

Upstream FEC Selection (rev 3a)

Mark Laubach, Yang Han, Shaohua Yang, Ryan Hyrth, Glen Kramer

23 January 2018 Geneva, Switzerland

P802.3ca January 2018 interim meeting

Introduction

- The LDPC(18493,15677) [13x75x256] 0.848 FEC code was adopted for the downstream at the last meeting in Orlando. See motion #6 from <u>unapproved minutes</u>.
 - This included a parity code matrix and interleaver as presented in <u>laubach_3ca_1a_1117</u>.
- Selection of an upstream FEC method remains.

LDPC Performance Review

	Length	Rate	Non- Zero Blocks	NECG ¹ (dB) (optical gain)		M Gates	Latency ²	
				AWGN	Gilbert Burst	Encoder + Decoder (approximately)	(µsec) (includes single buffer)	Reference
LDPC	(18493,15677) [13x75x256]	0.848	290	2.6 (1.82-2.34)	1.76 ³ (1.23 - 1.58) 2.03 ⁴⁷ (1.41 - 1.82)		E 2.77 + D 2.95 = 5.72	laubach_3ca_1a_1117
			286	2.63 (1.84 - 2.37)	$\begin{array}{r} 1.87 \ ^{3} \\ (1.31 - 1.68) \\ 2.12 \ ^{4} \\ (1.48 - 1.91) \\ \hline 1.85 \ ^{5} \\ (1.3 - 1.67) \\ 2.11 \ ^{6} \\ (1.48 - 1.9) \end{array}$	1.65 to 1.8	E 2.61 + D 2.92 = 5.53	laubach_3ca_1_0118

¹ Electrical gain over RS(255,223) of 7.1 dB. Optical gain is 0.7 to 0.9 * NECG.

² Capped at 15 iterations

³ With interleaver, precoder off

⁴ With interleaver, precoder on

⁵ No interleaver, precoder off

⁶ No interleaver, precoder on

⁷ Omitted from laubach_3ca_1a_1117

Rev 3a updated values.

Where are we to date?

- LDPC FEC has demonstrated the highest optical gain
 - RS configurations presented fall short by > 1 dB compared to LDPC.
- In <u>laubach_3ca_1_0317</u>, "20 Gb/s Aggregate Throughput", Glen Kramer's analysis showed with a single codeword size of ~2K bytes and shortened last codeword (information "user" word) that 20 Gb/s is attainable.
 - Concluded ~2KB codeword size with 84.77% rate works.
 - No presentation to date has provided alternative detailed analysis for shortened last codeword.
 - bonk <u>3ca 1 1118</u> did look at shortening vs. code rate, but shortened both LDPC user and parity.
- Several presentations have examined CDR/SERDES locking at 25 Gb/s
 - Some have stated locking not to be an issue. Others state more analysis is needed.
 - No studies to date use EPON sync header + burst delimiter format(s) adapted for 25 Gb/s.
 - Any FEC would be impacted if CDR/SERDES isn't sufficiently settled by end of the burst delimiter.

Downstream for Upstream

- The adopted downstream LDPC code is very suitable for use in the upstream:
 - Provides the highest net effective coding gain.
 - Meets the 2KB size and rate examined for upstream.
 - Has been studied for AWGN and Gilbert Burst (with and without precoding) and includes a hardware friendly structured Omega256 interleaver.
 - Having the same LDPC code retains the 10G-EPON property of local loopback.
 - Accelerates separate OLT and ONU development, debugging, etc.
 - Facilitates using the same PCS and line coding for downstream and upstream.
 - One-way latency same as downstream.
 - Consistent with 256b/257b line coding proposal in kramer_3ca_1_0118 (if adopted by TF).
 - Consistent with 257-bit burst delimiter study presented in kramer_3ca_2_0118.

Proposed Motion

• The upstream shall use the same LDPC method, parity code matrix, and interleaver as adopted for the downstream.

Thank you

BROADCOM[®] connecting everything ®