# 802.3ca PHY Names

Glen Kramer, Broadcom

## 802.3ah PHY Naming

■ 802.3ah 10G-EPON has defined the following PMDs:

|           | OLT PMD (D-Type) ONU PMD (U-Type |                  |  |  |
|-----------|----------------------------------|------------------|--|--|
| Symmetric | 1) 1GBASE-PX10-D                 | 1) 1GBASE-PX10-U |  |  |
|           | 2) 1GBASE-PX20-D                 | 2) 1GBASE-PX20-U |  |  |
|           | 3) 1GBASE-PX30-D                 | 3) 1GBASE-PX30-U |  |  |
|           | 4) 1GBASE-PX40-D                 | 4) 1GBASE-PX40-U |  |  |

### Dissecting a .3ah PHY Name

| 1                | Downstroam and unstroam line rates (rounded)     |  |  |  |  |  |  |
|------------------|--------------------------------------------------|--|--|--|--|--|--|
| G                | Downstream and upstream line rates (rounded).    |  |  |  |  |  |  |
| B<br>A<br>S<br>E | Baseband Signal<br>(Some PHYs use BROAD or PASS) |  |  |  |  |  |  |

\_

| Р      | PON medium                              |
|--------|-----------------------------------------|
| X      | PCS type: <b>X</b> – 8b/10b line coding |
| n<br>n | Power class = {10, 20, 30, 40}          |

\_

D - Downstream-facing PMD (i.e., in the OLT)
U - Upstream-facing PMD (i.e., in the ONU)

### 802.3av PHY Naming

■ 802.3av 10G-EPON has defined the following PMDs:

|                 | OLT PMD (D-Type)    | ONU PMD (U-Type)    |
|-----------------|---------------------|---------------------|
|                 | 1) 10/1GBASE-PRX-D1 | 1) 10/1GBASE-PRX-U1 |
| A over on otrio | 2) 10/1GBASE-PRX-D2 | 2) 10/1GBASE-PRX-U2 |
| Asymmetric      | 3) 10/1GBASE-PRX-D3 | 3) 10/1GBASE-PRX-U3 |
|                 | 4) 10/1GBASE-PRX-D4 | 4) 10/1GBASE-PRX-U4 |
|                 | 1) 10GBASE-PR-D1    | 1) 10GBASE-PR-U1    |
| Sympostria      | 2) 10GBASE-PR-D2    | 2) 10GBASE-PR-U3    |
| Symmetric       | 3) 10GBASE-PR-D3    | 3) 10GBASE-PR-U4    |
|                 | 4) 10GBASE-PR-D4    |                     |

# Dissecting a .3av PHY Name

| 10               | Downstream line rate (rounded).                              |
|------------------|--------------------------------------------------------------|
| [/1]             | Upstream line rate (rounded). Only shown for asymmetric PMDs |
| G                | Gigabit/s rate (in reference to the above numbers)           |
| B<br>A<br>S<br>E | Baseband Signal                                              |

-

|   | Р | PON medium                                                                                     |
|---|---|------------------------------------------------------------------------------------------------|
| I | R | PCS type: <b>X</b> – 8b/10b, <b>R</b> – 64b/66b, <b>RX</b> means <b>R</b> down and <b>X</b> up |

\_

| D | <ul><li>D – Downstream-facing PMD (i.e., in the OLT)</li><li>U – Upstream-facing PMD (i.e., in the ONU)</li></ul> |
|---|-------------------------------------------------------------------------------------------------------------------|
| 1 | Power class = {1, 2, 3, 4}                                                                                        |

# PHY Naming is Flexible

- PHY naming structures in .3ah and .3av were similar, but not identical
  - Power classes in .3ah: PX10-U, PX20-D, etc.
  - Power classes in .3av: PR-U1, PRX-D2, etc.
  - The difference in naming reflects the fact that in .3av a single ONU PMD was paired with two different OLT PMDs to provide two power budgets.

Table 75–3—PMD – power budget mapping for symmetric-rate PR–type power budgets

|         |               | OLT PMDs          |                   |                   |                   |  |  |  |  |
|---------|---------------|-------------------|-------------------|-------------------|-------------------|--|--|--|--|
|         |               | 10GBASE-<br>PR-D1 | 10GBASE-<br>PR-D2 | 10GBASE-<br>PR-D3 | 10GBASE-<br>PR-D4 |  |  |  |  |
| ONU PMD | 10GBASE-PR-U1 | PR10              | PR20              | N/A               | N/A               |  |  |  |  |
|         | 10GBASE-PR-U3 | N/A               | N/A               | PR30              | N/A               |  |  |  |  |
|         | 10GBASE-PR-U4 | N/A               | N/A               | N/A               | PR40              |  |  |  |  |

PHY naming format is not set in stone, but may be adjusted to specific circumstances of each project.

### **PHY Definitions**

☐ In July 2016, we considered several methods to name .3ca PHYs:

| DS<br>Lanes | US<br>Lanes | Method 1     | Method 1 Method 2 |                |
|-------------|-------------|--------------|-------------------|----------------|
| 1           | 1           | 25GBASE-PR   | SS25GBASE-PR      | 25/10GBASE-PR  |
| 2           | 1           | DS25GBASE-PR | DS25GBASE-PR      | 25GBASE-PR     |
| 2           | 2           | D25GBASE-PR  | DD25GBASE-PR      | 50/25GBASE-PR  |
| 4           | 1           | QS25GBASE-PR | QS25GBASE-PR      | 50GBASE-PR     |
| 4           | 2           | QD25GBASE-PR | QD25GBASE-PR      | 100/25GBASE-PR |
| 4           | 4           | Q25GBASE-PR  | QQ25GBASE-PR      | 100/50GBASE-PR |
|             |             |              |                   |                |

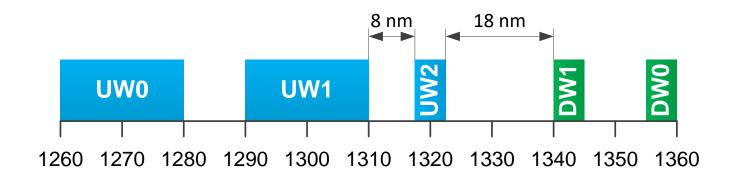
■ Unfortunately, the selected naming does not address .3ca special circumstances (see next slide)

### .3ca special circumstances

.3ca PHY naming should clearly indicate

- 1) Line rate (not the aggregated MAC rate)
  - "25G" for symmetric lanes, or "25G/10G" for asymmetric lanes
  - Leave "50G" designation for potential future PHYs for 50Gb/s over single wavelength
- 2) Number of lanes/wavelengths used in each direction
- 3) Wavelength plan used
  - Option A or Option B?

Not well addressed in the current scheme


#### 4) Power class

- .3av approach is more flexible as it allows the same OLT or ONU PMD to support multiple power budgets
- These PHY names are also used to label optical modules, so they need to be complete, precise, and extensible.

### Wavelength indication

□ The number of lanes used in each direction as well as the wavelength coexistence option (Plan A or B), can be expressed using two digits

| First digit - Downstream |   |   | Sec | ond Digi | t - Upstre | eam |     |     |
|--------------------------|---|---|-----|----------|------------|-----|-----|-----|
| Bit position             | 3 | 2 | 1   | 0        | 3          | 2   | 1   | 0   |
| Mapped to                | - | - | DW1 | DW0      | •          | UW2 | UW1 | UW0 |



□ The bit value is 1 if the corresponding wavelength is supported in the PHY, 0 otherwise.

## Proposed naming .3ca PHY

| 25    | Downstream line rate. This is the rate of individual lane, not the aggregated MAC rate. |
|-------|-----------------------------------------------------------------------------------------|
| [/10] | Upstream line rate. Only shown for asymmetric lanes                                     |
| G     | Gigabit/s rate (in reference to the above numbers)                                      |
| BASE  | Baseband Signal                                                                         |

-

| Р | PON medium                                  |  |  |  |
|---|---------------------------------------------|--|--|--|
| Q | PCS type: How about <b>Q</b> for 256b/257b? |  |  |  |
| k | Power class = {1, 2} or {2, 3}?             |  |  |  |

\_

| D | <ul><li>D – Downstream-facing PMD (i.e., in the OLT)</li><li>U – Upstream-facing PMD (i.e., in the ONU)</li></ul> |
|---|-------------------------------------------------------------------------------------------------------------------|
| m | Bitmap of supported downstream wavelengths = {1, 3}                                                               |
| n | Bitmap of supported upstream wavelengths = {1, 2, 5, 6}                                                           |

# Some naming examples

| One downstream / one upstream wavelength (25G/25G and 25G/10G) |             |                            |  |  |  |
|----------------------------------------------------------------|-------------|----------------------------|--|--|--|
| Wavelength option A                                            | Symmetric:  | 25GBASE-PQ2-D <b>11</b>    |  |  |  |
| (DW1 / UW1)                                                    | Asymmetric: | 25/10GBASE-PQ3-U <b>11</b> |  |  |  |
| Wavelength option B                                            | Symmetric:  | 25GBASE-PQ2-D <b>12</b>    |  |  |  |
| (DW1 / UW2)                                                    | Asymmetric: | 25/10GBASE-PQ3-U <b>12</b> |  |  |  |
| Two downstream / one upstream wavelength (50G/25G and 50G/10G) |             |                            |  |  |  |
| Wavelength option A                                            | Symmetric:  | 25GBASE-PQ2-D <b>31</b>    |  |  |  |
| (DW1+DW2 / UW1)                                                | Asymmetric: | 25/10GBASE-PQ3-U <b>31</b> |  |  |  |
| Wavelength option B                                            | Symmetric:  | 25GBASE-PQ2-D <b>32</b>    |  |  |  |
| (DW1+DW2 / UW2)                                                | Asymmetric: | 25/10GBASE-PQ3-U <b>32</b> |  |  |  |
| Two downstream / two upstream wavelength (50G/50G)             |             |                            |  |  |  |
| Wavelength option A (DW1+DW2 / UW1+UW3)                        | Symmetric:  | 25GBASE-PQ2-D <b>35</b>    |  |  |  |
| Wavelength option B (DW1+DW2 / UW2+UW3)                        | Symmetric:  | 25GBASE-PQ3-U <b>36</b>    |  |  |  |

## Power Budget Names

- Power budgets:
  - PQ20: medium power budget, compatible with PRX20 and PR20 power budgets defined in clause 75.
  - PQ30: high power budget, compatible with PRX30 and PR30 power budgets defined in clause 75.

- The PQ20 power budget is achieved by pairing PO2-D PMD with PO2-U PMD.
- The PQ30 power budget is achieved by pairing PQ3-D PMD with PQ3-U PMD.

### **Exhaustive List of 25G PMDs**

| 25G/10G-EPON       | 25G/25G-EPON    |  |
|--------------------|-----------------|--|
| 25/10GBASE-PQ2-D11 | 25GBASE-PQ2-D11 |  |
| 25/10GBASE-PQ2-U11 | 25GBASE-PQ2-U11 |  |
| 25/10GBASE-PQ3-D11 | 25GBASE-PQ3-D11 |  |
| 25/10GBASE-PQ3-U11 | 25GBASE-PQ3-U11 |  |
| 25/10GBASE-PQ2-D12 | 25GBASE-PQ2-D12 |  |
| 25/10GBASE-PQ2-U12 | 25GBASE-PQ2-U12 |  |
| 25/10GBASE-PQ3-D12 | 25GBASE-PQ3-D12 |  |
| 25/10GBASE-PQ3-U12 | 25GBASE-PQ3-U12 |  |

Number of PMDs in each column:

{OLT, ONU} × {PQ2, PQ3} × {Plan A, Plan B} = 8

### **Exhaustive List of 50G PMDs**

| 50G/10G-EPON       | 50G/25G-EPON    | 50G/50G-EPON    |
|--------------------|-----------------|-----------------|
| 25/10GBASE-PQ2-D31 | 25GBASE-PQ2-D31 | 25GBASE-PQ2-D35 |
| 25/10GBASE-PQ2-U31 | 25GBASE-PQ2-U31 | 25GBASE-PQ2-U35 |
| 25/10GBASE-PQ3-D31 | 25GBASE-PQ3-D31 | 25GBASE-PQ3-D35 |
| 25/10GBASE-PQ3-U31 | 25GBASE-PQ3-U31 | 25GBASE-PQ3-U35 |
| 25/10GBASE-PQ2-D32 | 25GBASE-PQ2-D32 | 25GBASE-PQ2-D36 |
| 25/10GBASE-PQ2-U32 | 25GBASE-PQ2-U32 | 25GBASE-PQ2-U36 |
| 25/10GBASE-PQ3-D32 | 25GBASE-PQ3-D32 | 25GBASE-PQ3-D36 |
| 25/10GBASE-PQ3-U32 | 25GBASE-PQ3-U32 | 25GBASE-PQ3-U36 |

# Thank You