Differences exist between documents.
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { New Document: }\end{array}
$$ \& \begin{array}{l}Old Document: \\

han_3ca_2a_0118\end{array}\end{array} $$
\begin{array}{ll}\text { han_3ca_2_0118 }\end{array}
$$\right]\)| 3 pages $(137 \mathrm{~KB})$ | 1/22/2018 10:05:10 PM $(136 \mathrm{~KB})$ |
| :--- | :--- |
| 1/22/2018 10:05:10 PM | |

Used to display results.

Get started: first change is on page 2 .
No pages were deleted

How to read this report

Highlight indicates a change.
Deleted indicates deleted content.
\triangle indicates pages were changed.
\Leftrightarrow indicates pages were moved.

DRAFT

Low Density Parity Check Coding

The bit sequence input for a given code block to channel coding is denoted by $u_{1} \quad u_{2} \quad \ldots \quad u_{K}$, where K is the number of bits to be encoded. The parity check bit sequence produced by FEC Encoder is denoted by $p_{1} \quad p_{2} \quad \ldots \quad p_{M}$, where M is the number of parity check bits. The output of FEC Encoder is denoted by $\mathbf{c}=\left[\begin{array}{llll}c_{1} & c_{2} & \ldots & c_{N}\end{array}\right]=\left[\begin{array}{lllllll}u_{1} & u_{2} & \ldots & u_{K} \mid p_{1} & p_{2} & \ldots & p_{M}\end{array}\right]$, where $N=K+M$ is length of encoder output sequence.

The FEC encoding scheme is shown in Figure x1. The scheme consists of a systematic QCLDPC encoder and a shortening and puncturing mechanism. The parameters of the FEC encoding scheme are:

- the LDPC parity check matrix is a 13-by-75 quasi-cyclic matrix, with circulant size $Z=256$; LDPC user bit length before shortening is $62 \times 256=15,872$, the parity bit length before puncturing is $13 \times 256=3,328$; the codeword length before any shortening and puncturing is 19,200;
- the number of transmitted information bits, K (with maximum user length $K_{\max }=15,677$);
- the number of shortened information bits, $S\left(S_{\min }=195\right)$;
- the number of punctured parity check bits, $P(P=512)$;
- the number of parity-check bits after puncturing, $M(M=3,328-512=2,816)$;
- the number of output bits, N ($N=K+M$, FEC codeword, whose size depends on the burst length pattern to determine shortening length); $N_{\max }=K_{\max }+M=18,493$;
- the code rate, $R=K / N$, defined as the code rate after puncturing and after shortening.

The encoder supports highest code rate $R_{\max }=\frac{K_{\max }}{N_{\max }}=0.8477$. Codes with lower code rates/shorter block length shall be obtained through shortening. The puncturing length and location are fixed for all scenarios.

LDPC Encoder

The full LDPC code is defined by a $(\mathrm{M}+\mathrm{P}) \times(\mathrm{K}+\mathrm{S}+\mathrm{M}+\mathrm{P})=3328 \times 19200$ size parity-check matrix H composed by a 13×75 array of 256×256 sub-matrices $\mathbf{A}_{i, j}$,

$$
\mathbf{H}=\left[\begin{array}{ccc}
\mathbf{A}_{1,1} & \cdots & \mathbf{A}_{1,75} \\
\vdots & \ddots & \vdots \\
\mathbf{A}_{13,1} & \cdots & \mathbf{A}_{13,75}
\end{array}\right]
$$

The sub-matrices $\mathbf{A}_{i, j}$ are either a cyclic shifted version of identity matrix or a zero matrix, and have a size of 256×256. The parity-check matrix can be described in its compact form:

$$
\mathbf{H}_{\boldsymbol{c}}=\left[\begin{array}{ccc}
\mathrm{a}_{1,1} & \cdots & \mathrm{a}_{1,75} \\
\vdots & \ddots & \vdots \\
\mathrm{a}_{13,1} & \cdots & \mathrm{a}_{13,75}
\end{array}\right]
$$

where $\mathrm{a}_{i, j}=-1$ for a zero sub-matrix in position (i, j), and a positive integer number $\mathrm{a}_{i, j}$ defines the number of right column shifts of the identity matrix.

Note to Editor (to be removed prior to publication): If the parity matrix font size is too small for publication, suggest following what Clause 55/55A did by having a zip file made downloadable from http://standards.ieee.org/downloads/802.3/ containing han_3ca_1_0118.txt. Also an option, create larger tables like as was done in Clause 101.

The compact form of parity-check matrix $\mathbf{H}_{\boldsymbol{c}}$ shown below:


```
250 231-1 5-1 80 105-1-1 135-1 1-1-1-1-1-1-1-1-1 39-1-1-1 164-1-1-1-1-1-1-1 112-1 237-1 143-1-1-1-150-1-1-1-1-1-1-1-10-1-1-1-1-1-1-1 71-1 130-1-1 163-1175-1 125-1-1-1-146
```



```
-1 223 232-1-1 0-1-1 0-1 0 109-1 57-1-1-1-1 0-1-1-1 0-1 0-1-1-10-1-1-1-1-1-1-1-1-1-1 205-1-1-1 0-1-1-1-1 0-10-1-1 0-1 0-1-10-1-1-1-1-1-1-1-1-1 0-1-1 00 212 209
0-1-1 0 166-1-1 214-1-1 215-1 0-1-1 -1 0-1-1 0-1-1 183 142 -1 -1-1-1 22 178-10-1-1 00 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-10-1-1-1-1-1 30 0-1-1-1-1-1 0-1-1-1-1-1-1-1 112 29
-1 00-10-1-10-10-10-10-10-10-1-10-1-10-1-1-1-1-10-1-1-1-1-1-1-1-10000-1-1-1-100-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-10-10-1-10-1-1-10
-1-1227 181-1-1 173-1 156-1-1 126 27-1-1-1-1-1-1-1-1 0-1-1-1-1-1-1-1 118 186-1-1 0-1-1-1-1-1-1-1-1-1-1 43-1-1-1-1-1 27-1-1-1-1-1-1 0-1-1-1 104 0 15-1-1 29 21-1-1 60-1 24 145 24
-1 43-1 38-1 48-1 217-1-1 159 48-1-1-1-1-1-1-1-1-1 125 220-1 185 104 10-1 21-1-1-1-1-1-1-1 87-1-1-1-1-1-1-1-1-1 060-1-1-1-1-1-1-1-1-1 54-1-1 108-1 183 29-1 40-1-1-1-1-1-1-162 160
123-1 191-1-1-1 145 18-1 247-1-1 101-1-1-1 124-1-1 149 17-1-1-1-1-1-1 17-1-118 238 250-1-1-1-1-1 232-1-1-1-1 213-1 155-1 168 239-1-1 76 221-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 19 225
```

Figure x2 is an image of the matrix $\mathbf{H}_{\boldsymbol{c}}$ to show non-zero locations, and parity/user bit assignments corresponding to parity check matrix columns. A dot represents a non-zero 256×256 circulant in the $13 \times 75 \mathrm{H}$ matrix.

Figure x2 - Parity Check Matrix Image

A fixed amount (512 bits) and locations of the parities are punctured on the full LDPC matrix; a minimum amount (195 bits) and locations of the user bits are shortened on the full LDPC matrix. The effective maximum code rate 0.8477 .

Transmitted User Bits

Transmitted Parity Bits

Figure x3 - Codeword Information/Parity Location assignments

Encoding Operation

The encoding process shall be as follows:

1) A group of K information bits $\mathbf{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{K}\end{array}\right]$ are collected and copied to the output of the encoder to form a block of systematic code bits. They are also the input to the zero-padding block (see Figure x1).
2) A total of S zero bits are appended at the end of \mathbf{u} to form the full-length information bit vector $\mathbf{u}^{*}=[\mathbf{u} \mid 0, \ldots, 0]$, which is then sent to the information bit interleaver module, which in turn produces the bit-interleaved sequence $\widehat{\mathbf{u}}=\pi_{\mathbf{i n f o}}\left(\mathbf{u}^{*}\right)$.
3) The interleaved LDPC information bits $\widehat{\mathbf{u}}$ is sent to the QC-LDPC parity encoder, and used to compute parity-check bits $\widehat{\mathbf{p}}$ with the parity-check matrix \mathbf{H}, which is then interleaved to get $\boldsymbol{p}^{*}=\boldsymbol{\pi}_{\text {parity }}(\widehat{\mathbf{p}})$.
4) $M+P$ parity bits $\boldsymbol{p}^{*}=\left[\begin{array}{llllll}p_{1} & p_{2} & \ldots & p_{M} \mid p_{M+1} & \ldots & p_{M+P}\end{array}\right]$ are sent to the puncturing block.
5) The last P bits of \boldsymbol{p}^{*} are truncated, and M parity bits $\boldsymbol{p}=\left[\begin{array}{llll}p_{1} & p_{2} & \ldots & p_{M}\end{array}\right]$ are being copied to the output of the encoder to form the parity check bits.
6) At the encoder output $\mathbf{c}=[\mathbf{u} \mid \boldsymbol{p}]=\left[\begin{array}{lllllll}u_{1} & u_{2} & \ldots & u_{K} \mid p_{1} & p_{2} & \ldots & p_{M}\end{array}\right]$, such that $[\widehat{\mathbf{u}} \mid \widehat{\boldsymbol{p}}] \mathbf{H}^{\boldsymbol{T}}=\mathbf{0}$.
