0

TDD Cycle

Steve Shellhammer (Qualcomm) June 2013

Description of TDD Cycle

- The TDD cycle consists of four time segments
 - Downstream (DS)
 - Upstream (US)
 - Two Guard Times (GT)

- The values of these time segments needs to be configured at the CLT
- This values of these time segments will be sent over the downstream PLC
- It may be possible to reconfigure these values over the OAM

TDD Cycle Descriptor

- We need to be able to describe the TDD cycle so it can be configured at CLT, communicated over PLC and possibly over OAM
- We need to decide on the range of values these time segments can take on and in what units we measure them

Guard Time

- The guard time needs to be at least as long as the sum of two times
 - RF switching time for the device to switch from transmit to receive or from receive to transmit
 - The round trip time (RTT) from the CLT to the CNU and back
- RF switching time of I to 2 µs is reasonable
- The RTT depends on the length of the passive network.
- Let *d* be the distance from the CLT to the CNU in meters
- Speed on coax is approximately

 $s = 2 \times 10^8 m/s = 200 m/\mu s$

• Round Trip Time

$$RTT = \frac{2d}{s} = \frac{d}{100} \ \mu s$$

Guard Time

- Range of RTT values
 - Use 2 µs for RF switching time. Need to finalize this value based on input from PHY Team

d (m)	RTT (µs)	RF Switching Time (µs)	Guard Time (µs)
200	2	2	4
500	5	2	7
1000	10	2	12

- We need to determine the maximum distance between a CLT and a CNU for a TDD network, based on the TDD channel model
- The GT should be an integer multiple of the duration of the 204.8 MHz clock period

Guard Time

• Since we want the guard time to be an integer multiple of the sample period we a few choices for the resolution of the guard time

Number of Clock Periods	Time (µs)	
128	0.625	
256	1.25	
512	2.5	

• It seems like 1.25 µs is sufficient resolution

Recommendation

• Allow configuration of the following values of the guard time in μs

3.75, 5.0, 6.25, 7.5, 8.75, 10.0, 11.25, and 12.5

 If fewer possible configuration were needed we could select only four values (2.5 µs resolution)

• 5, 7.5, 10 and 12.5

Downstream Time Interval

- The DS Time Interval should be a multiple of the symbol duration (including the cyclic prefix)
- We need to specify a minimum number of symbols and a maximum number of symbols in the DS time interval
- Symbol duration (excluding cyclic prefix)
 - 4K FFT: 40 µs
 - 8K FFT: 20 μs
- Cyclic prefix values (pietsch_3bn_02_0313)
 - 0.9387, 1.25, 2.5, 3.75 and 5 μs

Downstream Time Interval

- Range of Downstream Time Intervals
- To avoid high overhead from the guard time we want to have

 $T_{DS} \gg \, T_{GT} \approx 10 \, \mu s$

• To avoid high latency we want to have

 $T_{DS} \ll 1000 \ \mu s$

 May not be possible to meet both of these requirements in a single configuration

Downstream Time Interval

- Want to allow the operator the ability to configure the downstream time interval to allow for trade-off between latency and overhead
- There may be networks were latency is critical and higher overhead will be allowed
- There are also networks where latency is not so critical and lower overhead is preferred

Limits of Downstream Time

- Minimum Downstream Time
 - Something in the neighborhood of 80 µs seems like a lower limit. This is 4 symbols for the 8K FFT and 2 symbols for the 4K FFT
 - Are there PHY limits on the minimum number of symbols between guard times?
- Maximum Downstream Time
 - For networks where latency is less important we want longer values of the downstream time
 - Something in the neighborhood of 640 µs seems like an upper limit. This is 32 symbols for the 8K FFT and 16 symbols for the 4K FFT
- Discussion?

Upstream Time

• Should the allowed values of the upstream time be the same values allowed for the downstream time?

Conclusion

- Introduced the description of the TDD cycle
- Recommendations and Discussions on the possible values of the Guard Time and the downstream and upstream time values
- Specify the Guard Time in multiples of a time unit of 1.25 μs or 2.5 μs
- Specify the downstream and upstream time in multiples of the symbol duration (symbol plus cycle prefix)
- Discussed some limits of the downstream and upstream times