

25G/50G/100G EPON wavelength plan C

Ed Harstead, member Fixed Networks CTO Dora van Veen, Vincent Houtsma, Bell Labs

Supporters:

John Johnson, Broadcom

Sept. 2016

Straw Poll # 1				
The 802.3ca standard shall specify wavelengths for 25G, 50G, and 100G systems in O-Band.				
Yes:	15			
No:	0			
Not enough information:	9			

Those voting "Not enough information" in Straw Poll #1 suggested the following information is needed to make a decision.

- 1) Exact (detailed) wavelength plan including support for coexistence (TDM or WDM).
- 2) Full cost comparison between all O-Band and other solutions.
- 3) More consensuses in presentations.
- 4) Dispersion compensation analysis of all solutions.
- Full power budget for full 100G system (including mux losses) and what is needed to close the gap.

Only 25G in O-band: Plan C

Wavelength Plan Inventory as of 7/27/16

	Α	В	С	D	E	F	G
ds0	0	0	0	S/C/L	0	0	
ds1	0	0	S/C/L	S/C/L	S/C/L	L	
ds2	0	0	S/C/L	S/C/L	S/C/L	L	
ds3	0	0	S/C/L	S/C/L	S/C/L	L	
ds4	none	O or none	S/C/L or none	none	none	L	
us0	0	0	0	0	0	0	
us1	0	0	S/C/L	0	0	С	
us2	0	0	S/C/L	0	0	С	
us3	0	0	S/C/L	0	0	С	
us4	none	O or none	S/C/L or none	none	none	С	
author	JJ+FE+YG #1	EH #1	EH#2	11	DL	ED	

kramer_3ca_5_0716.pdf

Plan C: high level optical architecture. Focus on 1+4

Step 1: what wavelengths in the S/C/L band for λ_1 , λ_2 , λ_3 , λ_4 ? Step 2: what wavelengths in the O-band for λ_0 ?

λ_1 - λ_4 in the S/C/L band: dispersion tolerance

- 25G dispersion tolerance values based on simulations.
- Experimental data is welcome.

Must design for worst case: NRZ detection

No dispersion compensation required for NRZ detection up to 10 km for wavelengths up to ~1560 nm

NOKIA

Cost-optimized 100G EPON will require an optical pre-amp in the OLT to avoid optical post-amps in the ONU

- EDFAs have lower noise figure than SOAs.
- An EDFA preamp *might* be required to avoid post-amps in 100G ONUs, for PR30
 - There are EDFAs that support burst mode
- The need for EDFA might be even stronger for PR40
- EDFA is not an option if 100G wavelengths are in the O-band (Plans A, B, D, E)

Choosing wavelengths for λ_1 - λ_4

Wavelength plan for $\lambda_1 - \lambda_4$. Assume 800 GHz CS

NOKIA

Choosing wavelengths for λ_0

Plan C allows for increased flexibility to optimize 25G EPON

- Cost-optimization
- TDM or WDM co-existence with 10G EPON
- Co-existence with gen 1 PONs

*may support CTC objective: "Promote IEEE and ITU-T coordination" including "Shared Unified wavelength plan" zhang 3ca 1b 0716.pdf NOKIA Dispersion compensation

Dispersion compensation fiber (DCF) for PONs > 10 km

If >10 km PONs must be supported, DCF can be deployed in 1+4 (not in 1+3 if DS/US λ_0 is in the O-band)

Should be able to support any differential distance.

Characteristics

- Optical loss: e.g. spec: 1.2 dB (10 km)
- Size: e.g. module 9.2"x9.6"x0.75"
- Cost: low, relative to the cost of the 100G OLT transceiver

DCF deployment

- A DCF is installed at the OLT only for PONs >10 km
- The cost and space impact of DCFs is proportional to the % of PONs of >10 km reach. For most (all?) operators this will be small.
- Or, just create a 10 km spec and make the issue go away (e.g. miguelez 3ca 1a 0516.pdf)

Power budget

Optical assumptions

- 100G mux and demux nominally add ~2.5 dB insertion loss each.
- Cost-optimized 100G EPON puts all optical amplification in the OLT
- Downstream TDP = 1.5 dB, upstream TDP = 3 dB (same as 10G EPON, but to be confirmed)
- PR30 loss budget
- There will be 1 dB FEC coding improvement in downstream relative to 10G EPON (to be confirmed)
- 1 dB improvement in PR30 APD receiver performance vs. 10G EPON + 5 dB penalty for 25G (per NeoPhotonics yield analysis, in <u>harstead 3ca 1a 0516.pdf</u>.)
- Launch power values from <u>harstead 3ca 2a 0716.pdf</u>

	AVP _{min} (dBm)	ER (dB)
EML	5	8
cooled DML	8	6

Downstream optical levels (per harstead_3ca_1_0916).

NOKIA

Upstream optical levels (per harstead_3ca_1_0916).

25 Gb/s dispersion tolerance (simulated)

Noise contributions, laser linewidth and non-linearities were not taken into account in the simulation.

10G PON ONU blocking filter

S: Received power of basic band.

X: Maximum total power of additional services received in the blocking wavelength range.

X/S: In the mask (hatching area) should not cause the XG-PON receiver to fail to meet its sensitivity requirements.

If GE-EPON and GPON co-existence were required for 100G EPON

ONU tolerance to interferers would constrain NG-EPON downstream wavelengths to ≥ 1539 nm.

S Received power of basic band.

X Maximum total power of NGA and video received in the blocking wavelength range.

X/S in the mask (hatching area) should not cause the sensitivity of the basic band receiver to fail to meet the specified limit.

NOTE – $\lambda 3$ value of 1400 (Informative) may be applicable for low-water-peak fibre only.

