

25G/50G/100G EPON wavelength plan B

Ed Harstead, member Fixed Networks CTO Dora van Veen, Vincent Houtsma, Bell Labs

Supporters:

Shawn Esser, Finisar Dekun Liu, Huawei Naoki Suzuki, Mitsubishi

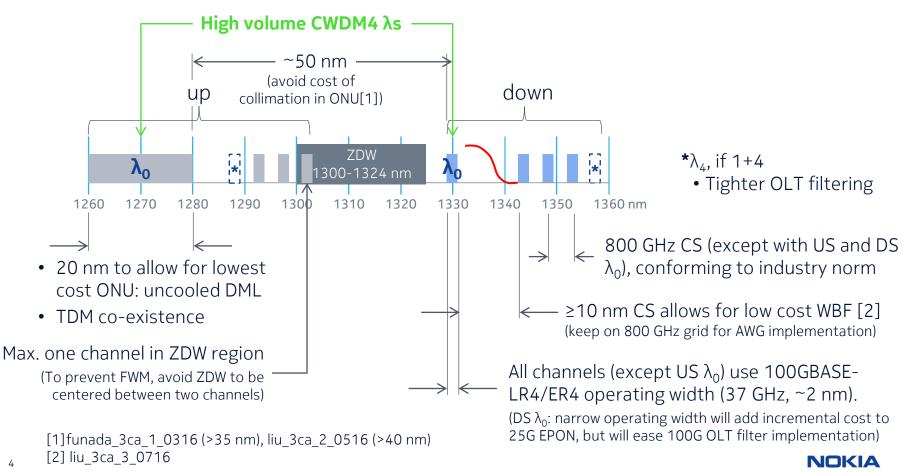
Sept. 2016

Straw Poll # 1	
The 802.3ca standard sha	ll specify wavelengths for 25G, 50G, and 100G systems in O-Band.
Yes:	15
No:	0
Not enough information:	9

Those voting "Not enough information" in Straw Poll #1 suggested the following information is needed to make a decision.

- 1) Exact (detailed) wavelength plan including support for coexistence (TDM or WDM).
- 2) Full cost comparison between all O-Band and other solutions.
- 3) More consensuses in presentations.
- 4) Dispersion compensation analysis of all solutions.
- Full power budget for full 100G system (including mux losses) and what is needed to close the gap.

All-O-band: Plan B

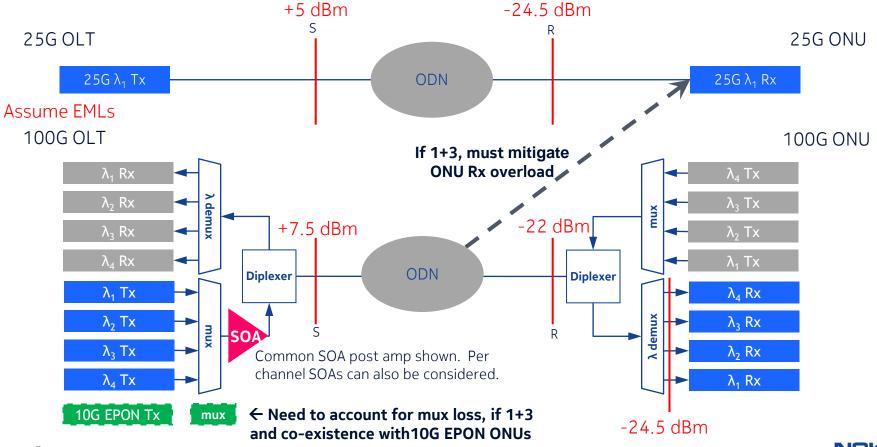

Wavelength Plan Inventory as of 7/27/16

	Α	В	С	D	E	F	G
ds0	0	0	0	S/C/L	0	0	
ds1	0	0	S/C/L	S/C/L	S/C/L	L	
ds2	0	0	S/C/L	S/C/L	S/C/L	L	
ds3	0	0	S/C/L	S/C/L	S/C/L	L	
ds4	none	O or none	S/C/L or none	none	none	L	
us0	0	0	0	0	0	0	
us1	0	0	S/C/L	0	0	С	
us2	0	0	S/C/L	0	0	С	
us3	0	0	S/C/L	0	0	С	
us4	none	O or none	S/C/L or none	none	none	С	
author	JJ+FE+YG #1	EH #1	EH#2	11	DL	ED	

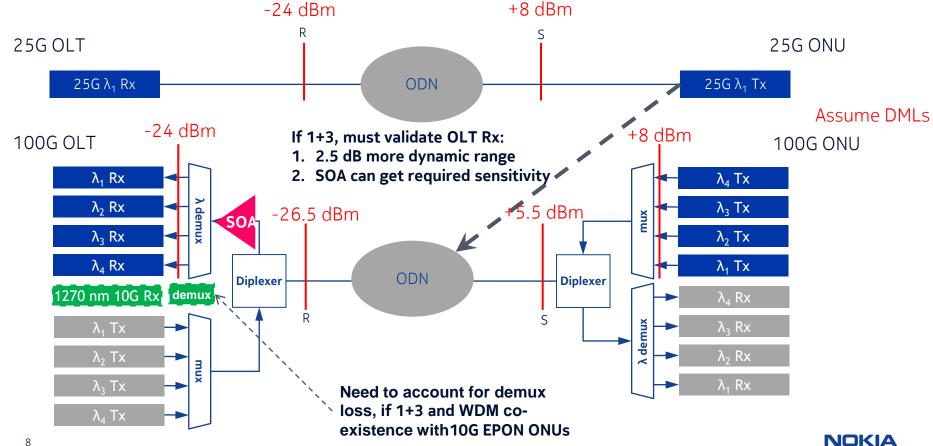
kramer_3ca_5_0716.pdf

Plan B: All wavelengths in the O-band, but accommodating a low cost 25G EPON

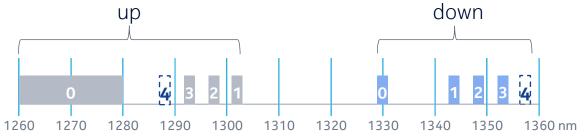
Power budget


Assumptions

- 100G mux and demux nominally add ~2.5 dB insertion loss each.
- A cost-optimized 100G EPON puts all optical amplification in the OLT
- Downstream TDP = 1.5 dB, upstream TDP = 3 dB (same as 10G EPON, but to be confirmed)
- PR30 loss budget
- There will be 1 dB FEC coding improvement in the downstream relative to 10G EPON (to be confirmed)
- 1 dB improvement in PR30 APD receiver performance vs. 10G EPON + 5 dB penalty for 25G (per NeoPhotonics yield analysis, in <u>harstead 3ca 1a 0516.pdf</u>.)
- Launch power values from harstead 3ca 2a 0716.pdf


	AVP _{min} (dBm)	ER (dB)
EML	5	8
cooled DML	8	6

Downstream optical levels (per harstead_3ca_1_0916).


Upstream optical levels (per harstead_3ca_1_0916).

Center frequencies/wavelengths

Plan B: Center frequencies/wavelengths

Wavelength (nm)	Frequency (THz)	1+3 Plan	1+4 Plan
1260-1280		US 0	US 0
1288.32	232.7		US 4
1292.77	231.9	US 3	US 3
1297.24	231.1	US 2	US 2
1301.75	230.3	US 1	US 1
1328.87	225.6	DS 0	DS 0
1343.16	223.2	DS 1	DS 1
1347.99	222.4	DS 2	DS 2
1352.85	221.6	DS 3	DS 3
1357.76	220.8		DS 4

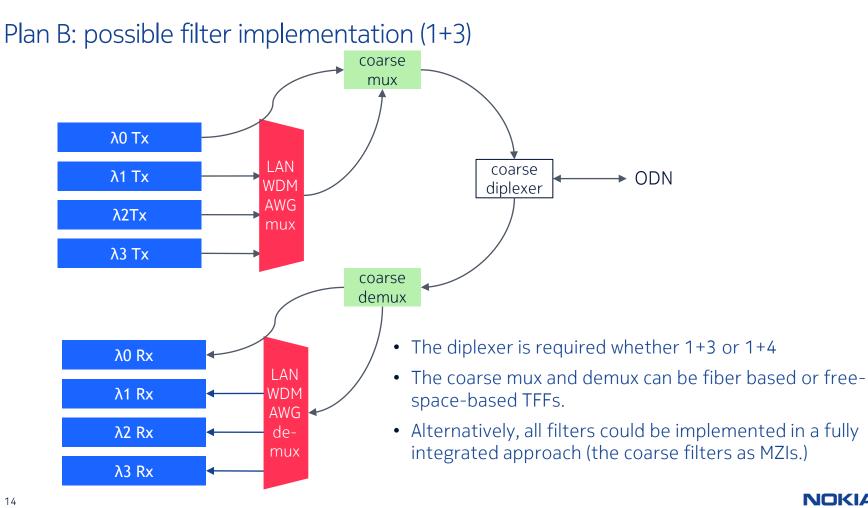
Guidelines:

- Other than US λ_0 , use frequencies on DWDM grid
- Upstream: put λ_1 and λ_2 at longest wavelengths to ease cost of 50G filtering.
- Downstream: put λ_1 and λ_2 at shortest wavelengths to minimize 50G TDP

Adjustments can be made for finer optimization

100G OLT SOA pre-amp implementation, if 1+3

Plan B: 100G OLT SOA pre-amp implementation, if 1+3


Input from Tomoyuki Funada, Sumitomo:

- 1. SOA bandwidth:
 - SOA gain and P_{sat} have wavelength dependency, therefore Plan B might need two pre-amp SOAs in order to cover all 4 upstream wavelengths 1260-1300. This will require more investigation.
- 2. Wider operating wavelength range of upstream $\lambda 0$
 - $\lambda 0$ has a 20 nm wide wavelength operating range. This will require a 20 nm pass band allowing 20 nm of SOA ASE noise. This will limit the OLT $\lambda 0$ receiver sensitivity improvement that can be obtained with the SOA preamp*.

*maybe to only 1-2 dB better than APD

NOKIA