

25G APD performance updates (IEEE 802.3ca 100G EPON Sep meeting)

2016-9-6 (Presented by Yong Guo)

SIFOTONICS TECHNOLOGIES

IEEE 802.3ca

- SiFotonics Technologies
 - Pengfei Cai
 - Wang Chen
 - Ching-yin Hong
 - Mengyuan Huang
 - Su Li
 - Dong Pan
 - Tzung-I Su
 - Liyuan Zhao

- ZTE
 - Yong Guo
 - Yongjia Yin

TO-can APD ROSA with EML (ER=8.1dB) and DML (ER=4.3dB)

Test conditions: 1304nm, NRZ, PRBS=2^31-1, 25.78Gb/s, RT

AOP (dBm)	EML(ER=8.1dB)	Cooled DML (ER=4.3dB)	
Back to Back	-28.3	-25.2	
10km	-28.0	-25.1	
20km	-27.9	-25.1	

Statistical data of TO-can APD sensitivity

Statistical sensitivity data of 25G TO-can type APD ROSA (assembled by commercial packaging house)

Test conditions: 1304nm, ER=8.1dB(EML), 25.78Gb/s, NRZ, BER=1e-3, 2^31-1, back-to-back, RT

APD ROSA sensitivity can be calculated by:

$$Sensitivity(OMA) = i_{ROSA} \cdot SNR / R_{APD}$$

Here, *SNR* is signal to noise ratio, R_{APD} is APD ROSA responsivity, i_{ROSA} is APD ROSA total noise current, which is given by:

$$i_{\text{ROSA}} = \sqrt{i_{APDshot}^2 + i_{TIA}^2}$$

Here, i_{TIA} is TIA input referred RMS noise; $i_{APDshot}$ is APD shot noise, which is given by:

$$i_{\text{APDshot}} = \sqrt{2q(I_{\text{dark}} + I_{\text{photo}})FM^2B}$$

Here, *q* is electron charge, I_{dark} is dark current (@gain=1), I_{photo} is average photo current (@gain=1), *M* is APD gain, *B* is APD bandwidth, *F* is excess noise factor. The excess noise factor is related to APD gain (M) and ionization coefficient ratio (k) as following equation:

$$F = kM + (2 - 1/M) \cdot (1 - k)$$

Theoretical calculation of 25G APD sensitivity

Si based APD has much lower k value (<0.2), which is the fundamental reason that Ge/Si APD can perform ultra high performance at high data rate. Following table lists the calculation results of different 25G APD performance:

Parameter at 25°C	Ge/Si APD (now)	Ge/Si APD (improved TIA)
BER	1.00E-03	1.00E-03
Q factor	3.09	3.09
Extinction ratio (dB)	8	8
Dark current @M=1 (nA)	60	60
Responsivity @M=1 (A/W)	0.7	0.7
lonization coefficient ratio @M=12	0.13*	0.13*
Bandwidth @M=12 (GHz)	22	22
25G TIA input RMS noise (µA)	2	1.4
APD shot noise (µA)	1.83	1.65
Receiver total RF noise (µA)	2.71	2.16
25G AOP Sensitivity (dBm)	-28.6	-29.6

*Only calculation data.

- Advantages of 25G APD TO-can ROSA for 100G PON
 - High performance: -28dBm (typical), this performance can be further improved by adopting TIA with lower noise current;
 - Provide similar cost structure to 10G APD ROSA in large volume, smoothly upgrade from 10G PON to 25/100G PON;
 - Suitable for compact package such as BOSA;
 - Reduce Tx power: +2dBm for single channel 25G PON and +4dBm for each channel of 100G PON, which can be realized by current commercial 25G EML;