

IEEE 802.3ca NGEPON Task Force: Calculator for Four-Wave Mixing Products

Shawn M. Esser July 2016

Presentation

- What this presentation does <u>not</u> do:
 - Indicate if Four-Wave Mixing is an issue for NGEPON
 - Quantify the impact of Four-Wave Mixing
 - Calculator does not determine the level/intensity of potential FWM products
- What this presentation does do:
 - High-level overview of FWM
 - Show calculator and graphing tool for wavelength locations of potential Partially Degenerate FWM products
 - Summarize of 100GBASE-LR4
 - Show calculator on few example wavelength plans

Four-Wave Mixing Overview

Four-Wave Mixing

- Four-wave mixing (FWM) occurs when two or more frequencies of light propagate through an optical fibre together. Provided a condition known as phase matching is satisfied, light is generated at new frequencies using optical power from the original signals.
- Products from four-wave mixing could be generated on the same wavelength as an optical signal carrying data, thus interfering with the data and increasing errors.

FWM: Partially Degenerate and Non-Degenerate cases

Figure from:

http://www.npl.co.uk/optical-radiation-photonics/optical-comms-and-data/products-and-services/four-wave-mixing-(fwm)

Parameters that impact Four-Wave Mixing

- Wavelength spacing (closer is worse)
- Average Optical Launch Power (higher is worse)
- Fiber distance (longer is worse)
- Chromatic dispersion of the fiber
- Polarization of the light signals

Sources

- "Four-Wave Mixing in an Optical Fiber in the Zero-Dispersion Wavelength Region", Kyo Inoue, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 10, NO. 11, NOVEMBER 1992
- "Four-Wave-Mixing-Induced Crosstalk and Distortion in Subcarrier-Multiplexed Lightwave Links: Theory and Measurement", Mary R. Phillips, *Member, IEEE*, Kuang-Yi Wu, and F. X. Villarruel, *Member,* OSA, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 15, AUGUST 1, 2008
- <u>"Four-Wave Mixing (FWM)</u>", National Physical Laboratory | Hampton Road, Teddington, Middlesex

Calculator for Degenerate Four-Wave Mixing Products

Shawn M. Esser July 2016

Theory of calculator of potential FWM products

- Assumes only partially degenerate FWM
 - FWM products generated from mixing only two optical signals
 - Formulas for location of potential FWM products:
 - FWM₁₁₂ = $2v_1 v_2$
 - FWM₂₂₁ = $2v_2 v_1$
 - Non-degenerate FWM calculations can be added later if needed
- Definition:
 - λ_1 is wavelength range where optical signal 1 with data (v_1) can be located
 - λ_2 is wavelength range where optical signal 2 with data (v_2) can be located

Calculation of wavelength range for FWM products

- Formulas for location of potential FWM products:
 - FWM_{112 min} = $2v_{1 min} v_{2 max}$
 - FWM_{112 max} = $2v_{1 max} v_{2 min}$
 - $FWM_{221 \min} = 2v_{2 \min} v_{1 \max}$
 - $FWM_{221 \text{ max}} = 2v_{2 \text{ max}} v_{1 \text{ min}}$

Output

- Repeat calculation for FWM wavelength ranges for all combinations of two:
 - λ_1 and λ_2
 - λ_1 and λ_3
 - λ_1 and λ_4
 - λ_2 and λ_3
 - λ_2 and λ_4
 - λ_3 and λ_4

Excel Spreadsheet Calculator

X	😂 🖬 🤊 • (° -	3-≫∛∛	NGEPON FWM frequency calculator.slsx - Microsoft Excel											
	123 X	insert Page L	Calibri	* 18 * A		Developer	Wrap Text	Number	×			Norma		Bai
P	aste Values Cut	Copy Format	BIUY	m . l da . A		de de 13	Merce & Center +	5 - 16 -	·	Conditional	Format	Calcula	tion	C IS
	• Darte	Painter				Allenment		Number		Formatting	as Table -			
	E27	- (n	£ -85	onc	12	Angritterit	· 2	Number						
	A		-65 C	D	E	F	G	н	1	1		к		L
	Input								22	222	22	נעע	2	2
1	Wavelengths	Minimum	Maximum						M M	~~~	M M	N N N	N.	₹
2	US λ0	1294.53	1296.59						8 8	113	110	22 33 1	2 23	332
3	US $\lambda 1$	1299.02	1301.09					1260						-
4	US $\lambda 2$	1303.54	1305.63											-
-	115.33	1308.09	1310.19											-
6	00/15	2000.00	2010.10											
7								1270						
9														
	Results				EWME	Product								
10					Wavelength Range									
	Econorda	vit Channel	v2 Channel	Mixing Title	Minimum	Mavimun	2	1200		_				-
	rormona		115.3.1	EWM001	1288.04	1294 1	17	1280 ¥ 1290						-
12	(mu) ;	115 λ0	115 λ2	EWM002	1283.62	1289	71							
14			115 \ 3	FWM003	1205.02	1285	99							-
10	WX 7		115 22	FWM112	1292 /8	1205.2	5							-
10	۲۲.		115 33	EW/M113	1292.40	1200.0	16							_
10			116 73		1200.04	1202 1								-
1/					1201.00	1305.	10	ngt			US $\lambda 0$			-
18	Ē				1210 56	1216 0	2	1300						-
19	× ÷				1210.00	1220.2	2				US λ1			
20	- v1		0372		1206.00	1212 3	2.5							
21	FWI				1215 17	1221	с Т				US λ2			-
22	5	116 7 2	03 V2	E/V/V1552	1210 56	1216.0).J							
23	0.6211	03 1/2	0372	I WIVIJJJZ	1204 52	1206 1	.0	1310			<u>US λ3</u>			
24					1294.53	1290.5	20	-						-
25					1299.02	1205.0	-2						-	-
26					1200.00	1305.0	0	-						
27	05 A3				1308.09	1310.1	19	1320	L			_		
29														
30														-
32														
33 34								1000						-
35								1330						

Examples with FWM Product calculator

FWM Product Calculator: 100GBASE-LR4 Wavelength Plan

Wavelength Range for Potential FWM Product

FWM Product Calculator: TDM 2.0 Upstream

Wavelength Range for Potential FWM Product

Interference with US λ

FWM Product Calculator: WDM 2.1 Upstream

Wavelength Range for Potential FWM Product

Interference with US λ

