

HINOC PHY: Probe Frame Introduction

Zhao Hui Peking University 2013/12/13

OFDM symbol

- Two OFDM symbols;
- Fixed CP length: 1us;
- **Fixed modulation and coding scheme: DQPSK, BCH(392,248).**

• Preamble

- Only probe frames contain preamble;
- $4us \approx 23.5\%$ of the length of OFDM symbol (Low overhead).

Probe Frame Structure

• Preamble

- Preamble A: used in downlink probe frame (Pd)
 - Two repeated sequences.
- Preamble B: used in uplink probe frame (Pu)
- **Both** $S_A(t)$ and $S_B(t)$ are defined in frequency-domain

Probe Frame Functions (1)

• Transmission of MAC's signaling frame

Signaling frame of MAC layer : Broadcasting system information, New HMs access Link maintenance.

Probe frame can be received by any HMs.

- Preamble is used for synchronization.
- Fixed modulation and coding scheme.

Transmission reliability guarantee

- Low order modulation: DQPSK.
- Low coding rate FEC: BCH(392,248).

Probe Frame Functions (2)

• Network time synchronization

Only probe frames(Pd/Pu) contain preamble.

HM should synchronize its clock to HB's clock in order to obtain the reception or transmission time of other frames.

- HM's clock can be synchronized with HB using the received time of Pd and periodicity of Pd;
- **Ranging can be also realized using probe frame.** (Introduced in MAC layer)

Probe Frame Functions (3)

• Channel estimation

Pilot subcarriers

Training symbols

- Blind channel estimation
- Decision feedback based channel estimation
 - Eliminate the overhead of pilot and training symbol

• Note:

Data frames contain an extremely small amount of pilot subcarriers which are not design for channel estimation. (To be introduced in next week)

- Carrier frequency synchronization
 - The preamble A, which contains two repeated sequences, are used for the estimation of carrier frequency offset.
- Received power estimation

Conclusion

• Probe frame

- Low overhead
- Reliable transmission
- Support for many PHY and MAC layer functions
 - Transmission of MAC's signaling frame
 - Network time synchronization
 - Channel estimation
 - Carrier frequency synchronization
 - Received power estimation

Thank you!