# Wavelength "Plan D" O-band upstream, C-band downstream

### John Johnson

September 11, 2016



### Contents

- Motivation
- Wavelength "Plan D" proposal
- Optics configurations
- Power budget analysis
- OLT configurations
- Conclusions



### Wavelength plan inventory

### Wavelength Plan Inventory as of 7/27/16

|        | Α              | В            | С                | D     | E     | F  | G |
|--------|----------------|--------------|------------------|-------|-------|----|---|
| ds0    | 0              | 0            | 0                | S/C/L | 0     | 0  |   |
| ds1    | 0              | 0            | S/C/L            | S/C/L | S/C/L | L  |   |
| ds2    | 0              | 0            | S/C/L            | S/C/L | S/C/L | L  |   |
| ds3    | 0              | 0            | S/C/L            | S/C/L | S/C/L | L  |   |
| ds4    | none           | O or<br>none | S/C/L<br>or none | none  | none  | L  |   |
| us0    | 0              | 0            | 0                | 0     | 0     | 0  |   |
| us1    | 0              | 0            | S/C/L            | 0     | 0     | С  |   |
| us2    | 0              | 0            | S/C/L            | 0     | 0 0   |    |   |
| us3    | 0              | 0            | S/C/L            | 0     | 0     | С  |   |
| us4    | none           | O or<br>none | S/C/L<br>or none | none  | none  | С  |   |
| author | JJ+FE+YG<br>#1 | EH #1        | EH#2             | 11    | DL    | ED |   |

This contribution

kramer 3ca 5 0716.pdf



### **Pros and Cons of fiber transmission bands**

|     | O-Band                                                                                                                                                                                                         | S-Band                                                                                                                                                                                 | C-Band                                                                                                                                                                                                        | L-Band                                                                                                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRO | <ul> <li>Lowest fiber dispersion -<br/>no DCM for 20km PMDs*</li> <li>Existing cooled 100G-<br/>LR4 lasers and EMLs</li> <li>Existing high power<br/>uncooled 25G lasers</li> </ul>                            | <ul> <li>Low fiber insertion loss</li> <li>Moderate fiber dispersion     <ul> <li>no DCM for 10km PMDs</li> </ul> </li> <li>Open fiber spectrum - no coexistence objectives</li> </ul> | <ul> <li>Low fiber insertion loss</li> <li>Moderate fiber dispersion <ul> <li>no DCM for 10km PMDs</li> </ul> </li> <li>High power booster <ul> <li>EDFAs</li> </ul> </li> <li>Low-NF preamp EDFAs</li> </ul> | <ul> <li>Low fiber insertion loss</li> <li>High power booster<br/>EDFAs</li> <li>Low-NF preamp EDFAs</li> </ul>                                                                           |
| CON | <ul> <li>High fiber insertion loss</li> <li>Limited fiber spectrum –<br/>10G WDM coexistence<br/>and zero dispersion zone</li> <li>SOA preamp has high NF</li> <li>SOA booster has limited<br/>Psat</li> </ul> | <ul> <li>DCM required for 20km<br/>PMDs</li> <li>No existing 25G sources</li> <li>SOA preamp has high NF</li> <li>SOA booster has limited<br/>Psat</li> </ul>                          | <ul> <li>DCM required for 20km<br/>PMDs</li> <li>10G WDM coexistence<br/>prevents use of 1560-<br/>1600nm</li> </ul>                                                                                          | <ul> <li>High fiber dispersion -<br/>DCM required for all<br/>PMDs</li> <li>Limited fiber spectrum –<br/>10G WDM coexistence<br/>and OTDR band</li> <li>Lower laser efficiency</li> </ul> |

\* Assuming NRZ modulation format.



### Wavelength Plan D advantages

- The wide US-DS gap in EPON and 10G-EPON is a key enabler of low-cost focusedbeam BOSA construction. NG-EPON plans with all channels in O-band suffer from much narrower US-DS gap, increasing BOSA cost by ~1.3X not including 25G parts (liu\_3ca\_2\_0516)
  - Diplexers must be implemented with collimated beam optics
  - Order of magnitude tighter filter and assembly tolerances
  - Even entry-level 25/10G and 25/25G ONUs must pay this price
  - Plan D retains the proven low-cost diplexer technology enabled by splitting US and DS into separate bands.
- Using O-band for US has the advantages of low-dispersion 25Gb/s NRZ transmission using high-power cooled 25G DMLs for low-cost ONUs.
  - Plan D retains the proven advantage of low-cost, high-power DML-based ONUs.
- The advantages of using O-band for OLT TX are low dispersion and the existence of 25G EMLs for 100G-LR4 optics, but these are small.
  - Nearly all spans are <10km (migeulez\_3ca\_1a\_0516) so the low dispersion advantage only applies to a small fraction of networks.
  - 10km NRZ or EDB transmission in C-band is possible without dispersion compensating fiber (DCF) see harstead\_3ca\_3\_0916.
  - High-power 10G EMLs exist for C/L-band and can be easily adapted for 25G.
- Other advantages of C-band include reduced fiber loss and the availability of highpower booster EDFAs to enable relaxed ONU receiver specs.



### **Proposed Wavelength Plan D**



|  | EC | DFA | Bai | nd |  |  | DS-10G<br>DS0<br>DS1<br>DS2<br>DS3 |
|--|----|-----|-----|----|--|--|------------------------------------|
|  |    |     |     |    |  |  |                                    |

|     | Center Freq<br>(THz) | Center WL<br>(nm) |
|-----|----------------------|-------------------|
| US0 | 232.40               | 1289.98           |
| US1 | 231.60               | 1294.44           |
| US2 | 230.80               | 1298.93           |
| US3 | 230.00               | 1303.45           |
|     |                      |                   |
| DS0 | 195.600              | 1532.681          |
| DS1 | 194.000              | 1545.322          |
| DS2 | 193.200              | 1551.721          |
| DS3 | 192.400              | 1558.173          |

### Key features of Plan D

- Same US wavelength plan as Plan A: O<sup>-</sup> Band, 800GHz grid, cooled DML TX, no coherent FWM impairment.
- WDM coexistence with 10G-EPON US and DS. TDM US possible for 25G OLT
- DS lanes on 800GHz grid with 1.6THz gap between DS0 and DS1 for relaxed 25G ONU blocking filter (WBF).
- US-DS gap > 200nm enables low-cost focused-beam 45° diplexers
- DS channels in EDFA amplifier band



# Thin film diplexer filters

 The wavelength shift of an interference filter as a function of angle is given by:

$$\lambda(\theta) = \lambda_0 \sqrt{1 - \left(\frac{\sin\theta}{n_2}\right)^2}$$

- A diverging beam contains all angles between 0 and ~asin(NA).
  - The actual filter shape is an integral over all angles weighted by the power in the beam (~Gaussian)
- Typical EPON TO-can has NA = 0.14 (for SM fiber) for the RX and NA ~ 0.05 for the TX beam.
  - RX NA=0.14 gives ±8.0° beam angle and ± 44.8nm shift on reflection.
  - TX NA=0.05 gives ±2.9° beam angle and ±15.8nm shift on transmission.
  - Approximate minimum US-DS gap is the sum of the two cases, 60.6nm.
  - Assembly tolerance of ±0.5° results in additional ±1.4nm.

#### Wavelength shifts for NA=0.14 and 0.05



- This makes the use of focusing beam optics difficult for narrow US-DS guardband.
  - For conservative design using typical TOSA NA, > ~60nm gap is required.
  - Smaller gaps (~40nm?) may be possible with lower NA TOSA, longer BOSA, tighter tolerances, increased coupling loss and higher cost relative to EPON.
- Good topic for future contribution.



## **ONU filters**



### Plan D enables low-cost focused-beam 25/10G and 25/25G ONU BOSAs

#### Diplexer

- Standard 1/10G-EPON 45° diplexer filter
- Compatible with low-cost focusing beam optics
- Same for all ONU generations

### 25G Blocking filter

- Wide 1.6THz spacing between DS0 and DS1
- For ±1nm laser tolerance, guardband > 10nm.
- Compatible with low-cost focusing beam optics (liu\_3ca\_3\_0716)

10G Blocking filter

- G.987.2 defines a 15nm wide guardband for XG-PON1: 1560-1575nm
- DS3 is below 1560nm
- Compatible with low-cost focusing beam optics (liu\_3ca\_3\_0716)



# **OLT filters**



### Plan D enables choice of WDM or TDM coexistence for 25G OLT

### Diplexer

- Standard 1/10G-EPON 45° diplexer filter
- Compatible with lowcost focusing beam optics
- Same for all ONU generations

### 10/25G Blocking filters

- Blocking filters are needed for WDM coexistence.
- Guardband between 1270± 10nm and US0±1nm is 9nm
- Can use focusing beam optics with longer focal length ROSA at slightly higher cost

10/25G TDM option

- 25G OLT can optionally be configured for TDM coexistence
- Simpler TRISA with one ROSA, no WBF's
- Requires 10/25G dualrate burst-mode receiver



### **Transmitter optical power capability**

|                         | (    | Cooled EM | L    | C    | Cooled DM | L    | Ur   | ٨L   | Unit |     |
|-------------------------|------|-----------|------|------|-----------|------|------|------|------|-----|
| Number of wavelengths   | 1    | 2         | 4    | 1    | 2         | 4    | 1    | 2    | 4    |     |
| Extinction ratio        | 8    | 8         | 8    | 6    | 6         | 6    | 5    | 5    | 5    | dB  |
|                         |      |           |      |      |           |      |      |      |      |     |
| AVP, single w/ diplexer | 5.3  | 5.3       | 5.3  | 8.2  | 8.2       | 8.2  | 6.2  | 6.2  | 6.2  | dBm |
| OMA, single w/ diplexer | 6.92 | 6.92      | 6.92 | 8.98 | 8.98      | 8.98 | 6.37 | 6.37 | 6.37 | dBm |
| Mux loss                | 0.0  | 1.0       | 2.5  | 0.0  | 1.0       | 2.5  | 0.0  | 1.0  | 2.5  | dB  |
|                         |      |           |      |      |           |      |      |      |      |     |
| AVP, BOSA               | 5.30 | 4.30      | 2.80 | 8.20 | 7.20      | 5.70 | 6.20 | 5.20 | 3.70 | dBm |
| OMA, BOSA               | 6.92 | 5.92      | 4.42 | 8.98 | 7.98      | 6.48 | 6.37 | 5.37 | 3.87 | dBm |

| AVPmin (dBm) | number | mean | σ   |  |
|--------------|--------|------|-----|--|
| EML          | 6      | 4.5  | 0.8 |  |
| cooled DML   | 8      | 7.0  | 1.2 |  |
| uncooled DML | 6      | 4.7  | 1.5 |  |
| ER (dB)      |        |      |     |  |
| EML          | 6      | 7.5  | 0.8 |  |
| cooled DML   | 8      | 5.3  | 0.9 |  |
| uncooled DML | 6      | 4.7  | 1.0 |  |

When a range was given (maximum 1 dB), the higher value was chosen.

harstead\_3ca\_1a\_0716

- Use vendor TX data of harstead\_3ca\_1a\_0716
  - Vendors were asked to estimate commercial values for output power in a single-channel BOSA configuration including diplexer loss and manufacturing margin
  - Assume mean+1 $\sigma$  level as a view of future capability
  - Assume similar capability in O-band and C-band
- US channels will use cooled DML with ER = 6dB
  - 25G BOSA average output power = 8.2 dBm
  - Assume 100G mux loss = 2.5dB
- DS channels will use cooled EML with ER = 8dB
  - 25G BOSA average output power = 5.3dBm
  - Assume 100G mux loss = 2.5dB



# **Receiver sensitivity capability**

|                           | EML T  | ransmitter, E | R=8dB  | DML T  | ransmitter, E | R=6dB  | Units |
|---------------------------|--------|---------------|--------|--------|---------------|--------|-------|
| Number of wavelengths     | 1      | 2             | 4      | 1      | 2             | 4      |       |
| TX extinction ratio       | 8      | 8             | 8      | 6      | 6             | 6      | dB    |
| Baseline ROSA sensitivity | -28    | -28           | -28    | -28    | -28           | -28    | dBm   |
| Baseline ER               | 9      | 9             | 9      | 9      | 9             | 9      | dB    |
| Baseline OMA              | -26.09 | -26.09        | -26.09 | -26.09 | -26.09        | -26.09 | dBm   |
| APD noise penalty         | 0.00   | 0.00          | 0.00   | 1.00   | 1.00          | 1.00   | dB    |
| ROSA sensitivity          | -28.00 | -28.00        | -28.00 | -27.00 | -27.00        | -27.00 | dBm   |
| ROSA OMA @ TX ER          | -26.38 | -26.38        | -26.38 | -26.22 | -26.22        | -26.22 | dBm   |
|                           |        |               |        |        |               |        |       |
| Diplexer loss             | 1.0    | 1.0           | 1.0    | 1.0    | 1.0           | 1.0    | dB    |
| Blocking filter loss      | 0.5    | 0.0           | 0.0    | 0.5    | 0.0           | 0.0    | dB    |
| Demux loss                | 0.0    | 1.0           | 1.5    | 0.0    | 1.0           | 1.5    | dB    |
|                           |        |               |        |        |               |        |       |
| Total BOSA insertion loss | 1.5    | 2.0           | 2.5    | 1.5    | 2.0           | 2.5    | dB    |
| Additional FEC gain       | 1.0    | 1.0           | 1.0    | 1.0    | 1.0           | 1.0    | dB    |
| Manufacturing margin      | 2.0    | 2.0           | 2.0    | 2.0    | 2.0           | 2.0    | dB    |
|                           |        |               |        |        |               |        |       |
| BOSA sensitivity          | -25.50 | -25.00        | -24.50 | -24.50 | -24.00        | -23.50 | dBm   |
| BOSA OMA                  | -23.88 | -23.38        | -22.88 | -23.72 | -23.22        | -22.72 | dBm   |

- Assume 25G APD has typical AVP sensitivity equal to -28dBm at BER=10<sup>-3</sup> in a simple ROSA package (without diplexer or blocking filter) with TX ER=9dB. Value to be refined as more data becomes available.
- Assume manufacturing margin = 2dB and additional +1dB FEC gain over RS(255,223).
- Combined diplexer and demux loss = 2.5dB for 100G RX
- Assume 1dB excess APD noise penalty for DML with low ER.
  - Note tanaka\_3ca\_1\_0716 showed 2dB OMA penalty between DML ER = 7dB and EML ER=10dB which is larger than expected. It could be due to relative APD noise, TIA noise, eye quality or other factors. More study is needed.



### **Power budget margin analysis**

- Using the estimated transmitter powers and receiver sensitivities, we calculate the power margin for each PMD for the cases of 25G OLT/ONU and 100G OLT/ONU.
- An illustrative PMD with 25dB loss and 10km max span, "PR30S," has been added per miguelez\_3ca\_1a\_0916.
- Spans >10km will need DCF or use EDB line code.
  - In this analysis, a DCF loss of 1.5dB is included for 20km PMDs for illustration of the effect of DCF on the power budget.
- TDP assumptions for 10km span (or equivalent with DCF):
  - O-minus band DML < 1.5dB (tanaka\_3ca\_1\_0716).
  - C-band EML < 2dB (umeda\_3ca\_1\_0316).</p>
- This power budget is only a straw-man analysis to illustrate the particular features of Plan D.
  - Most of the power challenges are common to all wavelength plans.
  - Additional analyses of technical and economic feasibility are needed once the Task Force has made a wavelength plan selection.



### **Power margin analysis – 25G ONU and OLT**

|                      | PR     | 10     | PR     | PR20   |        | 30S    | PR30   |        | PR40   |        |      |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| Parameter            | DOWN   | UP     | Unit |
| Distance             | 10     | 10     | 20     | 20     | 10     | 10     | 20     | 20     | 20     | 20     | km   |
| Split ratio          | 16     | 16     | 16     | 16     | 32     | 32     | 32     | 32     | 64     | 64     |      |
| Insertion loss, min  | 5      | 5      | 10     | 10     | 11     | 11     | 15     | 15     | 18     | 18     | dB   |
| Insertion loss, max  | 20     | 20     | 24     | 24     | 25     | 25     | 29     | 29     | 33     | 33     | dB   |
|                      | Cooled |      |
| Transmitter - 25G    | EML    | DML    |      |
| ER, min              | 8      | 6      | 8      | 6      | 8      | 6      | 8      | 6      | 8      | 6      | dB   |
| AVP, min             | 5.30   | 8.20   | 5.30   | 8.20   | 5.30   | 8.20   | 5.30   | 8.20   | 5.30   | 8.20   | dBm  |
| OMA, min             | 6.92   | 8.98   | 6.92   | 8.98   | 6.92   | 8.98   | 6.92   | 8.98   | 6.92   | 8.98   | dBm  |
| DCF loss             | 0.0    | 0.0    | 1.5    | 0.0    | 0.0    | 0.0    | 1.5    | 0.0    | 1.5    | 0.0    | dB   |
| Rx Stressed OMA, min | -13.08 | -11.02 | -18.58 | -15.02 | -18.08 | -16.02 | -23.58 | -20.02 | -27.58 | -24.02 | dBm  |
| TDP, max             | 2      | 1.5    | 2      | 1.5    | 2      | 1.5    | 2      | 1.5    | 2      | 1.5    | dB   |
| Rx OMA, min          | -15.08 | -12.52 | -20.58 | -16.52 | -20.08 | -17.52 | -25.58 | -21.52 | -29.58 | -25.52 | dBm  |
| Receiver - 25G       |        |        |        |        |        |        |        |        |        |        |      |
| AVP Sensitivity, min | -25.50 | -24.50 | -25.50 | -24.50 | -25.50 | -24.50 | -25.50 | -24.50 | -25.50 | -24.50 | dBm  |
| OMA Sensitivity, min | -23.88 | -23.72 | -23.88 | -23.72 | -23.88 | -23.72 | -23.88 | -23.72 | -23.88 | -23.72 | dBm  |
| Margin: 25G - 25G    | 8.80   | 11.20  | 3.30   | 7.20   | 3.80   | 6.20   | -1.70  | 2.20   | -5.70  | -1.80  | dB   |

- > +1dB 0 ± 1dB < -1dB
- PR10, PR20 and PR30S have positive margin no amplification required.
- PR30 DS margin is negative so will require booster amplification such as EML with integrated SOA.
- PR40 needs amplification for DS and US.



## **Power margin analysis – 100G ONU and OLT**

|                      | PR     | 10     | PR     | PR20   |        | 30S    | PR30   |        | PR40   |        |      |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| Parameter            | DOWN   | UP     | Unit |
| Distance             | 10     | 10     | 20     | 20     | 10     | 10     | 20     | 20     | 20     | 20     | km   |
| Split ratio          | 16     | 16     | 16     | 16     | 32     | 32     | 32     | 32     | 64     | 64     |      |
| Insertion loss, min  | 5      | 5      | 10     | 10     | 11     | 11     | 15     | 15     | 18     | 18     | dB   |
| Insertion loss, max  | 20     | 20     | 24     | 24     | 25     | 25     | 29     | 29     | 33     | 33     | dB   |
|                      | Cooled |      |
| Transmitter - 100G   | EML    | DML    |      |
| ER, min              | 8      | 6      | 8      | 6      | 8      | 6      | 8      | 6      | 8      | 6      | dB   |
| AVP, min             | 2.80   | 5.70   | 2.80   | 5.70   | 2.80   | 5.70   | 2.80   | 5.70   | 2.80   | 5.70   | dBm  |
| OMA, min             | 4.42   | 6.48   | 4.42   | 6.48   | 4.42   | 6.48   | 4.42   | 6.48   | 4.42   | 6.48   | dBm  |
| DCF loss             | 0.0    | 0.0    | 1.5    | 0.0    | 0.0    | 0.0    | 1.5    | 0.0    | 1.5    | 0.0    | dB   |
| Rx Stressed OMA, min | -15.58 | -13.52 | -21.08 | -17.52 | -20.58 | -18.52 | -26.08 | -22.52 | -30.08 | -26.52 | dBm  |
| TDP, max             | 2      | 1.5    | 2      | 1.5    | 2      | 1.5    | 2      | 1.5    | 2      | 1.5    | dB   |
| Rx OMA, min          | -17.58 | -15.02 | -23.08 | -19.02 | -22.58 | -20.02 | -28.08 | -24.02 | -32.08 | -28.02 | dBm  |
| Receiver - 100G      |        |        |        |        |        |        |        |        |        |        |      |
| AVP Sensitivity, min | -24.50 | -23.50 | -24.50 | -23.50 | -24.50 | -23.50 | -24.50 | -23.50 | -24.50 | -23.50 | dBm  |
| OMA Sensitivity, min | -22.88 | -22.72 | -22.88 | -22.72 | -22.88 | -22.72 | -22.88 | -22.72 | -22.88 | -22.72 | dBm  |
| Margin: 100G - 100G  | 5.30   | 7.70   | -0.20  | 3.70   | 0.30   | 2.70   | -5.20  | -1.30  | -9.20  | -5.30  | dB   |

> +1dB 0 ± 1dB < -1dB

- PR10 has positive margin no amplification required.
- PR20 and PR30S have slightly negative DS margin slightly higher TX power or a booster amplifier will be needed.
- PR30 and PR40 have negative margin DS and US needs booster amplification for DS and pre-amplification for US.
- The need for OA for 29dB loss budget with 100G optics is independent of wavelength plan. Plan D has the advantage of being able to use EDFA for OLT booster.



# Summary of power margin analysis

|                     | PR   | 10    | PR    | 20   | PR3  | 30S  | PR    | 30    | PR    | 40    |      |
|---------------------|------|-------|-------|------|------|------|-------|-------|-------|-------|------|
| Parameter           | DOWN | UP    | DOWN  | UP   | DOWN | UP   | DOWN  | UP    | DOWN  | UP    | Unit |
| Distance            | 10   | 10    | 20    | 20   | 10   | 10   | 20    | 20    | 20    | 20    | km   |
| Split ratio         | 16   | 16    | 16    | 16   | 32   | 32   | 32    | 32    | 64    | 64    |      |
| Insertion loss, min | 5    | 5     | 10    | 10   | 11   | 11   | 15    | 15    | 18    | 18    | dB   |
| Insertion loss, max | 20   | 20    | 24    | 24   | 25   | 25   | 29    | 29    | 33    | 33    | dB   |
| 25G OLT - 25G ONU   | 8.80 | 11.20 | 3.30  | 7.20 | 3.80 | 6.20 | -1.70 | 2.20  | -5.70 | -1.80 | dB   |
| 100G OLT - 100G ONU | 5.30 | 7.70  | -0.20 | 3.70 | 0.30 | 2.70 | -5.20 | -1.30 | -9.20 | -5.30 | dB   |



- In all cases DS has less margin due to lower EML TX output power.
- Prefer all 25G-EPON systems to be without external OA.
  - For PR30 without DCF just need +0.2dB DS0 TX power, which is a reasonable stretch.
  - For PR30 >10km with DCF need EML+SOA for DS0 TX. This is only one lane, so may still be able to
    integrate in the module.
- Per harstead\_3ca\_1a\_0516, 5dB mux+demux loss forces the use of amplification for 100G-EPON over PR30 PMD, regardless of wavelength plan.
- Intermediate (50G) and asymmetric bit rate deployments (100/25G) will fall somewhere between the two cases shown.
- For all NG-EPON generations and wavelength plans PR40 is not possible without OA.



# **25G OLT configurations**

Separate 10/10G and 25/25G OLT BOSAs



WDM Coexisting 25/10G Quad OSA

### TDM Coexisting 25/10G TRISA



- Three possible 25G OLT configurations depending on deployment scenario
  - Separate 10/10G and 25/25G OLTs with simple BOSA optics and external diplexer (no support for 25/10G ONUs)
  - Combined 10/25G OLT with Quad OSA optics (more complex optics, supports 25/10G ONUs)
  - Combined 10/25G OLT with TRISA optics with dual-rate RX for TDM coexistence (simpler optics, but more complex TIA).
- TDM coexistence has the advantage of support for 25/10G ONUs and simplifier TRISA optics without WBFs
  - Can't afford a sensitivity penalty for dual-rate TIA



# 10/100G OLT with optional DCF/OAs





### Conclusions

- All O-band wavelength plans are attractive mainly because of the low fiber dispersion near the zero dispersion window.
  - In reality, only the lower half of O-band which allows the use of cooled DMLs for the ONU has significant value and should be retained for upstream.
  - The positive dispersion in the upper half of O-band requires higher cost EML transmitters same as in S/C/L-band.
- Putting US and DS in O-band comes at a significant cost by forcing the use of expensive collimated beam optics in every ONU at every stage of deployment.
- By putting downstream lanes in C-band, focusing beam optics can be used enabling the same ONU diplexer cost structure as 1/10G-EPON.
  - This choice drives huge cost savings for all deployment generations and PMDs.
- The main disadvantage of using C-band, the need for DCF for spans >10km, is a much smaller overall cost since only a small fraction of networks will need it.
- The need for optical amplifiers for 100G-EPON to overcome mux/demux losses for PR30 is a constant, independent of the wavelength plan.
  - The availability of high power booster EDFAs in C-band is an additional advantage for C-band over Oband, where SOA booster output power is limited.
- Other than OA technology, all of the advantages above apply to using S-band downstream as well. This may be desirable for NG-PON2 coexistence.



# **Thank You!**

