding to the above management variables/counters

Response

ACCEPT IN PRINCIPLE.

Editorial license to craft appropriate text to define PMA registers

There should be separate PICS to capture the local and remote loopback requirements in 83.5.8 and 83.5.9.

Also the PICS in 83.7.6 that captures the optional requirements should be updated accordingly.

Suggested Remedy

Change 83.7.3 LB as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Feature</th>
<th>Subclause</th>
<th>Value/Comment</th>
<th>Status</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBL</td>
<td>PMA local loopback</td>
<td>83.5.8</td>
<td>Supports local loopback</td>
<td>O</td>
<td>Yes/No/NA</td>
</tr>
<tr>
<td>LBR</td>
<td>PMA Remote loopback</td>
<td>83.8.9</td>
<td>Supports remote loopback</td>
<td>O</td>
<td>Yes/No/NA</td>
</tr>
</tbody>
</table>

Change 83.7.6 LB1 and LB2 as follows:

<table>
<thead>
<tr>
<th>LB1</th>
<th>PMA local loopback implemented</th>
<th>83.5.8</th>
<th>Meets the requirements of 83.5.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB1:M</td>
<td>Yes/No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LB2</td>
<td>PMA remote loopback implemented</td>
<td>83.5.9</td>
<td>Meets the requirements of 83.5.9</td>
</tr>
<tr>
<td>LB2:M</td>
<td>Yes/No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Status A

Equations in 83A are handled in an inconsistent manner. In some cases the equations specify the limit lines (see Equation 83A-1 for example), while in other cases the equations state what the parameter needs to meet (see 83A-6).

This is also done in Annex 83B.

Suggested Remedy

Use one consistent form for an equation

parameter <=> limit (name) = equation

Draft should refrain from using specific 4 port s-parameter names. n-Port s-parameters are becoming more common. Presentation given in May did not focus on port numbers, just the different types of modes, i.e. differential, common-mode, differential to common-mode, and common-mode to differential.

Suggested Remedy

Use one consistent form for an equation

parameter <=> limit (name) = equation

Commenter is encouraged to provide additional input on naming convention which should
Comment Type: TR Comment Status: A
All parameters listed in Table 83A-1 are normative and have a corresponding "SHALL" statement in the text following the table except "Maximum Termination Mismatch at 1MHz"

SuggestedRemedy:
Add following sentence to end of paragraph at 83A.3.3.3
The maximum termination mismatch at 1 MHz shall be less than the requirement defined in Table 83A-1.

Response: Response Status: W
ACCEPT.

Make sure PICS is included

Comment Type: E Comment Status: A
It would be helpful to begin the overview with a statement that using nAUI is optional. This also occurs in 83B, See Annex 86A for reference.

SuggestedRemedy:
Add to the first sentence to the overview, "The XLAUI/CAUI interfaces are optional instantiations of the interface between PMA sublayer of Clause 83." Repeat with appropriate adjustment for 83B.

Response: Response Status: C
ACCEPT IN PRINCIPLE.

Optional is currently stated in the first sentence for both 83A and 83B (no change required):

This annex defines the functional and electrical characteristics for the optional 40 Gb/s Attachment Unit Interface (XLAUI) and 100 Gb/s Attachment Unit Interface (CAUI).

This annex defines the functional and electrical characteristics for the optional chip-to-module 40 Gb/s Attachment Unit Interface (XLAUI) and 100 Gb/s Attachment Unit Interface (CAUI).
Comment Type: E
Comment Status: A

The text refers to a transmit pin but the drawing, Fig 83A-2, uses the term Transmitter. It's also unlikely that pins are used in actual packages. This also occurs with the Rx text in 83A.2.2.

Suggested Remedy
Make the terms consistent between Figure 83A-2 and the text in 83A.2.1 and 83A.2.2. Change pin to contact.

Response: Response Status: C
ACCEPT.

Comment Type: ER
Comment Status: A

Figure 83A-3 is titled, "Insertion loss between Transmit Compliance Point and Transmit Compliance Pin". The | at the end is likely inadvertent. Is compliance defined for the pins (preferably contacts)? If not they should not be called compliance pins. This also occurs in 83A.2.2 for the Rx.

Suggested Remedy
For Figure 83A-3 change "Insertion loss between Transmit Compliance Point and Transmit Compliance Pin" to "Insertion loss between Transmit Compliance Point and Transmitter Contact" and for Figure 83A-4 change "Insertion loss between Receive Compliance Point and Receiver Contact" to "Insertion loss between Receive Compliance Point and Receiver Contact". In the text change 'transmit pin' to 'transmitter contact' and 'receive pin' to 'receiver contact'.

Response: Response Status: W
ACCEPT IN PRINCIPLE.

Comment Type: ER
Comment Status: A

Table 83A-1 do not match their respective subclause headings

Suggested Remedy
change table entry "Differential Output S-parameter" to "Differential output return loss"
change table entry "Common Mode Output S-parameter" to "Common mode output return loss"

Response: Response Status: C
ACCEPT.

Comment Type: ER
Comment Status: A

The following table entries in Table 83A-1 do not match their respective subclause headings

Suggested Remedy
change table entry "Differential Output S-parameter" to "Differential output return loss"
change table entry "Common Mode Output S-parameter" to "Common mode output return loss"
In Table 83A-1, the parameters named ‘Transmitter eye mask definition’ seem better named ‘Transmitter eye mask coordinate’. This also occurs in Table 83A-2.

Suggested Remedy
In Table 83A-1, change the parameters names from, ‘Transmitter eye mask definition’ to ‘Transmitter eye mask coordinate’. Repeat in table 83A-2.

Response
REJECT.

Transmitter eye mask definition is consistent with other clauses (52, 86, 87, 88)

Maximum rise and fall time

Suggested Remedy
Should be min rise and fall time

Proposed Response
REJECT.

This comment was WITHDRAWN by the commenter.

Minimum rise / fall time and maximum rise / fall time appears to be referenced correctly. See below for reference.

Minimum Output Rise and Fall time (20% to 80%) 24 ps

83A.3.3.2 Rise/fall time
Differential rise/fall times shall be greater than the minimum output rise and fall time defined in Table 83A-1, as measured from the 20% to the 80% levels. Shorter transitions may result in excessive high-frequency components and increase EMI and crosstalk. The upper limit is defined by the transmit eye mask shown in Figure 83A-8. Rise/fall time is measured with de-emphasis off.
<table>
<thead>
<tr>
<th>CI 83A</th>
<th>SC 83A.3.3.1</th>
<th>P 372</th>
<th>L 12</th>
<th># 174</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Type</td>
<td>TR</td>
<td>Comment Status</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>In cases where the rise and fall time are very different the equation 83A-6 over estimates the min Vtx-demph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggested Remedy</td>
<td>Propose to use geometric average of tr/τf = SQRT(Tr* Tf) instead of max rise and fall time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>When tr and fall time were different the far end eye opening for compliant transmitter was more than 110 mV, see ghiasi_03_0709</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Response</td>
<td>Response Status</td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This comment was WITHDRAWN by the commenter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CI 83A</th>
<th>SC 83A.3.3.2</th>
<th>P 372</th>
<th>L 41</th>
<th># 173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Type</td>
<td>TR</td>
<td>Comment Status</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>No pattern is defined for rise and fall time measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggested Remedy</td>
<td>Propose to use pattern of 8 1’s and 8 0’s for rise and fall time measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>Response Status</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CI 83A</th>
<th>SC 83A.3.3.4</th>
<th>P 371</th>
<th>L 48</th>
<th># 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Type</td>
<td>TR</td>
<td>Comment Status</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Draft says abs(SCC22) ≤ 9 dB. SCC22 is a common mode output reflection response, so it must be less than 1 W/W, or 0 dB (S-parameters define power gain, not loss). If the common mode output reflection response at a particular frequency were 0.1 + 0.076j, the absolute response (without phase) would be sqrt(0.1^2 + 0.076^2) = 0.1259 W/W, or -9 dB. Not plus. By comparison, the things called loss in Clause 85 actually are loss, hence positive. The mathematics police pick on things like this. Here’s what SFF-8414 says (their capitals): CAUTION: S-PARAMETERS ARE A MEASURE OF GAIN (OUTPUT REFERRED TO INPUT) BY DEFINITION. HOWEVER COMMON USAGE HAS INCORRECTLY IMPLEMENTED THE WORD ‘LOSS’ INSTEAD OF GAIN. PARAMETERS WHOSE AMPITUDE IS EXPRESSED AS A NEGATIVE DB VALUE REPRESENT A GAIN LESS THAN ONE OR A POSITIVE ‘LOSS’. PLEASE EXERCISE CAUTION IN THIS AREA AND UNDERSTAND THAT DATA MAY BE PRESENTED OR LABELED INCORRECTLY (i.e, GAINS BEING LABELED AS LOSSES).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggested Remedy</td>
<td>Correct the signs of the S-parameters.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>Response Status</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Comment | Change equation 83A-6 to >= |

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general

COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn

SORT ORDER: Clause, Subclause, page, line
Comment Type: T Comment Status: D
Since a small (up to 1 dB channel) exist before you get to Tx compliance point, why do you measure with no emphasis? This seems fair to allow equalization of this small channel for Host Tx measurements. Also in test methods in section 5.1 page 379 line 15.

Suggested Remedy
Remove line: Jitter and eye mask measurement requirement are described in 83A.5.1, and are conducted with de-emphasis off.

Proposed Response: REJECT.
This comment was WITHDRAWN by the commenter.

The intent is to ensure that the jitter mask requirements are not measured with significant amounts of de-emphasis since this will cause excessive DJ. Therefore it is specified with De-emphasis off with the description in 83A.5.1 (off is the optimal setting for transmit jitter testing).

There are two references to 83A.5.1. Therefore delete the following sentence from 83A.3.5.5:
The template measurement requirements are specified in 83A.5.1

The intent is to ensure that the jitter mask requirements are not measured with significant amounts of de-emphasis since this will cause excessive DJ. Therefore it is specified with De-emphasis off with the description in 83A.5.1 (off is the optimal setting for transmit jitter testing).

There are two references to 83A.5.1. Therefore delete the following sentence from 83A.3.5.5:
The template measurement requirements are specified in 83A.5.1
It's not clear that these jitter specs allow the two concatenated CDRs and an optical link, XFP style, that will be wanted when connecting e.g. a 40GBASE-LR4 module. This is a jitter accumulation issue. It would apply to a CR4 link using a big module and clocks derived from the signal also. We could use module jitter transfer specs from XFP 3.9.2 (8 MHz max jitter transfer bandwidth, 1 dB jitter peaking <50 kHz). But as 802.3 specifies signals at compliance points more than transfer metrics like jitter transfer, another way would be to measure the transmit side signals (from host to module) with a 1 MHz clock recovery unit and the receive side signals (from module to host) with 4 GHz as in the draft. The 10G optical signals are defined with 4 GHz.

Suggested Remedy
Modify the jitter specifications to be sure they do allow two concatenated CDRs and an optical link, XFP style. Create two masks in figure 83A-12, with 1 MHz corner frequency for a transmit side signal, and the current 4 MHz for a receive side signal.

Response
REJECT.

Comment
Sign of equation for insertion loss is going in the wrong direction. The insertion loss should be less than the limit not greater.

Suggested Remedy
Reverse the signs for both equations.

Response
ACCEPT.

- Modify equation 83A-9

Comment
High pass pole for jitter measurement to harmonize with PPI it may need to change from 4 MHz. Corner frequency for PPI and nAUI has to be the same.

Suggested Remedy
It was suggested to add 2 MHz for PPI.

Comment
What is LP

Suggested Remedy
Replace with Low Pass

Response
ACCEPT.

Comment
802.3ae, 802.3ap, 802.3aq uses 4MHz.

Comment
802.3ae, 802.3ap, 802.3aq uses 4MHz.

Suggested Remedy
This comment was WITHDRAWN by the commenter.
Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Comment Type ER Comment Status R

Figure 83B-1 is similar to Figure 83A-2 but the names on what may be identical items are different, e.g. XLAUI/CAUI Component vs XLAUI/CAUI IC, Driver vs Transmitter, Input vs Receiver. If these block diagram elements are actually the same, please use the same terminology, otherwise it can be confusing. See also Fig 83B-3.

Suggested Remedy:
If the XLAUI/CAUI Component & XLAUI/CAUI IC are the same use the same name. Likewise for Driver & Transmitter use Transmitter and for Input & Receiver use Receiver.

Response: REJECT.
No consensus for change

Make figures 83B-1 and Figure 83A-2 consistent
Straw poll:
Use 83A-2 labels: 5yes
Use 83B-1 labels: 5yes

Comment Type TR Comment Status A

Fig 83B-1 calls out connector loss of 0.5dB. This should be consistent with 86A.

Page 424 Line 36: The recommended maximum loss of the host channel (PCB only) at 5.15625 GHz is 3.5 dB.
Observation: 5.3dB - 3.5dB = 1.8dB for HCB + connector
Equation 83A-7 specifies 1.26dB for HCB trace only
Observation: 1.8dB - 1.26 dB = 0.54dB for connector only
but

However, specifications for HCB, MCB, and mated HCB/ MCB:
HCB: 1.26dB
MCB: 0.67dB
Mated HCB / MCB: 2.8dB
Connector loss = 2.8 - 1.26 - 0.63 = 0.87dB

Suggested Remedy:
Resolve what the loss of the connector should be.

Response: ACCEPT IN PRINCIPLE.
There is no reason for the connector loss to be different between host board and compliance board

Change table 83B-1 such that loss is specified at 5.15625 and change the following text to:

The loss budget of Equation 83A-9 is linearly scaled to 7.9 dB loss at 5.15625 GHz for the Host XLAUI / CAUI component, and 2.1 dB loss at 5.15625 GHz for the module as per Table 83B-1 and Equation (83B-1) for the host and Equation (83B-2) for the module.
from:

The loss budget of Equation 83A-9 is linearly scaled to 7.9 dB loss at 5.5 GHz for the Host XLAUI / CAUI component, and 2.1 dB loss at 5.5 GHz for the module as per Table 83B-1 and Equation (83B-1) for the host and Equation (83B-2) for the module.
Cl 83B SC 83B.2.1 P 388 L 16 # 341
Palkert, Tom Xilinx/Luxtera

Comment Type TR Comment Status A
SDD22 for nAUI module output should match the PPI specification.

SuggestedRemedy
Modify the SDD11 in Table 83B-2 to match the PPI specifications in equation 86A-3 and section 86A.4.2.1

Response Response Status C
ACCEPT IN PRINCIPLE.

nAUI modules should have more flexibility with respect to SDD11
for nAUI, use PPI mask from 0.01GHz to 2.19GHz, use nAUI from 2.19GHz to 11.1GHz
PPI: = -12 +2×V(f)
nAUI: -5.56 + 8.7×log10(f / 5.5).

Cl 83B SC 83B.2.1 P 388 L 25 # 184
Palkert, Tom Xilinx/Luxtera

Comment Type TR Comment Status A
Module compliance is not very descriptive

SuggestedRemedy
Suggested title, Module Specifications

Response Response Status C
ACCEPT.

See suggested remedy

Cl 83B SC 83B.2.1 P 388 L 29 # 178
Ghiasi, Ali Broadcom

Comment Type TR Comment Status A
No definition on the nAUI CDR requirements

SuggestedRemedy
Please add section similar to XFP+ MSA Rev 4.5 section 3.9.2.
To reduce the host burden we may want to consider the max BW here 4 MHz instead of 8 MHz.

Response Response Status U
REJECT.

No consensus reached at this time.

Cl 83B SC 83B.2.1 P 388 L 26 # 177
Ghiasi, Ali Broadcom

Comment Type TR Comment Status A
Module compliance is not very descriptive

SuggestedRemedy
Suggested title, Module Specifications

Response Response Status C
ACCEPT.

See suggested remedy

Cl 83B SC 83B.2.1 P 388 L 8 # 340
Palkert, Tom Xilinx/Luxtera

Comment Type TR Comment Status A
SDD11 for nAUI module input should match the PPI specification.

SuggestedRemedy
Modify the SDD11 in Table 83B-2 to match the PPI specifications in equation 86A-1 and section 86A.4.1.1

Response Response Status C
ACCEPT IN PRINCIPLE.

nAUI modules should have more flexibility with respect to SDD11
See comment 341
<table>
<thead>
<tr>
<th>Cl</th>
<th>83B</th>
<th>SC 83B.2.1</th>
<th>P 389</th>
<th>L 40</th>
<th>#</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghiasi, Ali</td>
<td>Broadcom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Type</td>
<td>TR</td>
<td>Comment Status</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title is not descriptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggest to use "Module Specifications"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Status</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See comment 177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Since this specification focuses on module compliance and not module specifications, the title is appropriate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl</th>
<th>83B</th>
<th>SC 83B.2.1</th>
<th>P 389</th>
<th>L 48</th>
<th>#</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghiasi, Ali</td>
<td>Broadcom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Type</td>
<td>TR</td>
<td>Comment Status</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To make it more clear why there is signal with HCB output for module specifications modify the name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module input signal calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Status</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change table 83B-2 to Specifications at Module Compliance Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl</th>
<th>83B</th>
<th>SC 83B.2.1</th>
<th>P 390</th>
<th>L 31</th>
<th>#</th>
<th>181</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghiasi, Ali</td>
<td>Broadcom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Type</td>
<td>TR</td>
<td>Comment Status</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In cases where the rise and fall time are very different the equation 83A-6 over estimates the min Vtx-demph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propose to use geometric average of tr/ff = SQRT(Tr*Tf) instead of max rise and fall time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>see ghiasi_03_0709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Status</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REJECT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This comment was WITHDRAWN by the commenter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl</th>
<th>83B</th>
<th>SC 83B.2.1</th>
<th>P 390</th>
<th>L 31</th>
<th>#</th>
<th>182</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghiasi, Ali</td>
<td>Broadcom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Type</td>
<td>TR</td>
<td>Comment Status</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vtx-demph was derived based on assumption of maximum module PCB loss, the impact of module PCB with near zero loss need to be studied and possibly adjust Vtxx-demph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please see ghiasi_03_0709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Status</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REJECT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Suggested remedy does not contain sufficient information to implement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI 83B SC 83B.2.2</td>
<td>P 389 L 14</td>
<td># 339</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palkert, Tom Xilinx/Luxtera</td>
<td>Comment Type TR</td>
<td>Comment Status A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDD22 for nAUI host output should match the PPI specification.</td>
<td>SuggestedRemedy</td>
<td>Modify the SDD22 in Table 83B-4 to match the PPI specifications in equation 86A-1 and section 86A.4.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>Response Status C</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See comment 341</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nAUI modules should have more flexibility with respect to SDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CI 83B SC 83B.2.2</th>
<th>P 389 L 18</th>
<th># 338</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palkert, Tom Xilinx/Luxtera</td>
<td>Comment Type TR</td>
<td>Comment Status A</td>
</tr>
<tr>
<td>SDD11 for nAUI host input should match the PPI specification.</td>
<td>SuggestedRemedy</td>
<td>Modify the SDD11 in Table 83B-4 to match the PPI specifications in equation 86A-3 and section 86A.4.2.1</td>
</tr>
<tr>
<td>Response</td>
<td>Response Status C</td>
<td>ACCEPT IN PRINCIPLE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See comment 341</td>
</tr>
<tr>
<td>Comment Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nAUI modules should have more flexibility with respect to SDD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CI 83B SC 83B.2.2</th>
<th>P 390 L 36</th>
<th># 185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghiasi, Ali Broadcom</td>
<td>Comment Type TR</td>
<td>Comment Status A</td>
</tr>
<tr>
<td>Not the best use of title "Host Compliance"</td>
<td>SuggestedRemedy</td>
<td>Host Specifications</td>
</tr>
<tr>
<td></td>
<td>Response</td>
<td>Response Status C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See suggested remedy</td>
</tr>
<tr>
<td>Comment Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Status</td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected
RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn

SORT ORDER: Clause, Subclause, page, line
Comment Type: T Comment Status: D

For this interface how is the host Rx tested? I think it has the connector in the Host Rx stress path. As such the locked in deterministic effects of the connector do not need to be put into the stress, they get generated in the channel, unlike the 83A condition. The value of DJ injected into the limiter should be reduced.

Suggested Remedy
Change .22UI to .12 for the

Proposed Response Response Status: Z
REJECT.

This comment was WITHDRAWN by the commenter.

Since the receiver tolerance test is calibrated with the HCB, the effects of the connector is included in the 0.22UI.

Comment Type: T Comment Status: D

For this interface how is the host Rx tested? I think it has the connector in the Host Rx stress path, and uses a HCB to inject the signal to stress the Rx. As such the Tx stress generator need to have the ability to use Demphasis to equalize the channel. Does this mean we need a board that will represent 6.9dB of the channel so we can calibrate the Rx stress to the Rx eye mask of 83A-9 as suggested in the test? This need some discussion

Suggested Remedy
Rewrite to allow for the eyemask to be measured at appropriate point.

Proposed Response Response Status: Z
REJECT.

This comment was WITHDRAWN by the commenter.

83B has been written around the connector compliance point. There should be no need to have a board which represents 7.9dB of channel loss.
In Figure 83C-1, the MMD numbering is wrong. The PMD and PMA are separated in the diagram; therefore, they require unique MMD numbering. Same issue with Figure 83C-3.

Suggested Remedy
Change MMD 1 to be MMD 8.

Response
ACCEPT IN PRINCIPLE.

Note that while the comment was against Annex 83C, the solution impacts clauses 45, 83, and Annex 83C.

In 83.1.4, replace:
"By default, the PMA sublayer that is closest to the PMD is addressed as Management Data Input/Output (MDIO) Manageable Device (MMD) 1 (see clause 45). More addressable instances of PMA sublayers, each one separated from lower addressable instances by chip-to-chip interfaces, may be implemented and addressed as MMD 8, 9 and 10, where MMD 8 is the second closest to the PMD and MMD 10 is the farthest from the PMD (see Table 45-1 for MMD device addresses)."

with
"Management Data Input/Output (MDIO) Manageable Device (MMD) addresses 1, 8, 9, 10, and 11 are available for addressing multiple instances of PMA sublayers (see Table 45-1 for MMD device addresses). If the PMA sublayer that is closest to the PMD is packaged with the PMD, it shares MMD 1 with the PMD. If the PMD service interface is physically instantiated as nPPI (see Annex 86C), the PMA sublayer that is closest to the PMD will be addressed as MMD 8. More addressable instances of PMA sublayers, each one separated from lower addressable instances by chip-to-chip interfaces, may be implemented and addressed allocating MMD addresses to PMAs in increasing numerical order going from the PMD toward the PCS."

In Table 45-1, add 11 - Separated PMA (4) and change 11 through 28 - Reserved to 12 through 28 (reserved)

In 45.2.1, replace:
"For devices operating at 40 Gb/s or higher speeds, the PMA may be instantiated as multiple sublayers (see Clause 83, Figure 83-2 and Annex 83C). By default, these sublayers are all implemented as one instance addressed by MMD 1. Alternatively they may be implemented in multiple addressable instances with separate MMD addresses. By default, the PMA sublayer that is closest to the PMD is addressed as MMD 1. More addressable instances of PMA sublayers, each one separated from lower addressable instances, may be implemented and addressed as MMD 8, 9 and 10, where MMD 8 is the closest to the PMD and MMD 10 is the farthest from the PMD. The addresses and functions of all registers in MMD 8, 9 and 10 are defined identically to MMD 1, except registers m.5 and m.6 as defined in Table 45-2."

with
"For devices operating at 40 Gb/s or higher speeds, the PMA may be instantiated as multiple sublayers (see 83.1.4 for how MMD addresses are allocated to multiple PMA sublayers). A PMA sublayer that packaged with the PMD is addressed as MMD 1. More addressable instances of PMA sublayers, each one separated from lower addressable instances, may be implemented and addressed as MMD 8, 9, 10, and 11 where MMD 8 is the closest to the PMD and MMD 11 is the farthest from the PMD. The addresses and functions of all registers in MMD 8, 9, 10 and 11 are defined identically to MMD 1, except registers m.5 and m.6 as defined in Table 45-2."

In Figure 83-2, which shows the lowest PMA separated from the PMD, indicate MMD 1 for the PMD and MMD 8, 9, 10, 11 for the PMAs.

In Figure 83C-1, the PMD service interface will be removed per comment #314 so the PMA can remain as MMD1.

In Figure 83C-3, indicate MMD1 for the PMD and MMD8 for the PMA.

In the Figures in Annex 83C where the lowest PMA is packaged with the PMD (83C-1 83C-2, 83C-4, 83C-5) move the label for MMD1 and add a curly brace so that it is apparent that this address applies to both the lowest PMA and the PMD.

Editorial license to find and fix other applicable text or figures.

In Fig 83C-1 the PMD Service Interface is called out. This is inconsistent with other figures in the text. This is also done for Fig 83C-3.

Suggested Remedy
Delete call out to PMD service interface for 40G and 100G stacks in Fig 83c-1. Place the PMD blocks right under and against the PMA blocks.

Repeat for Fig 83C-3

Response
ACCEPT IN PRINCIPLE.

The PMD service interface can be used to illustrate how MMD addresses are based on whether the lowest PMA is packaged with the PMD. Remove the PMD service interface as proposed from Fig 83C-1 and show MMD1 for both PMD and PMA (per comment #257). Leave the PMD service interface as explicit in Fig 83C-3 so that the PMD is shown with MMD1 and the lowest PMA with MMD 8.
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>SC</td>
<td>P</td>
<td>L</td>
<td>#</td>
</tr>
<tr>
<td>Dawe, Piers</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
</tbody>
</table>

Comment Type: TR/technical required
Comment Status: R
Suggested Remedy: CRn like all other front-panel Ethernet PMDs needs exemplary MMTFP. gustlin_04_0509 "Leverages previous backplane analysis since we have no other data!" Because CRn uses equalisation even more than KR we need to repeat the analysis with CRn data.

Response Status: W
Dawe, Piers
Avago Technologies

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>SC</td>
<td>P</td>
<td>L</td>
<td>#</td>
</tr>
<tr>
<td>Dawe, Piers</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>

Comment Type: TR/technical required
Comment Status: R
Suggested Remedy: Exchange of DME frames is an unnecessary burden on the host: it was designed for AN purposes but the other port types that this port could be connected to can't understand it. The choice of link types is 4 x 3.125 lanes (CX4), 4x10G lanes, and 4x10G lanes with FEC, and this can be managed with 'Parallel Detection' not DME frames.

In the future, and in closed systems such as a supercomputer, support for legacy CX4 will be unnecessary. Note that 16G Fibre Channel do not use DME frames, although for electrical PMDs they use training. They may use training frames to signal FEC support, although that should not be necessary. DME signalling is not necessary for these copper links, and should not appear on front-panel ports.

Response Status: W
Dawe, Piers
Avago Technologies

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>SC</td>
<td>P</td>
<td>L</td>
<td>#</td>
</tr>
<tr>
<td>Ganga, Ilango</td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

Comment Type: E
Comment Status: A
Suggested Remedy: SIGNAL_DETECT is defined in 84.7.4. So no need to describe the condition for SIGNAL detect generation in 84.2. Just provide a reference to 84.7.4 and only describe the validity of UNIDATA_x.indication in 84.2.

Response Status: C
Ganga, Ilango
Intel

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>SC</td>
<td>P</td>
<td>L</td>
<td>#</td>
</tr>
<tr>
<td>Ganga, Ilango</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

Comment Type: E
Comment Status: R
Suggested Remedy: Add text in Clause 85 saying that 40GBASE-CR4 and 100GBASE-CR10 can use Parallel Detection. Use the same method as 16GFC's link speed negotiation for CX4/CR4 negotiation. This is in line with the backward compatibility with CX4 and baseline "Parallel detection function to detect legacy 10GBASE-CX4 PHYs".

Response Status: W
Ganga, Ilango
Intel
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Comment</th>
<th>Response</th>
<th>Response Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>85.1</td>
<td>TR</td>
<td>A</td>
<td>CL 85 link budget does not close 10m reach with KR EQ</td>
<td></td>
<td>C</td>
<td>see ghiasi_01_0709</td>
</tr>
<tr>
<td>85</td>
<td>85.10</td>
<td>TR</td>
<td>A</td>
<td>The maximum cable loss should be adjusted to allow for a common host PCB design for CR and SR variants.</td>
<td></td>
<td>C</td>
<td>see ghiasi_01_0709</td>
</tr>
<tr>
<td>85</td>
<td>85.10</td>
<td>TR</td>
<td>A</td>
<td>The worst case ILTP2 can be up to 6.1 dB at 5.156 GHz. The test fixture can be up to 4.5 dB. (eq 84-33) That leaves in 1.6 dB left for board, package, and silicon. If the package uses up 1.5 dB (Pkg55mm_T33mm1150h_BGAcoupling_s8p, na_02_1207) that leaves 1 dB for board routing and silicon. Any large package device (like a router) will require 6-8" to route to a connector. That's 3.5 dB to 4.5 dB. The 0.1 dB budget won't support that.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>85.10</td>
<td>TR</td>
<td>A</td>
<td>Reference 10 m QSFP cable with lowest loss was used for the cable loss specifications Eq 85-50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Remedy:
- Reduce the cable reach to 5 m.
- Reduce the cable loss number to approximately 16.3 dB to allow the equivalent SR PPI PCB loss.
- Increase 21.55 to 23.7 dB which is 2.27 dB/m of loss.

Response:
- ACCEPT IN PRINCIPLE.

For: 11
Against: 3
<table>
<thead>
<tr>
<th>Cl 85</th>
<th>SC 85.10.2</th>
<th>P 321</th>
<th>L 11</th>
<th>Comment Type</th>
<th>TR</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comment Type</td>
<td></td>
<td>Comment Status</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dawe, Piers</td>
<td>Avago Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I believe the sum of new cable loss limit plus PCB loss limit exceeds the KR "high confidence" region of 68B. Fixing this may mean adjusting the 10 m objective.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SuggestedRemedy</td>
<td>Reduce the cable loss so that cable loss plus PCB losses is within the KR high confidence region.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Response</td>
<td>Response Status</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See remedy comment#96</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 85</th>
<th>SC 85.10.3</th>
<th>P 253</th>
<th>L 1</th>
<th>Comment Type</th>
<th>TR</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comment Type</td>
<td></td>
<td>Comment Status</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Healey, Adam</td>
<td>LSI Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The insertion loss of a cable assembly is not a linear function of frequency so why does it make sense to try to fit it to such a function? Note that the equation ILCAmax contains a significant term that is proportional to sqrt(f).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SuggestedRemedy</td>
<td>Consider basing ILfitted on a polynomial fit. Refer to healey_03_0709.pdf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Response</td>
<td>Response Status</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See remedy to comment #139</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 85</th>
<th>SC 85.10.3</th>
<th>P 253</th>
<th>L 24</th>
<th>Comment Type</th>
<th>ER</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comment Type</td>
<td></td>
<td>Comment Status</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Balasubramanian, Vittal</td>
<td>FCI USA, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Line reads "The ILD shall be within the region defined by Equation (85-47) and Equation (85-48) for all frequencies from 50 MHz to 6000 MHz". This should be from 1000 MHz to 6000 MHz. Loss characteristics are different for cables below 1 GHz and above 1 GHz. Can't use a linear IL fitted line to calculate ILD if the ILD needs to be met below 1 GHz. Also, Figure 85-5 does not reflect the frequency range.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SuggestedRemedy</td>
<td>Change lower frequency of ILD requirement back to 1000 MHz as in draft 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Response</td>
<td>Response Status</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 85</th>
<th>SC 85.10.3</th>
<th>P 253</th>
<th>L 1</th>
<th>Comment Type</th>
<th>TR</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comment Type</td>
<td></td>
<td>Comment Status</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ghiasi, Ali</td>
<td>Broadcom</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reduction of KR ILD by 3 dB Eq 85-57/58 and increasing cable IL is not supported with cable return loss specifications and stacked connectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SuggestedRemedy</td>
<td>Do not change KR ILD and make max cable IL the same as KR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Response</td>
<td>Response Status</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 85</th>
<th>SC 85.10.3</th>
<th>P 253</th>
<th>L 54</th>
<th>Comment Type</th>
<th>E</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comment Type</td>
<td></td>
<td>Comment Status</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D'Ambrosia, John</td>
<td>Force10 Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>caption for Fig 85-5 got separated onto next page away from the figure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SuggestedRemedy</td>
<td>keep caption and figure together on same page.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Response</td>
<td>Response Status</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACCEPT.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The least mean squares line fit procedure defined by Equation (85-52) through Equation (85-56) needs be adjusted to better fit the cable assembly insertion loss between the frequency range of 50 MHz to 100 MHz as the error in the fit is an independent source of ILD. This applies to 85A.7 Channel insertion loss deviation (ILD) as well.

Suggested Remedy

Specify fit procedures to better fit the cable assembly insertion loss (ILD) and the channel insertion loss deviation (ILD) specified in 85A.7 over the frequency range of 50 MHz to 100 MHz.

Presentation material will be provided in support of suggested remedy.

Response

ACCEPT IN PRINCIPLE. see remedy comment #139

Cabling RL high. When this is presented to a RL of -15dB for the ASIC host it will cause Ripple in the channel that has not been captured in any of the budgets. In order to keep with the higher insertion loss then KR the RL for the cable will need to be reduced.

For 2 networks "a" and "B" that are joined to make Network "C"

1. If one connect two 2-port networks described in terms of S-parameters
 • SC21 = SA21*SB21/(1-SA22*SB11) where (SIJ being complex numbers)
2. For the channels we work with, generally the phases of SA22 and SB11 are not specified or even specifiable. Therefore we can approximate:
 • \(\text{db}(SC21) = \text{db}(SA21)+\text{db}(SB21) + \text{correction.} \)
 The correction amounts to an uncertainty in \(\text{db}(SC21) \) which will contribute to ILD, since the phase both SA22 and SB11 will vary quite a bit with frequency.

 | correction | < 20*\log(10)(e)SA22*SB11|

 Worst case the uncertainty will add directly to ILD. Some will argue that it should RSS with ILD which might be slightly optimistic

 3. Assuming return loss of the channel TP0-TP2 is 12dB at Nyquist and Cable assembly return loss at Nyquist is 5.7dB
 • | correction | < 1.133
 4. Making similar assumptions for TP3-TP5, gives a second correction.
 • | correction | < 1.133
 5. RSSing the 2 corrections with the specified ILD=1.73dB for the Cable assembly at Nyquist gives:
 • ILD TP0-TP5 = +/-2.3 dB

Suggested Remedy

RL to -9dB at nyquist to limit the additional channel ripple correction to .5dB and channel ILD impact to less the 0.2dB

Response

ACCEPT IN PRINCIPLE.

Use RL for cable assembly: SFF-8431-4.1 Table 37 equations; note 5 and 6
Cl 85 SC 85.10.4 P 254 L 4 # 221
Balasubramanian, Vittal FCI USA, Inc.
Comment Type ER Comment Status A
Figure 85-6 should start from 50 MHz and not 100 MHz
SuggestedRemedy
 Change figure per comment
Response Response Status W
 ACCEPT.
 [Editor's note: Late comment submitted after the ballot close; pending consideration by the Task Force]

Cl 85 SC 85.10.4 P 256 L 20 # 222
Balasubramanian, Vittal FCI USA, Inc.
Comment Type TR Comment Status A
 ICRcafit shall be greater than or equal to ICRcamin as defined by the following equation
 where f is expressed in GHz.
 This statement cannot be true. f needs to be in Hz or eqn 85-60 needs to change to (f/5)
SuggestedRemedy
 Change equation per comment
Response Response Status C
 ACCEPT IN PRINCIPLE.
 OBE ICR to ICN change see comment#141

Cl 85 SC 85.10.4 P 261 L 36 # 202
Ghiasi, Ali Broadcom
Comment Type TR Comment Status A
 Baseline analysis which showed technical feasibility was performed for cable with 10 dB better return loss.
SuggestedRemedy
 Either tighten the cable specifications by 10 dB or cut the cable reach
 See ghiasi_01_0709
Response Response Status C
 ACCEPT IN PRINCIPLE.
 See remedy comment#236

Cl 85 SC 85.10.5 P 262 L 41 # 205
Ghiasi, Ali Broadcom
Comment Type TR Comment Status A
Needs to be log10
SuggestedRemedy
 replace log with log10
Response Response Status C
 ACCEPT.
 Suggested remedy

Cl 85 SC 85.10.5 P 264 L 21 # 203
Ghiasi, Ali Broadcom
Comment Type ER Comment Status D
Wrong reference
SuggestedRemedy
 Replace figure 85-10 with 85-7
Proposed Response Response Status Z
 REJECT.
 This comment was WITHDRAWN by the commenter.
 Can't locate wrong reference.

Cl 85 SC 85.10.6 P 264 L 18 # 170
Ghiasi, Ali Broadcom
Comment Type TR Comment Status A
When worst case FEXT included in the PSXT then cable insertion loss to crosstak crosses over around 400 MHz.
SuggestedRemedy
 Specifications is does not close either reduce cable reach to 5 m, define KR+ EQ, allow combination of passive and active cables.
 See ghiasi_01_0709
Response Response Status C
 ACCEPT IN PRINCIPLE.
 See comment#96 and comment#141
Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Cl 85 SC 85.10.7 P 263 L 10 # 206
Ghiasi, Ali

Comment Type: TR
Comment Status: A

Needs to be log10

Suggested Remedy:
replace log with log10

Response: Response Status: C
ACCEPT.
See suggested remedy.

Cl 85 SC 85.10.7 P 264 L 8 # 171
Ghiasi, Ali

Comment Type: TR
Comment Status: A

Worst case FEXT are either not included or omitted from CR4/CR10 specificatinos

Suggested Remedy:
Include worst case FEXT for QSFP and CXP

Response: Response Status: W
ACCEPT IN PRINCIPLE.
See comment#96 and comment#141

Cl 85 SC 85.10.8 P 255 L 47 # 141
Healey, Adam

Comment Type: TR
Comment Status: A

The insertion loss to crosstalk ratio limit (ICRCAmin) predicts that compliant cable assemblies will produce larger crosstalk voltages than observed on actual cable assemblies.

It has also been pointed out that the log-linear fit to the measured insertion loss to crosstalk ratio (ICR) sometimes produces limit violations even though the raw data appears to be in the compliance range.

A metric based on a weighted integral of the power sum crosstalk will be less sensitive to the shape of the transfer function and offer a tighter coupling to the receiver interference tolerance test conditions.

Suggested Remedy:
Consider specifications based on integrated crosstalk noise. Refer to healey_02_0709.pdf.

Response: Response Status: C
ACCEPT IN PRINCIPLE.

Replace ICR with integrated crosstalk noise proposal in healey_06_0709.pdf.
The basis for the change is an improvement of the ICR specified in clause 85 and clause 69B. Editor license to implement within the draft.

Cl 85 SC 85.10.8 P 263 L 36 # 293
DiMinico, Chris

Comment Type: TR
Comment Status: A

Reported in balasubramanian_01_0509.pdf, the equation for generating the fit line for any data to test to the limit line as specified in section 85-10.8 can cause some cable assemblies, which actually pass the ICR requirements in raw data to fail the requirements with the fit line. This applies to 85A.7 Channel insertion loss to crosstalk ratio (ICR).

Suggested Remedy:
Modify specification requirements to reduce false negatives due to fit procedure. This applies to 85A.7 Channel insertion loss to crosstalk ratio (ICR).

Presentation material will be provided in support of suggested remedy.

Response: Response Status: C
ACCEPT IN PRINCIPLE.
See comment#141.
ICR changed to ICN
In Figure 85-8, test points TP1 and TP4 should on the other side of the block labeled "cable assembly test fixture" and not between that block and schematic representation of the connector as shown. If this figure is intended to imply that the cable assembly test fixture should be de-embedded from the measurement, then there really isn't a need to define the test fixture at all.

Also, the connector receptacle is part of the cable assembly test fixture.

Suggested Remedy

Change the label on each box to "Cable assembly test fixture excluding connector" and move TP1 and TP4 to the outside edges of the boxes.

Response

ACCEPT IN PRINCIPLE.

Step 1. Move TP1 and TP4 to the outside edges of the boxes. Fig 85-8

Add Note figure 85-2. See 85-8 for location of TP1 and TP4

The maximum test fixture insertion loss Equation (85-71) coefficient (0.103) is incorrect. Replace the coefficient (0.103) with (0.029).

Suggested Remedy

Replace the coefficient (0.103) with (0.029); see Page 264 - line 52- Equation (85-71).

Response

ACCEPT. The maximum test fixture insertion loss Equation (85-61) coefficient (0.103) is incorrect. Suggested remedy >replace the coefficient (0.103) with (0.029).

CHANGE OF STATUS

COMMENT STATUS

A/accepted

RESPONSE STATUS

C/closed

COMMENT

Cl 85 SC 85.10.9 P 257 L 23 # 114

Healey, Adam LSI Corporation

Comment Type T/technical

Comment Status A/accepted

In Figure 85-8, test points TP1 and TP4 should on the other side of the block labeled "cable assembly test fixture" and not between that block and schematic representation of the connector as shown. If this figure is intended to imply that the cable assembly test fixture should be de-embedded from the measurement, then there really isn't a need to define the test fixture at all.

Also, the connector receptacle is part of the cable assembly test fixture.

Suggested Remedy

Change the label on each box to "Cable assembly test fixture excluding connector" and move TP1 and TP4 to the outside edges of the boxes.

Response

ACCEPT IN PRINCIPLE.

Step 1. Move TP1 and TP4 to the outside edges of the boxes. Fig 85-8

Add Note figure 85-2. See 85-8 for location of TP1 and TP4

The maximum test fixture insertion loss Equation (85-71) coefficient (0.103) is incorrect. Replace the coefficient (0.103) with (0.029).

Suggested Remedy

Replace the coefficient (0.103) with (0.029); see Page 264 - line 52- Equation (85-71).

Response

ACCEPT. The maximum test fixture insertion loss Equation (85-61) coefficient (0.103) is incorrect. Suggested remedy >replace the coefficient (0.103) with (0.029).

CHANGE OF STATUS

COMMENT

Cl 85 SC 85.11 P 258 L 50 # 104

Kipp, Scott Brocade

Comment Type ER/editorial

Comment Status A/accepted

Figure 85-10. The caption of Figure 85-10 is non-descriptive and not consistent with Fig 85-12.

Suggested Remedy

Change the caption to Example Style 1 cable assembly plug

Response

ACCEPT.
Comment Type: ER Comment Status: A

The caption of Figure 85-11 is non-descriptive and not consistent with Fig 85-13.

Suggested Remedy:
Change the caption to Example Style 1 MDI board receptacle

Response Response Status: W
ACCEPT.

Comment Type: TR Comment Status: A

Figure 85-11. This isn't a picture of the QSFP because it only has 26 pins.

Suggested Remedy:
I have the original picture if you want it since I was the editor of QSFP. We have one for QSFP+ also.

Response Response Status: W
ACCEPT IN PRINCIPLE. Update figure 85-11 with QSFP board receptacle figure.

Comment Type: ER Comment Status: A

Figure 85-14 and 85-15 don't match Revision 1.77 of SFF-8642. The latest revision of SFF-8642 uses different terminology than this standard. Revision 1.77 uses D1-D21 instead of D64 to D84. Table use

Suggested Remedy:
Please put the latest figures in the document.

Response Response Status: W
ACCEPT IN PRINCIPLE. Update figures 85-14 and 85-15 per latest revision of SFF-8642.
Specification range for cable insertion loss is not adequate especially at low frequencies. SFP+ Annex E cable S-parameter specs go down to 10 MHz. Even a PRBS9 goes down to 20 MHz. If "it's just a wire" then meeting a spec below 50 MHz will be easy. Remember this is not a measurement standard; no-one has to measure something if they can convince the customer that "it's just a wire" so there isn't a cost or test-time problem. Large customers can avoid the bad cables by experience but this is Ethernet; any cable from Fry's should work.

Suggested Remedy

Extend the frequency range of Cable assembly insertion loss, Cable assembly return loss, Near-End Crosstalk, MDNEXT, FEXT and MDELFEXT down to 10 MHz at the low end.

Response

REJECT.

This comment was submitted against D2.0. The comment was accepted in principle with remedy to specify minimum of 50 MHz for 85.9 channel parameters and 85.10 cable assembly parameters as sufficient to characterize impairments.

Subclause title 85.13.3 and table for environmental requirements appears out of place.

Move title of subclause 85.13.4 Major capabilities/options to 85.13.3 and move the current title 85.13.3 to start after Major capabilities/options.

Add a subclause with title 86.13.4.7 Environmental specifications and move the table on page 265 for environmental requirements to this subclause.

Suggested Remedy

As per comment

Response

ACCEPT.

The sentence "A 40GBASE-CR4 and 100GBASE-CR10 link is illustrated in Figure 85-2." implies that this draft is describing a single link that can be 40GBASE-CR4 and 100GBASE-CR10 simultaneously. This is not the case. You can either have a link that complies with 40GBASE-CR4, or a link that complies with 100GBASE-CR10, but not a link that complies with both simultaneously.

Suggested Remedy

Change the sentence to read:

A block diagram for a 40GBASE-CR4 or 100GBASE-CR10 link is illustrated in Figure 85-2.

Response

ACCEPT IN PRINCIPLE.

Change: A 40GBASE-CR4 and 100GBASE-CR10 link is illustrated in Figure 85-2.

To: A 40GBASE-CR4 or 100GBASE-CR10 link is illustrated in Figure 85-2.

Change: Figure 85-2-40GBASE-CR4 and 100GBASE-CR10 link (half link is illustrated)

To: Figure 85-2-40GBASE-CR4 or 100GBASE-CR10 link (half link is illustrated)
Comment Type: ER Comment Status: A
"points" is ambiguous in the sentence "For purposes of system conformance, the PMD sublayer is standardized at the points described in this subclause."

Suggested Remedy:
change "points" to "test points", as in: "For purposes of system conformance, the PMD sublayer is standardized at the test points described in this subclause."

Response: ACCEPT.
change "points" to "test points"

Comment Type: ER Comment Status: A
The sentence: "The 40GBASE-CR4 and 100GBASE-CR10 channel is defined between the transmitter (TP0) and receiver blocks (TP5)..." implies that this draft is describing a channel that can be 40GBASE-CR4 and 100GBASE-CR10 simultaneously. This is not the case.

Suggested Remedy:
Change the sentence to read: "The 40GBASE-CR4 and 100GBASE-CR10 channels are defined between the transmitter (TP0) and receiver blocks (TP5)..."*

Response: ACCEPT.
See suggested remedy.

Comment Type: TR Comment Status: A
Disabling any of the lanes of the PMD using the lane-by-lane disable function effectively disables the whole interface, since we haven't defined a mechanism by which an interface can operate without the full complement of lanes. Thus, the draft should include a warning, in the form of a note, that disabling one or more lanes will disable the interface, and can be disruptive to a network.

Suggested Remedy:
Add a note at the end of 85.7.7 that reads:
NOTE -Disabling the electrical transmitter on one or more lanes effectively disables the entire interface and can be disruptive to a network.

Response: ACCEPT IN PRINCIPLE.
See response to comment 281
Cl 85 SC 85.7.9 P 241 L 32 # 277
Frazier, Howard Broadcom Corporation

Comment Type TR Comment Status A
There is no Clause 45 register bit referenced for PMD_fault in this subclause.

Suggested Remedy
Delete the words "If the MDIO is implemented" at the beginning of the first sentence. Add the sentence: "If the MDIO interface is implemented, PMD_fault shall be mapped to the PMD_fault bit as specified in 45.2.1.2.

Response Response Status W
ACCEPT IN PRINCIPLE.
See response comment #427

Cl 85 SC 85.8 P 243 L 24 # 226
Misek, Brian Avago Technologies

Comment Type T Comment Status D
Amplitude peak to peak should be clearly defined

Suggested Remedy
Add to Value column:
min=800mV
Add note:
KR Preset State 72.6.10.2.3.1 and alternating 1010 output. Note (a)

Proposed Response Response Status Z
REJECT.

This comment was WITHDRAWN by the commenter.
Total jitter is wrong. If the filter to remove DJ is used then the Jitter measured at the output of that filter will be limited to a value slightly greater than KR TP0 specified to allow for additional non-equalizable ISI caused by the PCB-connector TP0 test board (HC8). That additional ISI was budgeted to be 50mUI in the original Moore-01-0509. Somehow we got to 250mUI which is less than the KR 280mUI at the pins of the package.

Suggested Remedy
Change the 0.25 to 0.33 and add "note A" to note column.

Response
ACCEPT IN PRINCIPLE.
Replace Total jitter in Table 85-4 with Total jitter excluding data dependent jitter.

Definition of XFR(i) and components are wrong

Suggested Remedy
Change: Input(i) to Output(i)
Add: Input(i) DFT of the ideal 1 V PRBS9 waveform

Response
ACCEPT IN PRINCIPLE.

For 50 MHz <= f <= 6000 MHz should be removed.

Suggested Remedy
Remove for 50 MHz <= f <= 6000 MHz

Response
ACCEPT.
Table 85-4 title indicates that the transmitter characteristics are at TP2, but over half the table appears related to specifications at "transmit function".

Suggested Remedy
- Split into two tables. One for specifications at "transmit function" and one for TP2.
- Correct intro text of 85.8.3 as follows:

 Transmitter characteristics shall meet specifications, summarized in Table 85-x at "Transmit Function" and Table 85-4 at TP2.

 Correct PICS accordingly.

Response
- **Response Status**: C
- **Proposed Response**: ACCEPT IN PRINCIPLE.
- OBE See comment#136

Table 85-4 is entitled Transmitter characteristics at TP2 summary. Text in 85.8.3 indicates that there may be exceptions to being at TP2. Differential peak-to-peak output voltage with TX disabled has a subclause reference that shows it is at 72.6.5. There is no note in Table 85-4 to indicate the exception. There is no test fixture for measuring it at TP1 in Clause 85. Is the fixturing in Clause 72 to be used?

The same observation is made for common-mode voltage limits, differential output return loss (min), and common-mode output return loss (min).

Suggested Remedy
- Clarify where the differential peak-to-peak output voltage (max) with Tx disabled is to be measured and what fixturing is to be used.

Proposed Response
- **Response Status**: Z
- REJECT.

This comment was WITHDRAWN by the commenter.
While it may be true that...
1. A polynomial in sqrt(f) is a reasonable model for the transfer function of printed circuit board (PCB) traces and...
2. One can also derive a formula that maps the coefficient of the f^2 term in the transfer function to the 20 to 80% rise time of the function's output.
...this model may not apply equally well to all implementations of a driver compliant to 10GBASE-KR requirements. One possible outcome of the deficiency in the model is that some weighted least mean squares coefficients (e.g. AN1 and AN4) may turn out to be negative.
This is not permitted per the requirements stated in Table 85-4 ruling out otherwise valid implementations.

Suggested Remedy
- Refer to healey_01_0709.pdf.

Response
- **Response Status**: C
- Accept proposed text in updated healey_04a_0709.pdf as reviewed in STF. The text is a replacement for 85.8.3.2

Comment Type: TR
Comment Status: A

Comment

Comment Type: T
Comment Status: A

The are multiple formatting and technical issues with the "Max. output jitter" row of Table 85-4.

1. Align characteristic values with the corresponding names.
2. The note that "Jitter measurements at TP2" is unnecessary. In the first paragraph of 85.8.3, it is stated that "the specifications at TP2 are summarized in Table 85-4."
3. "Jitter is specified at a BER of 10^-12" only applies to random and total jitter, and should be noted accordingly.
4. It is not stated anywhere how these parameters are to be measured.

Suggested Remedy
- Per comment. For item 4, refer to healey_01_0709.pdf.

Response
- **Response Status**: C
- ACCEPT IN PRINCIPLE.

Comment

Comment Type: TR
Comment Status: A

In Table 85-4, the requirements for near-end and far-end noise make no sense. One would expect the long channel transfer function to reduce the noise, not enhance it.

Suggested Remedy
- Refer to healey_02_0709.pdf.

Response
- **Response Status**: C
- ACCEPT IN PRINCIPLE.
- Refer to presentation healey_02_0709.pdf for implementation of text replacing 85.8.3.1 Transmitter noise parameter measurements.

Far-end transmit output noise (parameter)
low insertion loss channel - max 2 mV
high insertion loss channel - max 1 mV

Note: these values replace TBD 1 and TBD 2 in healey_02_0709.pdf. Replace PRBS9 with square wave test pattern and specify the histogram for RMS noise measurement is 1 UI wide.
Comment on Table 85-4 TP2 jitter numbers should match Annex 86A table 86-A-1. They are the same test point from a system point of view. They should also follow the same methodology. Table 86-A-1 has J2=0.18UI, J9=0.26UI. Table 85-4 has RJ=0.15UI, TJ=0.25UI.

Suggested Remedy

Have a common set of measurement parameters at these test points.

Response

Response Status: C

REJECT.

Comment has not provided sufficient information to make suggested changes.

Comment on 10GBASE-KR compliant devices may exhibit up to 3.5% duty cycle distortion at TP0. Since the insertion loss of the printed circuit board trace, connector, and test fixture will amplify duty cycle distortion, the allowance at TP2 needs to be increased accordingly.

Suggested Remedy

Refer to healey_01_0709.pdf.

Also note that there is no cross-reference to the duty cycle distortion measurement procedure in clause 72. Add a cross-reference or find some other means to define how the parameter should be measured.

Response

Response Status: C

ACCEPT IN PRINCIPLE.

Add cross-reference to the duty cycle distortion measurement procedure in clause 72.

Comment on Differential output return loss at TP2 is referenced to CL 72 which was for KR chip return loss and is not relevant to TP2 which include chip + channel + connector

Suggested Remedy

Class86 has already worked through the effect of chip, channel, and connector. Please use Eq 86A-1

Response

Response Status: C

ACCEPT.

Proposed Response

Proposed Response

Proposed Response Status: Z

REJECT.

This comment was WITHDRAWN by the commenter.
Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Comment Type: TR Comment Status: A

ILTP2 ANx include the loss of host PCB channel, connector, package, and ESD diode. ILTP2 does not provide useful normative set of parameters, if the device delivers the VMA and jitter ILTP2 does not add anything.

Suggested Remedy

propose to move ILTP2 to informative section for SI work. Replace ILTP2 with VMA value per draft D1.2 267 mV, QSQ=55, Vertical eye opening of 340 mV

Response

ACCEPT IN PRINCIPLE.

Footnote: Total jitter of 0.25 UI excluding DDJ

Comment Type: TR Comment Status: A

How is somebody suppose to figure out what needs to be done based on the note on near-end!

Suggested Remedy

Through CL85 if channel in question is host PCB then replace channel with host PCB channel, if it is the cable then replace it with cable or cable channel.

Note require more detail on the test method: Noise output is measured with host compliance board while opposing traffic active. The crosstalk traffic is either 64B/66B signal or PN31.

Response

ACCEPT IN PRINCIPLE.

Comment Type: TR Comment Status: A

Far end noise confusing to be part of TP2 table without some explanation

Suggested Remedy

add to the note measured through the module compliance board with opposing traffic having maximum amplitude and fastest rise/fall time. The opposing traffic can be 64B/66B signal or PN31

Response

ACCEPT IN PRINCIPLE

Comment Type: TR Comment Status: A

Total jitter of 0.25 UI is even tighter than CL86 this was KR chip output TJ not the TP2. Table 85A-1 TP0 TJ=0.28 UI, looks like you need add a jitter attenuator to meet TP2

Suggested Remedy

Propose to set TJ=0.32 UI or better just make it the same as CL86

Proposed Response

REJECT.

This comment was WITHDRAWN by the commenter.
Comment Type: T Comment Status: A
What does it mean to send a test pattern "through TP2" and terminate all other transmitters "beyond TP2"? The first paragraph of 85.8.3 states "transmitter characteristics shall meet specifications at TP2."

Suggested Remedy
Change text to read:

"The noise parameters specified in Table 85-4 are shall be measured with the transmitter of the disturbed lane sending PRBS9 and the transmitters of all other lanes sending PRBS31. All lanes shall be terminated at TP2 with an impedance meeting the requirements of 85.8.3.4."

Response
ACCEPT IN PRINCIPLE.
OBE comment#137

Comment Type: TR Comment Status: A
How does one establish the "optimum sampling point for data recovery" for "each measured bit"?

If the phase at which the noise is measured has a significant impact on the observed value, the specification should be more rigorous in defining how to select this phase. If the phase is not significant, this requirements is not necessary.

Suggested Remedy
Refer to healey_02_0709.pdf.

Response
ACCEPT IN PRINCIPLE.
OBE see comment#136

Comment Type: E Comment Status: A
spelling transmit

Suggested Remedy
change transmit to transmit

Response
ACCEPT.

Comment Type: T Comment Status: A
The definition of Input(i) is incorrect -- it is actually the definition of Output(i). The definition of Output(i) is missing.

Suggested Remedy
Change "Input(i)" to "Output(i)." Add the following definition for "Input(i):"

"DFT of the 1 V peak-to-peak PRBS9 pattern"

Response
ACCEPT IN PRINCIPLE. OBE see comment#136
Comment Type: T Comment Status: A
Equation (85-2) is mathematically incorrect.

Furthermore, the fitted insertion loss is not the basis of any specification parameters. The fitted transfer function (it is not just insertion loss, the phase response is also required) is used to generate an equalizing filter per Table 85-4, note a. Thus a more appropriate variable name is XFRfit(f).

Finally, it is not clear that the frequency range specified for the fit is appropriate since this transfer function is used to define an equalizer and is not otherwise constrained.

Suggested Remedy
Change (85-2) to read...
"XFRfit(f) = exp(a0 + a1*sqrt(f) + a2*f + a4*f^2)"

Delete line 39 which defines the frequency range for ILTP2.

Response Response Status: C
ACCEPT IN PRINCIPLE. OBE see comment#136

Comment Type: TR Comment Status: A
Apparent units for equation 85-2 need to GHz.

Suggested Remedy
Put note suggesting f is in GHz or scale eq 85-27 to 85-30

Response Response Status: W
ACCEPT IN PRINCIPLE. add f is in GHz
Cl 85 SC 85.8.3.2 P 245 L 24 # 121
Healey, Adam LSI Corporation

Comment Type T Comment Status A
The variable mx7 is never used, so there is no need to include n = 7.

SuggestedRemedy
Define n to be "1, 2, 3, 4, 5, 6, 8".

Response Response Status C
ACCEPT IN PRINCIPLE. OBE see comment#136

Cl 85 SC 85.8.3.2 P 245 L 25 # 122
Healey, Adam LSI Corporation

Comment Type T Comment Status A
Definition of "delta f" is wrong.

SuggestedRemedy
Define "delta f" to be "signaling rate/511"

Response Response Status C
ACCEPT IN PRINCIPLE
OBE see comment#136

Cl 85 SC 85.8.3.2 P 245 L 35 # 116
Healey, Adam LSI Corporation

Comment Type T Comment Status A
The variable my3 is never used, so there is no need to include n = 3 on line 35.

SuggestedRemedy
Change to read "where n 0, 1, 2, 4"

Response Response Status C
ACCEPT IN PRINCIPLE.
OBE see comment#136

Cl 85 SC 85.8.3.2 P 245 L 36 # 123
Healey, Adam LSI Corporation

Comment Type T Comment Status A
The variable "delta f" is already defined.

SuggestedRemedy
Delete redundant definition.

Response Response Status C
ACCEPT IN PRINCIPLE. OBE see comment#136

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched /a/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line
Comment Type: T Comment Status: A
This whole section does not make sense to me. The test fixture will be attached to the host through the connector to yield a TP2 test point. As such the test fixture must be evaluated in a different manner than is represented here. The Test fixture could be called the Module Compliance Board (MCB) and should be normatively specified as was the case for SFI. That is it shall have a normative IL limit (min and Max). This then causes us to need some way of testing the "goodness" of the HCB. A Cable Compliance board could be used to test the Host compliance board.

Suggested Remedy:
Recommend adoption in principle of methodology of Section 86A.5.1 as pertaining to test board loss and definition with the requested further study of:
1. that the acceptable region of the mated HCB-CCB not have the drop in the SDD21 around 6.7GHz. This step would allow hazardous ripple in the SDD21 that could invalidate jitter measurements.
2. The section on FEXT and NEXT.

Response Response Status: C
ACCEPT IN PRINCIPLE.
See response comments #96, #165.

In addition the mated CA-TF and TP2-TF loss is per 86A-6 and 86-A7. Add equations to 85.8.3.3

Comment Type: T Comment Status: A
Limit specification of PCB loss terms to square root and linear with F. Higher order terms are not needed for this short of a board.

Suggested Remedy:
rewrite equation 85-33 and drop the b3 and b4 terms.

Response Response Status: C
ACCEPT IN PRINCIPLE.
OBE comment #96

Comment Type: T Comment Status: A
The Amax equation and its associated parameters (b1, b2, b3, b4) are repeatedly defined throughout the document. Defining Amax in one place (with b1...b4) and then referring to Amax in subsequent equations (with cross-reference) would be a cleaner approach.

Suggested Remedy:
Per comment.

Response Response Status: C
ACCEPT IN PRINCIPLE. Define Amax in one place (with b1...b4) and then refer to Amax in subsequent equations (with cross-references).

In addition the mated CA-TF and TP2-TF loss is per 86A-6 and 86-A7. Add equations to 85.8.3.3

Comment Type: T Comment Status: A
Test fixture insertion loss allowance is too large. Equation 85-33 corresponds to 4.5 dB loss at half of the signaling rate.

Suggested Remedy:
Refer to the compliance board parameters in 86A.5.1.1 since the hardware will likely be identical for the Style 1 connector. If the parameters for Style 2 test fixtures are required to be different, define them separately (however, it is not clear why this should be the case since a common test fixture is defined for both connector styles in the current draft).

Response Response Status: C
ACCEPT IN PRINCIPLE.
Response comment #96 and comment #204

A common set of HCB's should be a goal of this project between clause 85 and 86A. The HCB is a means to a measurement. 85 is .053 x [20 x log10(e) x (2E-5(sqrt(f)+1.1E-10) 86A is 20 X Log10(|SDD21|)= -.01 -.3 x sqrt(f)-.11 x f

Suggested Remedy:
Adopt the MCB that is lower loss.

Response Response Status: C
ACCEPT IN PRINCIPLE.
OBE comment #96
Cl 85 SC 85.8.3.5 P252 L 15 # 294
DiMinico, Chris MC Communications

Comment Type TR Comment Status A

Sub clause 85.8.3.5 Test-fixture insertion loss

The maximum test fixture insertion loss Equation (85-33) coefficient (0.193) is incorrect

Suggested Remedy

Replace the coefficient (0.193) with (0.054); see page 252 - line 15 - Equation (85-33).

Response Response Status C

ACCEPT IN PRINCIPLE. Replace the coefficient (0.193) with (0.054); see page 252 - line 15 - Equation (85-33).

Cl 85 SC 85.8.4 P248 L 16 # 40
Dawe, Piers Avago Technologies

Comment Type T Comment Status A

Change to clearly normative text, and to match transmitter section.

Suggested Remedy

Change

85.8.4 Receiver characteristics at TP3 summary

The receiver characteristics at TP3 are summarized in Table 85-5.

85.8.3 Receiver characteristics

Receiver characteristics shall meet specifications at TP3, unless otherwise noted. The specifications at TP2 are summarized in Table 85-5. The receiver specifications at TP5 are provided informatively in Annex 85A, Table 85A-2.

Response Response Status C

ACCEPT IN PRINCIPLE.

D'Ambrosia, John Force10 Networks

Comment Type TR Comment Status A

No "Shall" statement related to the Rx characteristics at TP3 are included or appropriate PICS for Differential peak-to-peak input amplitude tolerance, differential input return loss, or differential to common mode conversion SCD11.

Suggested Remedy

Modify sentence in 85.8.4 to:

Receiver characteristics shall meet specifications, summarized in Table 85-5, at TP3.

add PICS

Response Response Status C

ACCEPT IN PRINCIPLE.

(1)See response to comment#40 for text

(2)Add PICS

Cl 85 SC 85.8.4 P248 L 38 # 508
Marris, Arthur Cadence

Comment Type E Comment Status A

spelling

Suggested Remedy

change interference to interference

Response Response Status C

ACCEPT.

See suggested remedy
Comment Type T
Comment Status R

Broad band noise values need to be justified. The noise far end for the Tx has the nFEXT in it and has been shapped by the longest cable. This means it should represent the FEXT noise and was less then the 3mV. The test calls out all active channels. What is the source of the noise be injected? How should it be injected? It would be easiest to inject it at the Tx end if on is using a cable to model the channel. The noise would then be shapped by the channel transfer function.

SuggestedRemedy

With the definition of HCB ans CCB boards it becomes possible to explicitly call out this test procedure. If a cable is used, then guidance to how the test setup can be constructed would be needed.

Response Response Status C

REJECT.

Commentor has not provided sufficient information to implement suggested remedy.

Comment Type TR
Comment Status A

The definition of the test channel for interference tolerance testing is flawed.

1. The heading of 85.8.4.1 implies that the receiver interference tolerance requirements apply at TP3. Thus, ILch is not an appropriate reference function since it "double counts" the loss from TP3 to the TP5 (i.e. this loss is built into the device under test).

2. It is not appropriate to define the test channel in terms of a linearly scaled version of some reference function, since not every compliant cable assembly exhibits a transfer function that is a linearly scaled version of that reference function. For example, as the ratio of the coefficient of sqd(f) to the coefficient of f deviates from the ratio defined by the reference function, the linear fit parameters mTC and bTC start to lose meaning.

SuggestedRemedy

Refer to healey_03_0709.pdf.

ACCEPT IN PRINCIPLE.

Refer to healey_3a_0709.pdf

Interference tolerance test channel for text for replacement of subclause 85.8.4.2 test channel
(1) replace fit equation by reference to cable assembly polynomial fit.
(2) Limits given by polynomial coefficients (low loss a1=2.15, a2=.78, a4=.03)
(high loss a1=6.04, a2=0.94, a4=0.08). These are target minimum values.

Comment Type T
Comment Status A

ILch(f) is not 85.9 It is 85A-4 with 1/2 of the ILpcb removed. This should be ILtch for IL test channel

SuggestedRemedy

ILch(f)=ILchmax(f)-0.5*ILpc(f)

ACCEPT IN PRINCIPLE.

See response comment #138
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>A</td>
<td>"insertion" should be "insertion"</td>
</tr>
</tbody>
</table>

Response

ACCPET.

"insertion" should be "insertion" correct the two instances of this error in this paragraph.

Proposed Response

This comment was WITHDRAWN by the commenter.

Differential peak to peak not compatible with CL86

Suggested Remedy

Change max value from 1200 mV to 850 mV

Proposed Response

REJECT.

This comment was WITHDRAWN by the commenter.

Peak-to-peak values consistent with baseline objectives to utilize 10GBASE-KR electrical specifications (Clause 72) for 40GBASE-CR4 and 100GBASE-CR10 baseline electrical specifications.

Response

ACCEPT IN PRINCIPLE.

See ghiasi_01_0709

See remedy comment#139.

Differential return loss for TP3 is referred to KR chip return loss which is no relevant.

Suggested Remedy

Propose to use Eq 86A-3

Response

ACCEPT.

Suggested remedy.

Differential return loss for TP3 is referred to KR chip return loss which is no relevant.

Suggested Remedy

Propose to use Eq 86A-3

Response

ACCEPT.

Suggested remedy.

Differential return loss for TP3 is referred to KR chip return loss which is no relevant.

Suggested Remedy

Propose to use Eq 86A-3

Response

ACCEPT.

Suggested remedy.

Differential return loss for TP3 is referred to KR chip return loss which is no relevant.

Suggested Remedy

Propose to use Eq 86A-3

Response

ACCEPT.

Suggested remedy.

Differential return loss for TP3 is referred to KR chip return loss which is no relevant.

Suggested Remedy

Propose to use Eq 86A-3

Response

ACCEPT.

Suggested remedy.

Differential return loss for TP3 is referred to KR chip return loss which is no relevant.

Suggested Remedy

Propose to use Eq 86A-3

Response

ACCEPT.

Suggested remedy.
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Response Status</th>
<th>Comment</th>
<th>Proposed Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>R</td>
<td>C</td>
<td>Since the transmitter characteristics defined at TP0 are essentially identical to 10GBASE-KR (40GBASE-KR4) is seems unnecessary to define them again here in an informative manner. A cross reference should suffice. SuggestedRemedy State that the intent is to have the transmitter characteristics at TP0 match the 40GBASE-KR4 transmitter characteristics at TP1 and supply the appropriate cross reference. Delete all other text in this subclause. Note the title should be corrected to read "TP-0" (zero) and not "TP-O" ("oh").</td>
<td>REJECT. No consensus to change.</td>
</tr>
<tr>
<td>TR</td>
<td>D</td>
<td>D</td>
<td>The transmitter characteristics at "Transmit function" are defined normatively in Clause 83 and then defined informatively in 83A.2. This will cause confusion. SuggestedRemedy Delete subclause 83A.2.</td>
<td>REJECT. This comment was WITHDRAWN by the commenter.</td>
</tr>
</tbody>
</table>

Duplicate of comment #209

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Response Status</th>
<th>Comment</th>
<th>Proposed Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>D</td>
<td>Z</td>
<td>Differential Return loss defined by 72-4 and 72-5 at TP0 which is identical to TP2 values! SuggestedRemedy Propose to use Eq 83A-8.</td>
<td>REJECT. This comment was WITHDRAWN by the commenter.</td>
</tr>
</tbody>
</table>

For committee discussion
Comment Type: TR
Comment Status: D
Common mode Return loss defined by 72-4 and 72-5 at TP0 which is identical to TP2 values!
Suggested Remedy
Propose to use Eq 83A-10
REJECT.
This comment was WITHDRAWN by the commenter.

For committee discussion

Proposed Response: Response Status: Z
REJECT.

This comment was WITHDRAWN by the commenter.

The commenter has not provided a sufficiently complete proposal that would enable the implementation of suggested remedy; for committee discussion.

Comment Status: D
Response Status: O

Healey, Adam
LSI Corporation

Comment Type: T
Comment Status: R
Since the receiver characteristics defined at TP5 are essentially identical to 10GBASE-KR (40GBASE-KR4) is seems unnecessary to define them again here in an informative manner. A cross reference should suffice.
Suggested Remedy
State that the intent is to have the receiver characteristics at TP5 match the 40GBASE-KR4 receiver characteristics at TP4 and supply the appropriate cross reference. Delete all other text in this subclause.
Response: Response Status: C
REJECT. No consensus to change

Proposed Response: Response Status: Z
REJECT.
See remedy comment#167
The stated insertion loss for Tx / Rx PCB trace in Eqs 85A-1 and 85A-2 is specified up to 6GHz. The stated channel insertion loss in Eqs 85A-3 and 85A-4 is only specified up to 5.1625GHz. There are no constraints on the insertion loss above the stated frequencies. The same is true for the cable assembly in Eq. 85-40.

Suggested Remedy

Extend Eq's 85a-3 and 85a-4 to 6 GHz
add equation to upper bound in 85A.1, 85A.2 and 85A.5
base on equation 69B-8. In that equation, change Amax(f) to ILcamax(f), and change f2 to 6GHz.

Response

ACCEPT IN PRINCIPLE. See remedy comment#96
Draft 2.1 Comments

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>Line</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Response Status</th>
<th>Proposed Response</th>
<th>Suggested Remedy</th>
<th>Commenter</th>
<th>Comments</th>
<th>Response Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl 85A SC 85A.4 P 402 L 35 # 238</td>
<td>Misiek, Brian Avago Technologies</td>
<td></td>
</tr>
<tr>
<td>Comment Type T</td>
<td>Comment Status D</td>
<td></td>
</tr>
<tr>
<td>Small PCB's can be accurately modeled by \sqrt{f} and f terms.</td>
<td></td>
</tr>
<tr>
<td>Suggested Remedy</td>
<td></td>
</tr>
<tr>
<td>Remove 85A-1 and 2 f^2 and f^3 terms.</td>
<td></td>
</tr>
<tr>
<td>Proposed Response</td>
<td></td>
</tr>
<tr>
<td>Response Status Z</td>
<td></td>
</tr>
<tr>
<td>REJECT.</td>
<td></td>
</tr>
<tr>
<td>This comment was WITHDRAWN by the commenter.</td>
<td></td>
</tr>
<tr>
<td>See response comment #233.</td>
<td></td>
</tr>
</tbody>
</table>

| **Cl 85A SC 85A.4 P 402 L 50 # 283** | Frazier, Howard Broadcom Corporation |
| **Comment Type TR** | **Comment Status A** |
| The stated 8" of PCB trace cannot be achieved with the current loss budget, and things will get worse once the budget is corrected. It's more like 6" ($<=3"$ per end), and this simply isn't enough for multi-port PHYs. Board designers will need a loss budget of approximately 5 dB from TP0-TP1, and 5 dB from TP4-TP5 to account for PCB loss, connector loss, and other impairments. |
| **Suggested Remedy** |
| Increase the maximum loss to 5 dB from TP0-TP1, and TP4-TP5. This will result in a decrease in the link span, probably to 5 m once the link budget has been corrected to account for FEXT and cable insertion loss. This will require a change to the objectives for 40G and 100G copper, and the new objectives must be re-evaluated against the 5 Criteria, particularly Broad Market Potential, Technical Feasibility, and Economic Feasibility. |
| **Response** |
| **Response Status W** |
| ACCEPT IN PRINCIPLE. |
| See response to comment #96. |

| **Cl 85A SC 85A.5 P 403 L 19 # 239** |
| Misiek, Brian Avago Technologies |

| **Comment Type T** | **Comment Status A** |
| **Proposed Response** |
| **Response Status Z** |
| **Suggested Remedy** |
| Now that there are test fixtures available for testing channels. A channel IL from TP0 to TP2 can be recommended that can be measured using probing on the ASIC bumps out to the TP2 SMA's to assist board manufactures. |

| **Cl 85A SC 85A.5 P 403 L 33 # 240** |
| Misiek, Brian Avago Technologies |

| **Comment Type E** | **Comment Status A** |
| **Proposed Response** |
| **Response Status C** |
| **Suggested Remedy** |
| Add section similar in scope to 86A.6 with appropriate reductions in the loss to match the PCB loss of the 85A interconnect. |
| **Response** |
| **Response Status C** |
| ACCEPT IN PRINCIPLE. |
| See comment #96. |

| **Cl 85A SC 85A.6 P 404 L 4 # 241** |
| Misiek, Brian Avago Technologies |

| **Comment Type T** | **Comment Status A** |
| **Proposed Response** |
| **Response Status C** |
| **Suggested Remedy** |
| Return loss equation is sited wrong. Also this assumes that the channel between TP0 and the cable connector is no different then the CCB. |
| **Response** |
| **Response Status C** |
| ACCEPT. |

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general

COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn

SORT ORDER: Clause, Subclause, page, line
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Response Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>A</td>
<td>C</td>
<td>ACCEPT IN PRINCIPLE.</td>
</tr>
</tbody>
</table>

If the RL of the cable assembly is not improved as per a previous comment then the ILD of the channel must be increased. Reflections between the hosts and the connectors on the PC boards will create additional ripple over what is measure for the cable. The cable assemble is measured with better return loss connections then the host will provide and as such the informative overall channel ILD needs to be speced at a higher value than the cable.

The calculation can be performed as shown:
1. If one connect two 2-port networks described in terms of S-parameters
 - SC21 = SA21*SB21/(1-SA22*SB11) where (SXIJ being complex numbers)
2. For the channels we work with, generally the phases of SA22 and SB11 are not specified or even specifiable. Therefore we can approximate:
 - \[\text{db}(SC21) = \text{db}(SA21) + \text{db}(SB21) + \text{correction}. \]
 - The correction amounts to an uncertainty in \(\text{db}(SC21) \) which will contribute to ILD, since the phase both SA22 and SB11 will vary quite a bit with frequency.
 - [correction] < 20*log10(e)*SA22*SB11
3. Assuming return loss of the channel TP0-TP2 is 12dB at Nyquist and Cable assembly return loss at Nyquist is 5.7dB
 - [correction] < 1.133
4. Making similar assumptions for TP3-TP5, gives a second correction.
 - [correction] < 1.133
5. RSSing the 2 corrections with the specified ILD=1.73dB for the Cable assembly at Nyquist gives:
 - ILD TP0-TP5 = 2.3 dB

SuggestedRemedy
Change ILDch is not equal to ILDca and an ILDch equation to flare out to 2.3dB at nyquist.

ILDch(f) >= ILDchmin(f)=0.8- 0.3 X 10E-9 (85A.XX)
ILDch(f) <= ILDchmax(f) =0.8 + 0.3 X 10eE9 (85S.XX)

Response
ACCEPT IN PRINCIPLE.
See response comment#236

Comment Status: D/dispatched A/accepted R/rejected **RESPONSE STATUS:** O/open W/written C/closed U/unsatisfied Z/withdrawn

Sort Order: Clause, Subclause, page, line

Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general

Page 80 of 110
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>TR</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>ICRAcraft shall be greater than or equal to ICRAmin as defined by the following equation where f is expressed in GHz. This statement cannot be true. f needs to be in Hz or eqn 85A-12 needs to change to (f/5).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>Change equation per comment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBE comment#141</td>
<td>[Editor's note: Late comment submitted after the ballot close; pending consideration by the Task Force]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>TR</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>ICR channel min exceed ICR chfit, when worst case FEXT are included link budget are not supported at 10 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>ICR channel min crossover ICRchfit~400 MHz due to worst case aggressor FEXT which is not included in the daminico_01_0708 presentation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See comment#96 and comment#141.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICR replaced by ICN.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>E</th>
<th>Comment Status</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>Remove "<XREF>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>Change per comment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>ACCEPT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Editor's note: Late comment submitted after the ballot close; pending consideration by the Task Force]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>ER</th>
<th>Comment Status</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naming of return loss parameters is inconsistent with naming nomenclature used in IEEE 802 and most other industry specifications, including Infiniband, Fibre Channel, XFP, OIF CIE, where the term "return loss," not "reflection" is used. The only exception being SFP+. Given current thoughts on being able to implement -SR and -CR ports through same MDI, care should be taken on similar terminology. While "S21" was used in Clause 47, further searches found no usage of SDDm parameters in IEEE 802.3 Section 4 or Section 5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>Make following changes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Table 86A-1, Line 22, "Differential output reflection response, SDD22"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Table 86A-1, Line 23, "Common mode output reflection response, SCC22"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Table 86A-2 "Differential input reflection response SDD11"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Table 86A-2 "Reflected differential to common mode conversion, SCD11"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Table 86A-3 "Differential Output Reflection Response SDD22"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Table 86A-3 "Common mode output reflection response, SCC2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Table 86A-4 "Differential input reflection response, SDD11"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Table 86A-4 "Reflected differential to common mode conversion, SCD11"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make following changes:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>change "Differential output reflection response, SDD22" to "Differential Output Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>change "Common mode output reflection response, SCC22" to "Common-mode Output Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Change "Differential input reflection response SDD11" to "Differential Input Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Change "Reflected differential to common mode conversion, SCD11" to "Differential to Common-mode Input Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Change "Differential Output Reflection Response SDD22" to "Differential Output Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Change "Common mode output reflection response, SCC2" to "Common-mode Output Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Change "Differential input reflection response, SDD11" to "Differential Input Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Change "Reflected differential to common mode conversion, SCD11" to "Differential to Common-mode Input Return Loss"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add definition to 1.4:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Loss: the ratio (expressed in dB) of reflected power at one port to the incident power power.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

at the same port. May refer to optical power or to electrical power in a specified frequency range. Note that the dB measurement of return loss is the absolute magnitude of the respective s-parameter dB magnitude measurement.

Response

Response Status U

REJECT.

There was insufficient consensus within the sub-task force to make the changes as proposed.

After some debate an initial proposal was captured below:

In Tables 86A-1 and 86A-3, change "Differential output reflection response, SDD22" to "Differential output return loss"

In Tables 86A-1 and 86A-3, change "Common mode output reflection response, SCC22" to "Common mode output return loss"

In Table 86A-2 and Table 86A-4, change "Differential input reflection response, SDD11" to "Differential input return loss"

In Table 86A-2 and Table 86A-4, change "Reflected differential to common mode conversion, SCD11" to "Differential to common mode input return loss"

Make equivalent changes to definitions of these parameters in Clause 86A

1.4 of the base standard contains:

1.4.308 return loss: In 10BROAD36, the ratio in decibels of the power reflected from a port to the power incident to the port. An indicator of impedance matching in a broadband system. (See IEEE 802.3, Clause 11.)

Add:

1.4.xxx return loss: In 40G/100GBASE-R, the ratio of the power incident to a port to the power reflected from the same port. May refer to optical power or to electrical power in a specified frequency range.

Response

Response Status C

ACCEPT.

In Table 86-1, for Required operating range, ... 100 or OM3 ... should be ... 100 for OM3 ...

SuggestedRemedy

In Table 86-1, for Required operating range, change ... 100 or OM3 ... to ... 100 for OM3 ...

Response

Response Status C

ACCEPT.

Previously, draft says "In this clause... an example item is numbered i." i is the usual example integer (while x is the usual example number on a continuous scale).

SuggestedRemedy

Change x to i where appropriate. Affects 87, 88 also.

Response

Response Status C

ACCEPT IN PRINCIPLE.

In clauses 80, 82, 83, 84, 85, 86, 87, 88 change the variable in the service interface primitives from "x" to "i"
Comment Type: E Comment Status: R

Figure 86-2. Why do you specify a lane i? Remove this lane decrease the drawing size and so that you don't need two "...".

The and gate symbol also looks bad.

Suggested Remedy:
Remove lane i. Remove the overlap of the lines where they take a right angle into the AND gate.

Make the AND gate and optical receiver look pretty by removing overlapping lines.

Response:
REJECT.

The "i" is used in the text in this clause.

Beauty is in the i of the beer holder.

Comment Type: T Comment Status: D

The text covers the case where TP1 & TP4 are not exposed but doesn't cover the case where TP2 & TP3 are not exposed.

Suggested Remedy:
Add the sentence, "If TP2 and TP3 are not exposed, a conforming implementation must behave as though the interfaces were compliant."

Proposed Response:
REJECT.

This comment was WITHDRAWN by the commenter.

In common with previous PMDs, exposed TP2 & TP3 are expected.
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Commenter</th>
<th>Response</th>
<th>Suggested Remedy</th>
<th>Comment Status</th>
<th>Response Status</th>
<th>Response</th>
<th>Suggested Remedy</th>
<th>Comment Status</th>
<th>Response Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>A</td>
<td>Frazier, Howard</td>
<td>ACCEPT IN PRINCIPLE</td>
<td>Delete the words "the MDIO is implemented, and" at the beginning of the first sentence. Add the sentence: If the MDIO interface is implemented, PMD_receive_fault shall be mapped to the PMD_receive_fault bit as specified in 45.2.1.7.4.</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>Pettrilla, John</td>
<td>ACCEPT IN PRINCIPLE</td>
<td>In Table 86-5, the term, "Input_optical_power" is not defined, nor used elsewhere (except in this and similar tables in 87 & 88), nor needs definition as standard english is sufficient - except standard english does not need nor uses the underscores. Change "Input_optical_power <= -30 dBm average power" to "Average optical power at TP3 <= -30 dBm". Change "Input_optical_power >= stressed receiver sensitivity (max) in OMA" to "Optical power at TP3 >= stressed receiver sensitivity (max) in OMA". Make similar changes in Table 87-4 and Table 88-4.</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>A</td>
<td>Frazier, Howard</td>
<td>ACCEPT IN PRINCIPLE</td>
<td>Why are 86.5.9 and others marked "optional" in the title while this, which says it's optional in the text, is not? Add "(optional)" here, at 87.5.7 and 88.5.7.</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>C</td>
<td>Dawe, Piers</td>
<td>ACCEPT IN PRINCIPLE</td>
<td>Disabling any of the lanes of the PMD using the lane-by-lane disable function effectively disables the whole interface, since we haven't defined a mechanism by which an interface can operate without the full complement of lanes. Thus, the draft should include a warning, in the form of a note, that disabling one or more lanes will disable the interface, and can be disruptive to a network. Add a note at the end of 86.5.8 that reads: NOTE -Disabling the electrical transmitter on one or more lanes effectively disables the entire interface and can be disruptive to a network.</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>C</td>
<td>Frazier, Howard</td>
<td>ACCEPT IN PRINCIPLE</td>
<td>Add to subclause 45.2.1.8: NOTE -Disabling the transmitter on one or more lanes stops the entire link from carrying data and may disrupt the network.</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comment Type: TR Comment Status: A

There is no Clause 45 register bit referenced for PMD_fault in this subclause.

Suggested Remedy
Delete the words "the MDIO is implemented, and" at the beginning of the first sentence. Add the sentence: "If the MDIO interface is implemented, PMD_fault shall be mapped to the PMD_fault bit as specified in 45.2.1.2"

Response Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment 279

Comment Type: T Comment Status: A

In Table 86-6, increasing the Max limit for 'Average launch power, each lane' can enable lower cost transmitter implementations without significant impact on receivers if the current max 'Optical Modulation Amplitude (OMA), each lane' and max 'Peak power, each lane' are unchanged. Raising the Max limit for 'Average launch power, each lane' to 2.4 dBm will not compromise the eye safety class 1M limit of~5.3 dBm. See petrilla_02_0308 for eye safety discussion.

Suggested Remedy
In Table 86-6, change the Max limit for 'Average launch power, each lane' from 1 to 2.4. In Table 86-7 change the max for 'Total average power for 40GBASE-SR4', from 7 to 8.4 and change the max for 'Total average power for 100GBASE-SR10, from 11 to 12.4. In Table 86-8, change min 'Damage threshold' from 2 to 3.4 and max 'Average power at receiver input, each lane' from 1 to 2.4.

Response Response Status: C
ACCEPT IN PRINCIPLE.
Make the proposed changes and also change the maximum "Average power, each lane" in Table 86-7 to 2.4 dBm

Comment Type: T Comment Status: A

In Table 86-9, change "fiber" to "cabled optical fiber" in note c to "cabled optical fiber" and change "Fiber cable attenuation" to "Cabled optical fiber attenuation".

Response Response Status: C
ACCEPT IN PRINCIPLE.
Comment Type: E Comment Status: A

Why are there so many 1 sentence paragraphs in this subclause. One paragraph is cut in half by the table.

Suggested Remedy
Consolidate some of the paragraphs into longer sentences and make sure the paragraphs aren't divided over the table.

Response Response Status: C
ACCEPT IN PRINCIPLE. Move third paragraph to continue first. Look for a way to let a table float to the end of the page (Table 86-13). May be better to leave staff editor to tidy up when pagination is known.

Comment Type: E Comment Status: A

the effect of the effect of the decision circuit

Suggested Remedy
Change to the effect of the decision circuit

Response Response Status: C
ACCEPT.

Comment Type: TR Comment Status: R

The CRU of 4 MHz allow tracking all low frequency which can be as result of power supply noise or clock source during normal operation but the receiver is not test with the same SJ. This is called double dipping!

Suggested Remedy
As compromise I suggest 2 MHz for the corner frequency for the CRU and the jitter tolerance.

Response Response Status: U
REJECT.

See ghiasi_02_0709

Note also comments 168, 36, 175, 184, 183, 214, 224, 225.
No Rx output criteria is established for the SRS test. While bit errors may be reported in system operation, there are occasions where a nPPI or nAUI interface may be exposed at the output of the Rx and it would be valuable to determine compliance at these interfaces.

Suggested Remedy

Add another item, e, to the list of exceptions,

e) Where nPPI or nAUI is exposed, a receiver is considered compliant if it meets the requirements in Annex 86A for nPPI or Annex 83B for nAUI.

Response

ACCEPT IN PRINCIPLE.

Add another item to the list of exceptions, e) Where nPPI or XLAUI/CAUI is exposed, a PMD receiver is considered compliant if it meets the module electrical output specifications at TP4 given in Table 86A-3 for nPPI, or the requirements in Table 83B-3 for XLAUI/CAUI.

With un-retimed modules, the meaning of compliant to stressed sensitivity is not always what it was when Clause 52 was written.

Suggested Remedy

Add extra sentence:

For a complete receive port, compliance means a BER of or better than 10^-12 under the conditions specified. For a PMD module, compliance means that the module electrical output specifications at TP4 given in Table 86A-3 are met.

Response

ACCEPT IN PRINCIPLE.

See response to 151.

All graphs of dB in Annex 86a are negative in magnitude. This is inconsistent with the equations, which show absolute magnitudes, as well as the rest of 802.3, which does not show negative numbers.

Suggested Remedy

Definition for return loss created in other comment

Add other definition for insertion loss in 1.4

Response

Insertion Loss : the ratio (expressed in dB) of transmitted power at a port to the incident power at another port. May refer to optical power or to electrical power in a specified frequency range. Note that the dB measurement of insertion loss is the absolute magnitude of the respective s-parameter dB magnitude measurement.

Equations should result in positive number. Use one consistent form for an equation parameter <=> limit (name) = equation

Draft should refrain from using specific 4 port s-parameter names. n-Port s-parameters are becoming more common. Presentation given in May did not focus on port numbers, just the different types of modes, i.e. differential, common-mode, differential to common-mode, and common-mode to differential.

Redo equations as described above, and then replot all graphs so magnitudes are positive.

Sparameter port names should not be used for names of limit lines.

Response

REJECT.

There was a lack of consensus on this comment due to the lack of consensus on comment 327.
Cl 86A SC L #
D'Ambrosia, John Force10 Networks 516

Comment Type ER Comment Status A
Per Comment 537: Rename PPI to nPPI with specific interfaces being XLPPI and CPPI.
This is interpreted as only using XLPPI / CPPI when discussing the specific interfaces.
This has been partially implemented in Annex 86A.

1. P407, Line 7 "Parallel Physical Interface (XLPPI and CPPI) for 40GBASE-SR4 and 100GBASE-SR10"
2. P407, Line 49 "86A.4 Electrical specifications for XLPPI and CPPI"
3. P408, Line 4 "86A.4.1 XLPPI and CPPI transmit side electrical specifications"
4. P 409, Line 36 "86A.4.2 XLPPI and CPPI receive side electrical specifications"

Suggested Remedy
1. Change title to "Parallel Physical Interface (nPPI) for 40GBASE-SR4 (XLPPI) and 100GBASE-SR10 (CPPI)"
2. Change to "86A.4 Electrical specifications for nPPI"
3. Change to "86A.4.1 nPPI transmit side electrical specifications"
4. Change to "86A.4.2 nPPI receive side electrical specifications"

Response Response Status C
ACCEPT IN PRINCIPLE.
Change clause title from:
"Parallel Physical Interface (XLPPI and CPPI) for 40GBASE-SR4 and 100GBASE-SR10" to:
"Parallel Physical Interface (nPPI) for 40GBASE-SR4 (XLPPI) and 100GBASE-SR10 (CPPI)"
In title of 86A.4 change "for XLPPI and CPPI" to "for nPPI"
In title of 86A.4.1 change "XLPPI and CPPI" to "nPPI"
In title of 86A.4.2 change "XLPPI and CPPI" to "nPPI"

Cl 86A SC 86A.4 P 407 L 52 #
Dawe, Piers Avago Technologies 59

Comment Type E Comment Status A
the electrical nPPI.

Suggested Remedy
the nPPI.

Response Response Status C
ACCEPT.

RLD(f) > RLDmin = [show equations]
where f is frequency in gigahertz

86A.4.1.2 nPPI Ingress Rx Differential Output Return Loss
The magnitude of RLC in dB for nPPI Ingress Rx Differential Output Return Loss measured at TP1a shall be greater than RLCmin as defined in Equation 86A-2 for frequencies from 10 MHz to 11.1 GHz. The equation is illustrated in Figure 86A-1.

RLC(f) > RLCmin = [show equations]
where f is frequency in gigahertz
86A.4.1.3 nPPI Ingress Rx Differential to Common-mode Input Return Loss
The magnitude of RLCD in dB for nPPI Ingress Rx Differential to Common-mode Input Return Loss measured at TP1 shall be greater than RLCmin as defined in Equation 86A-x for frequencies from 10 MHz to 11.1 GHz. The equation is illustrated in Figure 86A-1.

add equation $RLCD > RLCmin = 10dB$

86A.4.2 nPPI Egress Electrical Specifications

Rename Table 83A-3 to "nPPI Egress Tx Electrical Output Specifications"
Rename Table 83A-4 to "nPPI Egress Rx Electrical Input Specifications"

86A.4.2.1 nPPI Egress Tx Differential Output Return Loss and Egress Rx Differential Input Return Loss
Change text to:
The magnitude of RLD in dB for nPPI Egress Tx Differential Output Return Loss measured at TP4 and nPPI Egress Rx Differential Input Return Loss measured at TP4a shall be greater than RLDmin as defined in Equation 86A-1 for frequencies from 10 MHz to 11.1 GHz. The equation is illustrated in Figure 86A-1.

86A.4.2.2 nPPI Egress Tx Common-mode Output Return Loss
The magnitude of RLC in dB for nPPI Egress Tx Common-mode Output Return Loss measured at TP4 shall be greater than RLCmin as defined in Equation 86A-2 for frequencies from 10 MHz to 11.1 GHz. The equation is illustrated in Figure 86A-1.

86A.4.2.3 nPPI Egress Rx Differential to Common-mode Input Return Loss
The magnitude of RLC in dB for nPPI Ingress Rx Differential to Common-mode Input Return Loss measured at TP4a shall be greater than RLCmin as defined in Equation 86A-1 for frequencies from 10 MHz to 11.1 GHz. The equation is illustrated in Figure 86A-1.

Move Fig 86A-1 to after Table 86A04
Change Caption to Return Loss Specifications
In Figure
Change "SCC22" to "RLCmin"
Change "SDD11 or SDD22" to "RLDmin"
Change "SCD11" to "RLCDmin"

Response

ACCEPT IN PRINCIPLE.
The terms "Ingress" and "Egress" do not have an obvious mapping to the two PPI links in question. One reader's ingress is another reader's egress.

The response to comment 470 against Draft 2.0 was to change names using the terms "host, module, input and output".

Change title of 86A.4.1 to "nPPI host to module electrical specifications"
Change title of 86A.4.2 to "nPPI module to host electrical specifications"

Give editorial licence to apply similar changes elsewhere in the clause

For format of equations see response to comment 336
For XLPPI and CPPI vs nPPI see response to comment 316
For Return loss vs S-parameter names see response to comment 327
If Table 86A-3, nPPI module electrical output specifications at TP4, has a termination mismatch spec, why doesn't Table 86A-1, nPPI host electrical output specifications at TP1a?

Suggested Remedy

Add row, Termination mismatch at 1 MHz, max 5%

Response

REJECT.

There was no consensus to add this parameter.

If Table 86A-3, nPPI module electrical output specifications at TP4, has an output transition time spec, why doesn't Table 86A-1, nPPI host electrical output specifications at TP1a? Up to a point, if the host emits edges that are too fast, it suffers its own crosstalk (because the connector is on the host), but a compliant module may reflect and convert more of the high frequency signal than test equipment, giving worse performance in the field than expected from testing.

Suggested Remedy

Add row, Output transition time, 20% to 80% min 28 ps. This is easier for the host than SFP+ 34 ps.

Response

ACCEPT.

If the transmitter has very low RJ-0 then DDJ will approach J2 or 0.18 UI due to overemphasis. Over emphasis can result in sever eye degradation depending on the laser driver gain, etc.

Suggested Remedy

To protect against these over-emphasis scenarios DDJ must be added with proposed value of 0.12 UI.

Response

REJECT.

The combination of other specifications, including the eye mask may protect against this.

There was no consensus to add this parameter. Further study of this issue is invited.

Comment Type: TR/technical required
Comment Status: R
Response Status: C

If the transmitter has very low RJ-0 then DDJ will approach J2 or 0.18 UI due to overemphasis. Over emphasis can result in sever eye degradation depending on the laser driver gain, etc.

Suggested Remedy

To protect against these over-emphasis scenarios DDJ must be added with proposed value of 0.12 UI.

Response

REJECT. [Reclassified from 86A.4.2]

See response to comment 216.
Cl 86A SC 86A.4.1.1 P 410 L 40 # 55
Dawe, Piers Avago Technologies

Comment Type E Comment Status A
DDPWS min. seems wrong.

Suggested Remedy
Change to DDPWS tolerance (still min.).

Response Response Status C
ACCEPT.

Cl 86A SC 86A.4.1.1 P 408 L 40 # 49
Dawe, Piers Avago Technologies

Comment Type T Comment Status R
At the last meeting we considered reducing the upper limit of required (or recommended) S-parameter compliance from 11.1 GHz to 10.4 GHz. I don’t think we considered the compromise suggested below.

Suggested Remedy
For nPPI host, module and channel, reduce the upper limit of required (or recommended) S-parameter compliance from 11.1 GHz to 10.4 GHz. But for the compliance boards, do not reduce the limit.

Response Response Status C
REJECT.

Cl 86A SC 86A.4.2 P 410 L 46 # 102
Petrilla, John Avago Technologies

Comment Type T Comment Status A
In Table 86A-3 (also 86A-4) the limits for J2 (0.46) and J9 (0.63) for some reasonable combinations of jitter will permit TJ (at BER + 1E-12) to exceed 0.70 UI which was not intended when these J2 and J9 limits were established. Unfortunately, a similar situation occurred at TP1 and, consequently without some relief at TP1 relief at TP4 is limited. However, it appears that J9 can be tightened from 0.63 UI to 0.62 UI. See petrilla_01_0709 for discussion.

Suggested Remedy
In Tables 86A-3 and 86A-4 change J9 from 0.63 to 0.62.

Response Response Status C
ACCEPT IN PRINCIPLE.

In Table 86-8 change VECP from 2 to 1.9 and in Tables 86A-3 and 86A-4 change J9 from 0.63 to 0.62.
Comment Type: T Comment Status: A

Is this eye mask a condition of the host electrical receiver signal tolerance test?

Suggested Remedy:
- If so, re-order table rows to reflect this.

Response:
- Response Status: C
- ACCEPT IN PRINCIPLE.
 - Move "Conditions of host electrical receiver signal tolerance test" above "Eye mask coordinates".

Comment Type: T Comment Status: D

Comment Status: A

Need to confirm transition time value and provide DDPWS value.

Suggested Remedy:
- I'll try to bring numbers to the meeting.

Proposed Response:
- Response Status: Z
- REJECT.

This comment was WITHDRAWN by the commenter.

Note comment 219.
D'Ambrosia, John
Force10 Networks

Comment Type ER
Comment Status A

It is unclear which equation (86A-6 and 86A-7) goes with HCB and MCB. This is also true for 86A-8 and 86A-9.

Suggested Remedy

Add clarifying text with equations 86A-6 and 86A-7, so it is clear which equation goes to HCB and MCB respectively.

Also, do for 86A-8 and 86A-9.

Response
Response Status C

ACCEPT IN PRINCIPLE.

Change:

"The limits on the differential through response (SDD21) in decibels of the mated HCB and MCB (in either direction) are given in Equation 86A-6 and Equation 86A-7 and illustrated in Figure 86A-3." to:

"The limits on the differential through response (SDD21) in decibels of the mated HCB and MCB (in either direction) are given in Equation 86A-6 (which defines the upper limit) and Equation 86A-7 (which defines the lower limit). These limits are illustrated in Figure 86A-3."

See also response to comment 332

Healey, Adam
LSI Corporation

Comment Type T
Comment Status A

How much loss does the connector introduce?

1. Subtracting Equations (86A-4) and (86A-5) from (86A-6) for the combined MCB and HCB implies a connector loss (plus other impairments) of 0.87 dB at 5.15625 GHz.

2. Subtracting Equation (86A-4) and 3.5 dB from Equation (86A-20) for the TP0 to TP1a (or TP4a to TP5) channel implies a connector (plus other impairments) loss of 0.54 dB at 5.15625 GHz.

Upon first glance, one would assume you could do better with the controlled environment of the HCB and MCB but equations seem to reflect the opposite.

Suggested Remedy

Update the equations to exhibit improved consistency or explain why they don't need to be consistent.

Response
Response Status C

ACCEPT IN PRINCIPLE.

Equations 86A-4 and 86A-5 give the nominal responses for "If boards are used which do not match the specifications given, the measurement results for nPPI shall be corrected for the differences between the actual HCB or MCB's properties and the reference through responses (SDD21) given below" at line 19. 86A-6 gives a spec on actual response of a pair for "Boards that do not meet the specifications for mated HCB-MCB shall not be used." The difference is for the connector and also tolerances on the MCB and HCB. The SFP+ connector spec is 0.58 dB at 5.15625 GHz. This means that for this connector there is only 0.29 dB allowed for tolerancing for the HCB and MCB. See also response to comment 96

Change "below" to "in 86A.5.1.1.1", change "outside the limits" to "outside the limits given in 86A.5.1.1.2", change "HCB-MCB shall" to "HCB-MCB in 86A.5.1.1.2 shall".
Comment Type ER Comment Status R

the term "through response" in Fig 86A-2 and 86A-3 is inconsistent with terminology used in p802.3ba as well as 802.3. The term is also used in the text.

This comment was submitted previously and the editor dismissed it saying it was the correct s-parameter, and quote Infiniband use of s-parameters. "Search of IBTA document shows use of term "insertion loss", but not "through response"

Suggested Remedy
use "insertion loss"

change title for figure to

Fig 86A-2 "Insertion loss for PCB Traces"
Fig 86A-3 "Insertion loss limite of mated HCB-MCB"

replace term in text with "insertion loss"

Response Response Status U

REJECT.
There was a lack of consensus on this comment due to the lack of consensus on comment 327.

The limit lines that Eqs 86A-8 and -9 establish, as shown in Fig 86A-4, are so close that it seems preferable to just have one limit.

Suggested Remedy
Use the lower limit (SDDhh(86A-8)) for SDDHH and SDDMM

Response Response Status W

ACCEPT IN PRINCIPLE.
Use equation 86A-8 for both the HCB and MCB limits. Update Figure 86A-2 to match.

See also comment 62.
Comment Type: ER Comment Status: R
Title of Fig 86A-4 uses inconsistent name, as noted in other comments.
SuggestedRemedy
- Change title of Fig 86A-4 to "Return Loss Limits for mated HCB-MCB"
Response: Response Status: U
REJECT.
There was a lack of consensus on this comment due to the lack of consensus on comment 327.

Comment Type: T Comment Status: R
Is FEXT defined as victim signal out / aggressor signal in (through response, as draft), or victim signal out / aggressor signal out?
SuggestedRemedy
Response: Response Status: C
REJECT.
No change to the draft is required.

Comment Type: ER Comment Status: A
By combining these different parameters in a single figure, the figure is not consistent with other clauses in 802.3, as different types of parameters has not been done before. It may also confuse the reader that the limit depicted for "SCD21 or SCD12 looking into HCB or MCB" is referring to a mode conversion crosstalk measurement.
SuggestedRemedy
- separate the limit line for Eq 86A-11 onto a separate graph figure.
Response: Response Status: C
ACCEPT.

Comment Type: T Comment Status: A
With the split of 86 into two parts, need to tell the reader about the dual-use parameter definitions in 86.8.3.
SuggestedRemedy
Insert sentence:
As well as the parameter definitions below, some definitions with dual use (both optical and electrical) are given in 86.8.3.
Response: Response Status: C
ACCEPT IN PRINCIPLE.
Insert sentence:
In addition to the parameter definitions below, some definitions with dual use (both optical and electrical) are given in 86.8.3.

Comment Type: TR Comment Status: A
The numerator of Zp-Zn could be negative
SuggestedRemedy
- Add absolute value |Zp-Zn|
- Change "Termination mismatch is defined as the percent difference between the two low frequency impedances to common of a differential electrical port." to "Termination mismatch is the percent difference between the two low frequency impedances to common of a differential electrical port."
- In equation 86A-16 change " Zp-Zn" to " |Zp-Zn|" and add "%"
- Also In equation 86A-17 change " Ip-In" to " |Ip-In|" and add "%"
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Suggested Remedy</th>
<th>Response</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>A</td>
<td>Delete "This applies to electrical signals as well as optical signals."</td>
<td>ACCEPT.</td>
<td>C</td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>Leave the first "shall", in 86A.5.3.8. In the rest of 86A.5.3, change "shall be" to "is" or "are", "shall have" to "has", "shall not exceed" to "does not exceed", "shall transmit" to "transmits". Change "The BER shall remain below 10-12." to "The BER of a compliant host receiver remains below 10-12."</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>Terminology: these things aren't jitter. ISI is an effect not a form of jitter. Later we have "ISI jitter" then "high probability jitter" for apparently the same thing.</td>
<td>Clean up the terminology in 86A.5.3.8. Spell out "RSS" if necessary.</td>
<td>ACCEPT IN PRINCIPLE.</td>
</tr>
</tbody>
</table>

Comment Status:
- D/dispatched
- A/accepted
- R/rejected

Response Status:
- O/open
- W/written
- C/closed
- U/unsatisfied
- Z/withdrawn
Comment Type: E Comment Status: A
A voltage stress before the limiter function is to be applied.

Suggested Remedy
A voltage stress is to be applied before the limiter function.

Response: Response Status: C
ACCEPT.

Comment Type: E Comment Status: A
The text calls for, 'the intrinsic jitter of the test source due to intrinsic noise and finite bandwidth effects is measured and calibrated'. If intrinsic, it seems unlikely that it can be calibrated.

Suggested Remedy
Change, 'is measured and calibrated' to 'is measured'

Response: Response Status: C
ACCEPT IN PRINCIPLE.
Change: With an applied calibration test pattern and no additional jitter stress applied, the intrinsic J2 Jitter of the test source due to intrinsic noise and finite bandwidth effects are measured. At this stage, J2 Jitter shall be less than 0.15 UI and J9 Jitter less than 0.25 UI. SJ is added until the J2 Jitter increases by 0.05 UI above the measured reference level.

To: With an applied calibration test pattern and no additional jitter stress applied, the intrinsic J2 Jitter and J9 Jitter of the test source due to intrinsic noise and finite bandwidth effects are measured. At this stage, J2 Jitter shall be less than 0.15 UI and J9 Jitter less than 0.25 UI. SJ is added until the J2 Jitter increases by 0.05 UI above the measured intrinsic J2 Jitter level.
Comment Type: TR
Comment Status: A

the description below does not appear right since the named end points are not on the HCB

A recommended maximum attenuation template for the Parallel Physical Interface's channel (PCB) and the HCB, between the PMA IC (TP0 or TP5) and TP1 or TP4, is illustrated in Figure 86A-11.

Suggested Remedy
change text to

A recommended maximum attenuation template for the mated host card and HCB (between TP0 and TP1A or TP4A and TP5), including connector loss, is illustrated in Figure 86A-11.

Response
Response Status: C
ACCEPT IN PRINCIPLE.

Change to:
The recommended limits for the differential through response (SDD21) in decibels of the host PCB and connector mated to the HCB, between the PMA IC (TP0 or TP5) and TP1a or TP4a, are given in Equation 86A-20 and Equation 86A-21, and illustrated in Figure 86A-11.

Comment Type: T
Comment Status: A

Per Figure 86-3, "TP1 and TP4" should be "TP1a and TP4a".

Suggested Remedy
Per comment.

Response
Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment 317.

Comment Type: ER
Comment Status: A

Based on input from several OEMs 3.5 dB of PCB trace is not sufficient for most applications as the reach on FR4-6 is only about 4", but QSFP and CXP have very difficult routing on the front contacts

Suggested Remedy
propose to increase the host PCB loss from 3.5 dB to 5 dB, the back to back loss will increase compare to SFP by 0.5 dB due to 0.2 dB MCB loss increase and 0.3 dB HCB loss increase.

SDD21 = -0.7 dB from 0.01 to 0.2 GHz
- 0.116 - 0.91*sqrt(f) - 0.864*f from 0.2 to 7 GHz
36.52 - 6.44*f from 7 to 8 GHz
- 15 from 8 to 11 GHz

Response
Response Status: C
ACCEPT IN PRINCIPLE.

Modify equation 86A-20 by scaling the existing equation to produce a value at the nyquist frequency of -6.5 dB

See also response to comment 96
Incorrect table column heading. Anyway, the column heading is not the place for a list of fibre types. When you have a single column of spec limits (as here) the heading should be "Value" (see clauses 68, 85, 86 for examples). When there are two options (as in Table 88-1 and Table 88-18), the heading distinguishes between them.

Suggested Remedy

For Table 87-1, change "40GBASE-LR4" to "Status". Could change title to "Clauses and sublayers for 40GBASE-LR4" if wished.
For Table 87-7, 8, 9 and 14, change "40GBASE-LR4" to "Value". Could add "for 40GBASE-LR4" to title of Table 87-14.
For Table 87-15, change "Type B1.1, B1.3 SMF" to "Value". Could add "for 40GBASE-LR4" to title.
For Table 88-7, 8, 9, 11, 12, and 13, see another comment (combine the tables) or change "100GBASE-LR4" or "100GBASE-ER4" to "Value".
For Table 88-19, change "Type B1.1, B1.3 SMF" to "Value".

Response

ACCEPT IN PRINCIPLE.
Leave Table 87-1 unchanged.
Table 87-7, 8, 9 and 14, change "40GBASE-LR4" to "Value"
Change Title of Table 87-14 to "Fiber optic cabling (channel) characteristics for 40GBASE-LR4"
In Table 87-15, change "Type B1.1, B1.3 SMF" to "Value"
Change Title of Table 87-15 to "Optical fiber and cable characteristics for 40GBASE-LR4"
For Table 88-7, 8, 9, 11, 12, and 13, see response to comment 90
In Table 88-19, change "Type B1.1, B1.3 SMF" to "Value"

The text "An upper bound to the delay through the PMA and PMD is required for predictable operation of the MAC Control PAUSE operation." is a leftover from 10G where the PMA and PMD delays are specified in combination. In 40G and 100G, they are specified separately. The text could give the impression that controlling the delay through the PMA and PMD determines predictable operation of the MAC Control PAUSE operation, which is not true; above a very few 100 m, delay is dominated by the medium, and the FEC, PCS and RS are also involved. 87 and 88 should not be talking about what the PMA delay should be or why; PMA delay is addressed in 83.5.4.
Note another comment for a similar issue in other clauses.

Suggested Remedy

Delete the sentence, here and in 88.3.1.

Response

ACCEPT IN PRINCIPLE.
See response to comment 29

Wrong reference.

Suggested Remedy

Replace "See 80.3." with "See 80.4."

ACCEPT IN PRINCIPLE.
See comment 29

If you resize the columns the heading row will fit on one line.

Suggested Remedy

Select table, resize columns to contents, then resize to 432 points total. Also Table 88-2.

ACCEPT IN PRINCIPLE.
Comment Type: T

Comment Status: A

For an optical receiver, the inherent noise level of the PMD is not due to crosstalk or power supply noise; it really is inherent.

Suggested Remedy

Change to match 86.5.4 and 88.5.4: change "due to" to "including the effects of".

Response: C

ACCEPT.

Comment Type: E

Comment Status: A

Table 87-7 says "Lane wavelengths (range)" while Table 87-8 says "Lane wavelengths".

Suggested Remedy

Make these and similar in 88 consistent. Another alternative is "Lane wavelengths (ranges)" - although it's obvious that these are ranges.

Response: C

ACCEPT IN PRINCIPLE.

Use Lane wavelengths (range) consistently.

Comment Type: T

Comment Status: A

For 40GBASE-LR4, the TDP limit for the transmitter and the allowance for penalties are the same, at 2.3 dB, but the VECP for the receiver stressed sensitivity test is much lower, 1.6 dB. This is a bigger difference than for other single-mode PMDs, and a significantly lower VECP than in Clause 52.

Suggested Remedy

Increase the VECP to e.g. 2 dB and increase the stressed receiver sensitivity (OMA) in step.

Response: C

REJECT.

There was no concensus to change this value at this point, however further review is encouraged.

802.3ba link budgets (e.g. TDP vs Tx OMA trade offs) are based on the TDP value being a good measure of the penalty the module receiver would see with a given transmitter over a worst case link.

The module receiver has to provide enough link budget whether the Tx has max or min TDP. The SRS test specifies a TDP value (1.6dB) at which minimum Tx OMA is at the mid point of its allowed range, and the required receiver sensitivity (to meet link budget) is also at the midpoint of its range. It would be burdensome to test SRS corresponding to every possible TDP value and there's no justification for measuring SRS at a single extreme of the required receiver sensitivity range.

Previous successful Ethernet spec's show this approach to be reasonable and effective.

Comment Type: ER

Comment Status: A

Table 87-8. Footnote refers to the wrong subclause.

Offending footnote:
dMeasured with conformance test signal at TP3 (see 87.8.10) for BER = 10^-12.

Suggested Remedy

Replace 87.8.10 with 87.8.11.

Response: C

ACCEPT.
Cl 87 SC 87.8 P 310 L 16 # 425
Flatman , Alan LAN Technologies

Comment Type T Comment Status A
Page 310, line 16, 87.8, Table 87-9: Change "fiber" in note a to "cabled optical fiber"
Page 317, line 14, 87.11.1, Table 87-15: Change "fiber cable attenuation" to "cabled optical fiber attenuation"

SuggestedRemedy
As per comment

Response Response Status C
ACCEPT IN PRINCIPLE.
[Editor's note: Late comment for consideration by the Task Force]
Table 87-9: Change "fiber" in note a to "cabled optical fiber"
Table 87-15: Change "Fiber cable attenuation" to "Cabled optical fiber attenuation"

Cl 87 SC 87.8.1 P 310 L 25 # 23
Anslow, Peter Nortel Networks

Comment Type T Comment Status A
There are multiple test patterns specified in Table 87-11. However, it is not clear whether the tests have to be performed with all of the patterns or whether any one pattern is sufficient.
Also applies to subclause 88.9.1

SuggestedRemedy
Insert before last sentence "Any of the test patterns given for a particular test in Table 87-11 may be used to perform that test."
Make equivalent change in 88.9.1

Response Response Status C
ACCEPT.

Cl 87 SC 87.8.10 P 313 L 48 # 84
Dawe, Piers Avago Technologies

Comment Type T Comment Status A
"is informative and testing is not required." This is giving the reader the wrong impression; because 802.3 is not a testing specification, testing isn't required even if something is normative (although compliance is) - there are multiple ways to show or assure compliance.

SuggestedRemedy
Change "testing" to "compliance". Also 88.9.9.

Response Response Status C
ACCEPT.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line
The current Stressed Receiver Test (based on LX4 methodology) is not rigorous, unlikely to be implemented in practice, and complete specification of the test is scattered across many clauses and subclauses.

A modified SRS test is proposed which uses either of 2 options:
1) Input signals are tuned to the wavelengths of worst insertion loss for the channel under test, and worst case crosstalk penalty for the other channels.
2) Input signals are at nominal wavelengths and input channel levels are adjusted to account for channel insertion loss ripple for the channel under test and crosstalk variation for the other channels.

A presentation will be available to the task force which describes the details of the proposed new SRS test, also a Frame document with a draft section describing the proposed new SRS test will be available.

"may be sent" but sending something isn't discretionary. Editorials.

Change "Test patterns 3 or 5, or valid 40GBASE-R bit streams may be sent from the transmit section of the receiver under test." to "Pattern 3 or Pattern 5, or a valid 40GBASE-R signal is sent from the transmit section of the PMD under test."

In 88.9.10 change "Test patterns 3 or 5, or a valid 100GBASE-R signal may be sent from the transmit section of the receiver under test" to "Pattern 3 or Pattern 5 or a valid 100GBASE-R signal is sent from the transmit section of the PMD under test."

"The data being transmitted": test patterns aren't data.

Change "The data being transmitted is asynchronous to the received data." to The signal being transmitted is asynchronous to the received signal.

In 88.9.10, change "received data." to "received signal.".
Comment Type: T Comment Status: A
Saying "An optical spectrum analyzer (OSA) or equivalent instrument is used" might be just fluff, or introducing terminology that isn't used, or duplicating the normative reference(s), or contradicting the normative reference(s). It's not necessary.

Suggested Remedy
Delete "An optical spectrum analyzer (OSA) or equivalent instrument is used" here and in 88.9.2.

Response
Response Status: C
ACCEPT.

Comment Type: T Comment Status: A
Maintaining multiple dual references (IEC or ITU-T and TIA) is too onerous. IEC 61280-1-3 is not in the references nor referred to in 86.8.4.1. I believe that TIA/EIA-455-127-A is a better (more up-to-date) reference for spectral width.

Suggested Remedy
Either delete "IEC 61280-1-3", here and in 88.9.2 (and PICS) or add it to 1.3 Normative references.

Response
Response Status: C
ACCEPT IN PRINCIPLE.
Add reference to IEC 61280-1-3 in clause 1.3:
IEC 61280-1-3:1998, Fibre optic communications systems basic test procedures-Part 1-3: Test procedures for general communication sub-systems- Central wavelength and spectral width measurement.

Comment Type: T Comment Status: A
In the following, "should" is too weak for a definition. "Instantaneous decision sampling" is utopian. The reference transmitter... should meet the following basic requirements:
The rise/fall times should be less than...
RIN should be minimized to less than -136 dB/Hz.
The reference receiver should have the bandwidth...
The sensitivity of the reference receiver should be limited...
The receiver should have minimal...
Decision sampling should be instantaneous with minimal uncertainty and setup/hold properties.
The sensitivity S... It should be measured while...

Suggested Remedy
Change to
The reference transmitter... meets the following basic requirements:
The rise/fall times are less than...
RIN is less than -136 dB/Hz and should be minimized to .
The reference receiver has the bandwidth...
The sensitivity of the reference receiver is limited...
The receiver has minimal...
Decision sampling has minimal uncertainty and setup/hold properties.
The sensitivity S... It is measured while...
Similarly in 88.9.5.

Response
Response Status: C
ACCEPT IN PRINCIPLE.
In 87.8.6.1 and 88.9.5.1 Change "It should meet the following basic requirements" To "The basic requirements are:" Change "The rise/fall times should be less than" To "Rise/fall times of less than"
Change "RIN should be minimized to less than" To "RIN of less than"
In 87.8.6.3 and 88.9.5.3 Change "The reference receiver should have the bandwidth" To "The reference receiver is required to have the bandwidth"
Change "The sensitivity of the reference receiver should be limited by" To "The sensitivity of the reference receiver is limited by"
Change "The receiver should have minimal" To "The receiver has minimal"
Draft 2.1 Comments

IEEE P802.3ba D2.1 40Gb/s and 100Gb/s Ethernet comments

Working Group ballot

Change "Decision sampling should be instantaneous with minimal uncertainty and setup/hold properties" To "Decision sampling has minimal uncertainty and setup/hold times"

Change "It should be measured while sampling at the eye center" To "It is measured while sampling at the eye center"

Comment Type T Comment Status A

Draft says "The channel provides a maximum optical return loss specified in Table 87-12." Table says "Optical return loss (max)". Hence tester is allowed to provide a lower optical return loss, which would tend to fail compliant transmitters, or the transmitter implementer has an unknown but over-onerous target to meet. Neither is acceptable. So this isn't a "max" at all, it's a test condition. Similarly, the amount of dispersion is unbounded.

SuggestedRemedy
- Replace "a maximum" with "the", delete "(max)", delete "at least" twice. Same in 88.9.5.2.

Response Response Status C

ACCEPT IN PRINCIPLE.

The required amount of dispersion is clearly bounded.

In Tables 87-12 and 88-16 change "Optical return loss (max)" to "Optical return loss"
In 87.8.6.2 and 88.9.5.2
Change "The channel provides a maximum optical return loss" to "The channel provides an optical return loss"

Comment Type T Comment Status A

If the reference CRU corner frequency matters, it must be specified not just bounded on one side.

SuggestedRemedy
- Delete "less than or equal to". Also in 88.9.5.3.

Response Response Status C

ACCEPT.
The reference filter described in ITU G.691, for transmitter eye mask measurement, has large tolerances allowed which can potentially lead to eye opening variations of 20% or more. This is inconsistent with the use of eye masks to guarantee link closure. The degree of variation can be limited by encouraging non-idealities of the eye mask measurement reference receiver to be compensated for.

Suggested Remedy
Insert text:
Any variation of the reference receiver filter response from ideal 4th order Bessel Thompson response can be compensated for.

ACCEPT IN PRINCIPLE.

In 86.8.4.6, 87.8.9 and 88.9.8 add the text:
"Compensation may be made for variation of the reference receiver filter response from an ideal 4th order Bessel Thompson response."

88.7 PMD to MDI optical specifications for 100GBASE-LR4 and 88.8 PMD to MDI optical specifications for 100GBASE-ER4 have the same structure, tables with all the same rows bar two, and almost identical text. Many of the spec numbers differ, of course. Also, unlike Clause 52, these PMDs are interoperable. It would be much easier for the reader to take in, and observe the similarities and differences, if the sections were combined, as 10GEPON 75.4 for example has done.

Suggested Remedy
Combine the two sections. Combine Table 88-6 and 88-10, and so on.

ACCEPT IN PRINCIPLE.

Combine the two sections with editorial licence.

Footnote refers to the wrong subclause.

Offending footnote:
\[d_{\text{Meas}} \text{ with conformance test signal at TP3 (see 88.9.9) for BER } = 10^{-12}\]

Suggested Remedy
Replace 88.9.9 with 88.9.10.

ACCEPT IN PRINCIPLE.

Replace "conformance test signal at TP3 (see 88.9.9)" with "conformance test signal at TP3 (see 88.9.10)" in notes to Table 88-8 (and 88-12 if tables not combined due to comment 90).
Comment Type: T Comment Status: A
Page 334, line 21, 88.7.3, Table 88-9: Change "fiber" in note a to "cabled optical fiber"
Page 344, line 14, 88.12.1, Table 88-19: Change "fiber cable attenuation" to "cabled optical fiber attenuation"

Suggested Remedy:
As per comment

Response Response Status: C
ACCEPT IN PRINCIPLE.

[Editor's note: Late comment for consideration by the Task Force]
Table 88-9: Change "fiber" in note a to "cabled optical fiber"
Table 88-19: Change "Fiber cable attenuation" to "Cabled optical fiber attenuation"

Comment Type: E Comment Status: A
Typo.

Suggested Remedy:
Delete the " at the end of the paragraph.

Response Response Status: C
ACCEPT.

Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Comment Type: T Comment Status: A
For 100GBASE-LR4, the TDP limit for the transmitter is 2.2 dB, and the polarisation mode dispersion penalty is estimated at 0.4 dB, but the VECP for the receiver stressed sensitivity test is much lower than the combination, at 1.8 dB. One also has to consider that there is an OMA-TDP spec also, but this seems low.

Suggested Remedy:
Increase the VECP to 2.2, adjust the stressed receiver sensitivity (OMA) so that OMA-TDP-PMDpen-loss = SRS-VECP (= -9, so SRS doesn’t change from -6.8, I believe).

Response Response Status: C
ACCEPT IN PRINCIPLE.
The 10ps DGD value (with 0.4 dB associated penalty) came from the P802.3ae Equalization Ad Hoc and equates to a link PMD coefficient of 0.8 ps/sqrt(km) (assuming S = 3.75 or 2.6 sec/year above the "Max"). The value of 0.8 ps/sqrt(km) comes from the 99.99th percentile of links made up from fibres with the worst case PMDq of 0.5 ps/sqrt(km). Consequently, the probability of seeing a DGD as high as 10 ps is very small indeed (2.6 s/year on 0.01% of maximum length links of near "worst" fibre).

It is therefore more realistic to set the vertical eye closure penalty that the receiver is tested against at 1.8 dB which is representative of the penalties likely to be seen in practical links than it would be to use 2.2 dB which is the maximum the TDP is allowed to be.

Reducing the maximum DGD to 8 ps reduces the expected penalty from 0.4 dB to 0.2 dB.

In Table 88-18 change the DGD_max from 10 ps to 8 ps

Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Comment Type: TR Comment Status: A
An SRS test is needed that system companies can use to qualify an optic. The test that component vendors do might be more complicated, but there should be a clear relation so that if a system company finds a part fails, the component vendor will too. Furthermore, the system company should not have to disassemble the part. The standard does not provide test plans, but the standard should lead to compatible test plans between system companies, their vendors, and even a system company’s customers. The standard should not be written such that disparate interpretations are fostered leading to different quantitative results with no clear relation.

Suggested Remedy:
See technical presentation to be submitted by a group of supporters reducing the number of tunable transmitters among other changes.

Response Response Status: C
ACCEPT IN PRINCIPLE.
See Response to comment 143
Comment Type: TR
Comment Status: R
Corner frequency of 10 MHz for SJ add extra burden on the receiver and there is no reason to use such wide band as the power supply noise and clock phase noise typically are < 1 MHz.

Suggested Remedy:
Propose to use reduce the SJ corner frequency from 10 MHz to 6 MHz.

Response Status: C
REJECT.
There was some interest in changing the CRU and SJ corner frequency to a lower value than 10 MHz, but it was felt that more study is required on this topic.
See also comment 224

Comment Type: ER
Comment Status: D
In 88.9.10, the mix of references to Clauses 52 & 53 make the status of sinusoidal amplitude interference unclear.
- The measurement method references 53.9.12, 53.9.14 & 53.9.15
- Note a) of Table 88-17 references 52.9.9.3

Clause 52 had both sinusoidal amplitude interference AND sinusoidal jitter.
Can we assume NO sinusoidal amplitude interference because there is no reference to sinusoidal amplitude interference in 53.9.12/14/15? Although 52.9.9 does refer to sinusoidal amplitude interference, that section is not mentioned in 88.9.10.
Although Table 88-17 does refer to 52.9.9.3, but it does so in the context of sinusoidal jitter, and not sinusoidal amplitude interference.

Suggested Remedy:
In the 88.9.10 exception list, explicitly state either
1) sinusoidal amplitude interference (per 52.9.9) is required; or
2) sinusoidal amplitude interference (per 52.9.9) is not required

Inphi (with whom I am affiliated) will make a presentation at the July plenary in support of this comment.

Response Status: Z
REJECT.
This comment was WITHDRAWN by the commenter.

See response to comment 143
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Proposed Response</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>88.9.10</td>
<td>TR</td>
<td>D</td>
<td>In 88.9.10, the references to 53.9.12-14 specify too much DCD DJ because LX4 defines DCD DJ in ps, not fractions of a UI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The serial rate at LX4 is 3.125Gb/s and minimum DCD DJ specified is 14 ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Using the same fractional UI at 25.78125Gb/s (UI=38.7878 ps), the minimum DCD DJ should be 1.6969, rounded to 1.7 ps.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suggested Remedy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Add another exception (e) to 88.9.10, with DCD DJ of 1.7 ps.</td>
<td></td>
</tr>
</tbody>
</table>

Inphi (with whom I am affiliated) will make a presentation at the July plenary in support of this comment.

Response Status Z

REJECT.

This comment was WITHDRAWN by the commenter.

See response to comment 143

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Proposed Response</th>
<th>Suggested Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>88.9.5.3</td>
<td>TR</td>
<td>R</td>
<td>The CRU of 10 MHz add extra burden on the receiver and there is no reson to use such wide band CRU as the power supply noise and clock phase noise typically are not more than 1 MHz.</td>
<td></td>
</tr>
</tbody>
</table>

Suggested Remedy

propose to use CRU BW=6 MHz

Response C

REJECT.

See response to comment 225
Comment Type: E Comment Status: A
Inconsistent usage on publication year for IEEE Std 802.3ba-200X. Earlier was 20XX and planned date for submission of project would require XX.

SuggestedRemedy
Change to -20XX for convenience of future search. Search document for "-200X" (case insensitive) and replace with "-20XX".

Response Response Status: C
ACCEPT IN PRINCIPLE.

The suggested change may not be applicable to other amendments. Search for 802.3ba-200X and replace with 802.3ba-20XX.

Comment Type: E Comment Status: A
According to the 2009 style guide the email address the ipr email address should be included in the frontmatter notice.

SuggestedRemedy
Change '.. IEEE Standards Activities Department.' to read 'IEEE Standards Activities Department (stds.ipr@ieee.org)'.

Response Response Status: C
ACCEPT IN PRINCIPLE.

Make the suggested change to 802.3ba front matter and forward this comment for changing the front matter template.

Comment Type: E Comment Status: A
I believe that the following text should appear at the bottom of page 2 of the frontmatter.

SuggestedRemedy
The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA
Copyright © 2009 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published xx Month 200x. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Incorporated.

Print: ISBN 0-7381-xxxx-x SHxxxxx
PDF: ISBN 0-7381-xxxx-x SSxxxxx

Response Response Status: C
ACCEPT IN PRINCIPLE.

Check the latest front matter template and update if appropriate.
The keywords do not include Ethernet anywhere, only the abbreviation GbE.

Suggested Remedy

So that a keyword search for Ethernet finds IEEE P802.3ba please change '40GbE' to read '40Gb/s Ethernet' and '100GbE' to read '100Gb/s Ethernet'.

Response

ACCEPT IN PRINCIPLE.

Change "40GbE" to "40 Gb/s Ethernet"
Change "100GbE" to "100 Gb/s Ethernet"

The approval of IEEE P802.3at is contingent on the approval of IEEE P802.3bc so IEEE P802.3bc should appear in the list before IEEE P802.3at. It is also likely that IEEE P802.3-1998/Cor1 (IEEE 802.3bb) will also be published before IEEE P802.3ba.

Suggested Remedy

Add the following two projects to the list:

IEEE Std 802.3bc(TM)-200X
This amendment includes changes to IEEE Std 802.3-2008 and adds Clause 79. This amendment transfers the IEEE 802.3 Organizationaly Specific TLVs that were originally specified in IEEE Std 802.1AB Station and Media Access Control Connectivity Discovery to IEEE Std 802.3.

IEEE Std 802.3-2008/Cor 1(TM)-200X
This corrigendum corrects the PAUSE reaction delay value specified for some PHY types.

Response

ACCEPT.