

NG-EPON Fragmentation

Open Discussion

Don't forget our CFI:
We Steal
We Fight

What is needed to fragment?

- Definition of min fragment size
 - FEC CW has been suggested
 - This might change depending on final FEC decision.
- Control signal from MPCP+ to control:
 - Burst start
 - Frame start
 - Fragment end
 - Fragment start
 - Frame end
 - Burst end
- Indication to receiver of each of the above

Min fragment size

- Things to consider during FEC selection if it is also related to fragmentation
 - How small (granular) is the FEC data size?
 - How well does the FEC data size match the shortened 64B/66B line code size?

Steal from Preemption

- Ctrl Signal: MM_CTL.request
 - Two values
 - Hold
 - Release

Excerpt from Fig 99-3

Control

- Invent new signal to control fragmentation similar to MM_CTRL.request
- EF_CTRL.request (EPON Fragment)
 - Determines transmit enable/disable
 - Determines Lane use 1, 2, 3, 4
 - Ex. 4b bit mapped signal
 - 0b0000 = tx disable if transmitting;

fragment & stop transmission

transmit data

if DATA.request = 0/1;

- Obxxx1 = tx enable lane 1
- Obxx1x = tx enable lane 2
- Obx1xx = tx enable lane 3
- Oblxxx = tx enable lane 4

Control

(added 7/14)

- EF_CTRL.request (EPON Fragment)
 - Determines transmit enable/disable
 - Determines Lane use 1, 2, 3, 4
 - Transition from 0⇒1 "Insert Fragment Start"
 - Transition from $1 \Rightarrow 0$ "Insert Fragment Terminate"
 - Change in lane usage always signaled by 0b0000
 - Obxxx1 = Frag enable lane 1 -
 - Obxx1x = Frag enable lane 2
 - Obx1xx = Frag enable lane 3
 - Oblxxx = Frag enable lane 4

_ if DATA.request = 0/1; transmit fragment

0b0000 = Frag disable – if transmitting insert Fragment Terminate, cease transmission if duration > 8 bytes (length of Fragment Terminate marker)

What else can we Steal?

- Current Preamble defines
 - Burst start
 - Frame start
 - Can we modify it to also indicate Fragment start?

- Preemption fragments a frame
 - Replaces SFD to indicate:
 - New frame, fragment end, fragment start
- Preemption defines mCRC (see 99.3.6)
 - Marks end of a fragment
 - FCS XORed with 0x0000FFFF
- Frame Check Sequence defines Frame End

Steal from Preemption

- SMD (replaces SFD)
 - Frame start
 - Fragment start

mPacket type	Notation	Frame count	Value
verify packet	SMD-V	_	0x07
respond packet	SMD-R	_	0x19
express packet	SMD-E	_	0xD5
preemptable packet start	SMD-S0	0	0xE6
	SMD-S1	1	0x4C
	SMD-S2	2	0x7F
	SMD-S3	3	0xB3
continuation fragment	SMD-C0	0	0x61
	SMD-C1	1	0x52
	SMD-C2	2	0x9E
	SMD-C3	3	0x2A

Table 99-1-SMD values

Burst start
 Frame start
 Fragment end
 Fragment start
 Frame end
 Burst end

Redefined Preamble

- Redefine SLD to include:
 - Frame Start
 - Fragment Start
- Burst always begins with Frame Start or Fragment Start

Alternative

- Rather than try to reuse existing preamble add new one
- Add MII control code to indicate Fragment Start/Terminate
- Include SMD like field to indicate
 - Fragment # (1-4) in N (1-4) Lanes
 - Identifies fragment order for this transmission pattern
 - Any lane can be first, no order or inter lane phase relationship required
- Terminate & Start new fragment whenever a new transmission pattern starts (i.e, add/remove a lane from the burst)

Alternative

(added 7/14)

- /Fs/ New control code to signal fragment start/stop over MII
- SFM Start Fragment Marker
 - Indicates Fragment **f** of transmission in **n** Lanes
 - Ex. for a transmission that occupies all 4 lanes where fragment start order by lane is lane 2, 4, 3, 1
 SFM Lane 1 = 4 of 4
 SFM Lane 2 = 1 or 4
 SFM Lane 3 = 3 of 4 and
 - SFM Lane 4 = 2 of 4
 - Need total of 16 values

/Fs/ (tbd)	0x55	SFM (tbd)	0x55
0x55	M LLID		CRC8

• Use a similar format for fragment Terminate marker

Endings

- Fragments end with mCRC
- Frames end with FCS
- Bursts end with mCRC or FCS

Burst start
Frame start
Fragment end
Fragment start
Frame end
Burst end

We Fight

- Current thinking has been entire frame is sent to a single lane
 - This made sense without fragmentation
 - Aligning bursts was difficult & potentially wasteful of transmission capacity
- Should we reconsider striping frames across lanes?
 - Bursts from all ONUs easily aligned with fragmentation
 - Truly achieves 100Gb/s transmission
 - Eliminates frame reordering issues

Other thoughts?

- In a multi-lane mixed capability network (mix of 25G, 50G & 100G ONUs) how would fragmenting avoid loss of capacity due to gaps between bursts?
- In a multi-lane mixed capability network how could fragmenting allow an ONU that is bursting on x lanes expand its transmission to x+m (ex go from 2 lane transmission to 4 lane transmission) smoothly?

