142.2.4 FEC encoder

The Nx25G-EPON PCS shall encode the transmitted data stream using LDPC(16952,14392) FEC, defined in 142.2.4. <u>Annex 142A gives an example of LDPC(16952,14392)</u> FEC <u>encoding and interleavingencoder</u> test vectors are provided in Annex 142A.

142.2.4.1 Low Density Parity Check coding

The bit sequence input for a given code block to the FEC Encoder is denoted by $u_1, u_2, ..., u_K$, where K is the number of bits to be encoded. The parity check bit sequence produced by FEC Encoder is denoted by $p_1, p_2, ..., p_M$, where M is the number of parity check bits. The output of the FEC Encoder is denoted by $e = [e_1, e_2, ..., e_N] = [u_1, u_2, ..., u_K + p_1, p_2, ..., p_M]$, where N = K + M is the length of the encoder output sequence.

The FEC <u>encoding scheme encoder</u> is shown in Figure 142–6. The <u>scheme encoder</u> consists of a systematic QC-LDPC <u>encoder and encoding engine followed by</u> a shortening and puncturing <u>mechanismmechanism</u> and the addition of a 10-bit delimiter. The parameters of the FEC <u>encoding scheme encoder</u> are:

- the LDPC parity check matrix is a 12-by-69 quasiarray of circulant sub-cyclic matrix, matrices (see 142.2.4.2) with circulant size Z = 256; LDPC user bit length before shortening is $57 \times 256 = 14592$, the parity bit length before puncturing is $12 \times 256 = 3072$; the codeword length before any shortening and puncturing is 17664;
- the number of transmitted information bits, K (with maximum user length $K_{max} = 14392$);
- the number of shortened information bits, S ($S_{min}S = 20014592 K$);
- the number of punctured parity check bits, P(P = 512);
- the number of parity-check bits after puncturing, M (M = $3072 \frac{512P}{2} = 2560$);
- the number length of the FEC encoder output bits, + delimiter is N (where N = K + M, FEC codeword, whose size depends on the burst length pattern to determine shortening length); + 10-bits and N_{max} = K_{max} + M + 10-bits = 1695216962;
- the code rate, R = K / N, defined as the code rate after puncturing and after shortening.

The encoder supports highest code rate $R_{max} = K_{max} / N_{max} = 0.849848$. Codes with lower code rates/shorter block length shall be obtained through shortening. The puncturing length and location are fixed for all scenarios.

The LDPC encoder as shown in Figure 142–6 places the M-bit FEC parity bits into the *ParityStagingBuffer* for use by the PCS Transmit Process (see 142.2.5.4.3) and the FecParity() function. The buffer is comprised of 2560 bits of calculated parity along with the 10-bit codeword delimiter (FEC_CW_DELIM). This results in the parity bits assigned to *ParityStagingBuffer*<2559:0> and the 10-bit FEC_CW_DELIM value to *ParityStagingBuffer*<2569:2560>. The transmission order starts with bit 0 and ends with bit 2569.

142.2.4.2 LDPC encoder

142.2.4.3 LDPC encoding engine

The full LDPC code is defined by a $(M + P) \times (K + S + M + P) = 3072 \times 17664$ size parity-check matrix H composed by a 12×69 array of 256×256 sub-matrices $A_{i,j}$:

$$H = \begin{bmatrix} A_{1,1} & \dots & A_{1,69} \\ \dots & \dots & \dots \\ A_{12,1} & \dots & A_{12,69} \end{bmatrix}$$

The sub-matrices $A_{i,j}$ are either a cyclic shifted version of identity matrix or a zero matrix, and have a size of 256 × 256. The parity-check matrix can be described in its compact form:

$$H_C = \begin{bmatrix} a_{1,1} & \dots & a_{1,69} \\ \dots & \dots & \dots \\ a_{12,1} & \dots & a_{12,69} \end{bmatrix}$$

Copyright © 2018 IEEE. All rights reserved. This is an unapproved IEEE Standards draft, subject to change. where $a_{i,j} = -1$ for a zero sub-matrix in position (i,j), and a positive integer number $a_{i,j}$ defines the number of right column shifts of the identity matrix.

The compact form of parity-check matrix H_c is shown in Table 142–1.

C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	C12
80	-1	-1	105	-1	-1	137	-1	-1	0	209	53
-1	0	91	-1	170	46	-1	118	208	-1	-1	-1
-1	-1	-1	-1	250	-1	104	15	0	-1	252	93
60	0	74	87	-1	37	-1	-1	-1	123	-1	-1
169	-1	-1	-1	-1	-1	238	93	0	-1	39	216
-1	0	237	43	195	49	-1	-1	-1	41	-1	-1
11	-1	202	-1	139	150	-1	-1	0	191	-1	-1
-1	0	-1	165	-1	-1	228	228	-1	-1	159	57
143	-1	-1	-1	-1	65	-1	-1	0	211	69	9
-1	0	201	180	135	-1	225	78	-1	-1	-1	-1
-1	-1	136	-1	-1	-1	247	-1	0	217	37	130
222	0	-1	80	92	177	-1	16	-1	-1	-1	-1
-1	-1	178	227	-1	144	-1	0	-1	243	134	-1
59	0	-1	-1	147	-1	191	-1	251	-1	-1	130
-1	-1	239	221	-1	70	-1	48	0	97	-1	-1
218	0	-1	-1	1	-1	177	-1	-1	-1	201	238
-1	-1	183	77	-1	95	-1	0	-1	252	49	-1
-1	0	-1	-1	-1	-1	255	-1	44	-1	-1	-1
178	0	-1	-1	-1	-1	-1	-1	123	-1	-1	-1
-1	-1	217	0	-1	221	-1	-1	-1	-1	-1	-1
-1	0	-1	-1	13	-1	-1	62	-1	-1	-1	-1
-1	-1	232	-1	-1	-1	-1	-1	-1	0	104	-1
-1	-1	-1	-1	-1	-1	192	0	-1	-1	-1	144
-1	-1	-1	-1	98	192	-1	-1	0	-1	-1	-1
105	0	-1	16	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	169	-1	-1	128	-1	0	-1	-1	-1	-1
-1	-1	-1	-1	142	-1	-1	-1	0	-1	129	-1
19	0	-1	-1	-1	-1	51	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	214	-1	-1	-1	0	-1	162

Table 142–1—Compact form of parity-check matrix H_c

 $\label{eq:copyright} Copyright @ 2018 \mbox{ IEEE}. \mbox{ All rights reserved}. \\ This is an unapproved \mbox{ IEEE} Standards draft, subject to change. \\$

C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12
-1	-1	-1	252	-1	-1	-1	-1	-1	-1	157	0
126	-1	-1	-1	225	-1	-1	0	-1	-1	-1	-1
-1	-1	-1	96	-1	-1	-1	-1	0	41	-1	-1
-1	0	129	-1	-1	-1	195	-1	-1	-1	-1	-1
-1	-1	60	0	-1	-1	-1	-1	-1	-1	222	-1
211	-1	-1	-1	-1	51	0	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	0	29	-1	175
-1	0	-1	-1	23	-1	-1	112	-1	-1	-1	-1
-1	-1	-1	-1	108	-1	172	-1	-1	0	-1	-1
-1	-1	-1	17	-1	100	-1	0	-1	-1	-1	-1
-1	0	19	-1	-1	-1	-1	-1	-1	-1	-1	145
247	-1	76	-1	-1	-1	-1	-1	0	-1	-1	-1
-1	-1	-1	-1	-1	19	-1	-1	-1	-1	139	0
255	-1	-1	-1	-1	-1	-1	-1	-1	0	39	-1
-1	0	-1	-1	-1	-1	219	-1	153	-1	-1	-1
-1	-1	-1	219	0	235	-1	-1	-1	-1	-1	-1
85	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	36
-1	-1	77	-1	0	-1	236	-1	-1	-1	-1	-1
-1	0	-1	198	-1	-1	-1	-1	-1	193	-1	-1
-1	-1	-1	165	-1	-1	-1	-1	0	-1	203	-1
-1	-1	-1	-1	-1	-1	136	0	-1	145	-1	-1
-1	-1	2	-1	-1	-1	-1	0	-1	-1	94	-1
-1	-1	-1	-1	135	-1	-1	-1	0	-1	-1	91
246	0	-1	-1	-1	4	-1	-1	-1	-1	-1	-1
94	-1	-1	36	-1	-1	0	-1	-1	-1	-1	-1
-1	-1	101	-1	-1	-1	-1	-1	-1	0	-1	22
-1	-1	-1	-1	-1	251	-1	22	0	-1	-1	-1
-1	0	-1	-1	121	-1	-1	-1	-1	-1	194	-1
-1	-1	217	-1	0	-1	159	-1	-1	-1	-1	-1
-1	-1	-1	171	-1	109	-1	-1	-1	-1	-1	0
242	-1	-1	-1	-1	-1	-1	-1	-1	-1	3	0
-1	0	-1	-1	-1	-1	10	-1	-1	-1	-1	212
-1	-1	48	-1	-1	-1	-1	0	-1	140	-1	-1

Table 142–1—Compact form	n of parity-check matrix H _c	(continued)
--------------------------	---	-------------

Copyright © 2018 IEEE. All rights reserved. This is an unapproved IEEE Standards draft, subject to change.

C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	C12
-1	-1	-1	-1	-1	-1	-1	0	-1	46	43	-1
-1	-1	-1	228	0	-1	-1	-1	-1	-1	153	-1
129	-1	-1	-1	-1	140	-1	-1	-1	-1	-1	0
-1	-1	-1	-1	-1	-1	5	-1	0	58	-1	-1
19	-1	-1	-1	46	-1	-1	-1	0	-1	-1	-1
58	0	172	39	242	193	25	120	16	202	207	69
27	-1	42	234	228	241	94	192	0	215	109	88

NOTE—A CSV file containing the entire parity-check matrix Hc show in Table 142-1 is available at: {URL}

Editor's Note (to be removed prior to publication): Link to the CSV file containing matrix shown in Table 142–1 to be added here prior to publication.

A fixed amount (512 bits) and locations of the parities are punctured on the full LDPC matrix; a minimum amount (200 bits) and locations of the user bits are shortened on the full LDPC matrix. The effective maximum code rate 0.849. The codeword information/parity location assignment is shown in Figure 142–2.

142.2.4.4 Encoding operation

The Encoding Process encoding process shall be as follows:

- A group of K information bits $u = [u_1, u_2, ..., u_K]$ are collected and copied to the output of the encoder to form a block of systematic code bits. They are also the input to the zero-padding block (see Figure 142–2)block.
- A total of S zero <u>padding</u> bits are appended at the end of u to form the full-length information bit block $u^* = [u \mid 0, ..., 0]$, which is then sent to the information bit <u>de</u>-interleaver module, which in turn produces the bit-<u>de</u>-interleaved sequence $u^* = \pi^{-1}_{info}(u^*)$.
- The <u>de-</u>interleaved LDPC information bits u" is sent to the QC-LDPC <u>parity encoderEncoding</u> Engine, and used to compute parity-check bits p" with the parity-check matrix H, which is then interleaved to get $p^* = \pi_{parity}(p^*)$.
- M + P parity bits $p^* = [p_1, p_2, ..., p_M | p_{M+1}, ..., p_{M+P}]$ are sent to the puncturing block.
- The last P bits of p^* are truncated, and M parity bits $p = [p_1, p_2, ..., p_M]$ are being copied to the output of the encoder to form the parity check bits.

—	At the encoder output The FEC codeword without delimiter is $c = [u p] = [u_1, u_2,, u_K p_1, p_2,, u_K p_1, p_1,, u_K p_1, p_1,, u$
	$p_{\rm M}$], such that $[\underline{u''}]_{\rm m}p'']_{\rm m}H^{\rm T} = 0.$

- <u>A 10-bit delimiter (FEC_CW_DELIM) is appended producing an output FEC codeword of bit length</u> N = K + M + 10 bits.