Summary 1/22/2018 10:05:12 PM

Differences exist between documents.

New Document:	Old Document:
<u>han_3ca_2a_0118</u>	<u>han_3ca_2_0118</u>
3 pages (137 KB)	3 pages (136 KB)
1/22/2018 10:05:10 PM	1/22/2018 10:05:10 PM
Used to display results.	

Get started: first change is on page 2.

No pages were deleted

How to read this report

Highlight indicates a change.
Deleted indicates deleted content.
indicates pages were changed.
indicates pages were moved.

DRAFT

Low Density Parity Check Coding

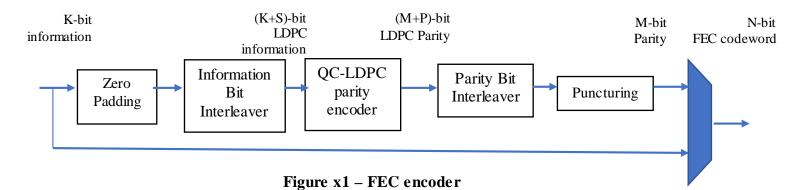
The bit sequence input for a given code block to channel coding is denoted by $u_1 \quad u_2 \quad \dots \quad u_K$, where *K* is the number of bits to be encoded. The parity check bit sequence produced by FEC Encoder is denoted by $p_1 \quad p_2 \quad \dots \quad p_M$, where *M* is the number of parity check bits. The output of FEC Encoder is denoted by $\mathbf{c} = [c_1 \quad c_2 \quad \dots \quad c_N] = [u_1 \quad u_2 \quad \dots \quad u_K | p_1 \quad p_2 \quad \dots \quad p_M]$, where N = K + M is length of encoder output sequence.

The FEC encoding scheme is shown in Figure x1. The scheme consists of a systematic QC-LDPC encoder and a shortening and puncturing mechanism. The parameters of the FEC encoding scheme are:

- the LDPC parity check matrix is a 13-by-75 quasi-cyclic matrix, with circulant size Z = 256; LDPC user bit length before shortening is $62 \times 256 = 15,872$, the parity bit length before puncturing is $13 \times 256 = 3,328$; the codeword length before any shortening and puncturing is 19,200;

- the number of transmitted information bits, K (with maximum user length $K_{\text{max}} = 15,677$);

- the number of shortened information bits, $S(S_{\min} = 195)$;


- the number of punctured parity check bits, P(P = 512);

- the number of parity-check bits after puncturing, M (M = 3,328 - 512 = 2,816);

- the number of output bits, N (N = K + M), FEC codeword, whose size depends on the burst length pattern to determine shortening length); $N_{max} = K_{max} + M = 18,493$;

- the code rate, R = K/N, defined as the code rate after puncturing and after shortening.

The encoder supports highest code rate $R_{\text{max}} = \frac{K_{\text{max}}}{N_{max}} = 0.8477$. Codes with lower code rates/shorter block length shall be obtained through shortening. The puncturing length and location are fixed for all scenarios.

LDPC Encoder

The full LDPC code is defined by a $(M+P)\times(K+S+M+P) = 3328 \times 19200$ size parity-check matrix H composed by a 13×75 array of 256×256 sub-matrices $A_{i,i}$;

$$\mathbf{H} = \begin{bmatrix} \mathbf{A}_{1,1} & \cdots & \mathbf{A}_{1,75} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{13,1} & \cdots & \mathbf{A}_{13,75} \end{bmatrix}$$

The sub-matrices $\mathbf{A}_{i,j}$ are either a cyclic shifted version of identity matrix or a zero matrix, and have a size of 256×256. The parity-check matrix can be described in its compact form:

$$\mathbf{H}_{c} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,75} \\ \vdots & \ddots & \vdots \\ a_{13,1} & \cdots & a_{13,75} \end{bmatrix}$$

where $a_{i,j} = -1$ for a zero sub-matrix in position (i, j), and a positive integer number $a_{i,j}$ defines the number of right column shifts of the identity matrix.

Note to Editor (to be removed prior to publication): If the parity matrix font size is too small for publication, suggest following what Clause 55/55A did by having a zip file made downloadable from <u>http://standards.ieee.org/downloads/802.3/</u> containing han_3ca_1_0118.txt. Also an option, create larger tables like as was done in Clause 101.

The compact form of parity-check matrix H_c shown below:

Figure x2 is an image of the matrix H_c to show non-zero locations, and parity/user bit assignments corresponding to parity check matrix columns. A dot represents a non-zero 256×256 circulant in the 13×75 H matrix.

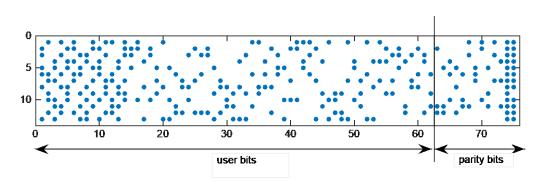


Figure x2 – Parity Check Matrix Image

A fixed amount (512 bits) and locations of the parities are punctured on the full LDPC matrix; a minimum amount (195 bits) and locations of the user bits are shortened on the full LDPC matrix. The effective maximum code rate 0.8477.

Figure x3 – Codeword Information/Parity Location assignments

Encoding Operation

The encoding process shall be as follows:

- 1) A group of *K* information bits $\mathbf{u} = [u_1 \ u_2 \ \dots \ u_K]$ are collected and copied to the output of the encoder to form a block of systematic code bits. They are also the input to the zero-padding block (see Figure x1).
- 2) A total of *S* zero bits are appended at the end of **u** to form the full-length information bit vector $\mathbf{u}^* = [\mathbf{u}|\mathbf{0}, ..., \mathbf{0}]$, which is then sent to the information bit interleaver module, which in turn produces the bit-interleaved sequence $\hat{\mathbf{u}} = \pi_{info}(\mathbf{u}^*)$.
- 3) The interleaved LDPC information bits $\hat{\mathbf{u}}$ is sent to the QC-LDPC parity encoder, and used to compute parity-check bits $\hat{\mathbf{p}}$ with the parity-check matrix **H**, which is then interleaved to get $p^* = \pi_{\text{parity}}(\hat{\mathbf{p}})$.
- 4) M + P parity bits $p^* = [p_1 \quad p_2 \quad \dots \quad p_M \mid p_{M+1} \quad \dots \quad p_{M+P}]$ are sent to the puncturing block.
- 5) The last *P* bits of p^* are truncated, and *M* parity bits $p = [p_1 \ p_2 \ \dots \ p_M]$ are being copied to the output of the encoder to form the parity check bits.
- 6) At the encoder output $\mathbf{c} = [\mathbf{u} | \mathbf{p}] = [u_1 \ u_2 \ \dots \ u_K | p_1 \ p_2 \ \dots \ p_M]$, such that $[\widehat{\mathbf{u}} | \widehat{\mathbf{p}}] \mathbf{H}^T = \mathbf{0}$.