

25G upstream power budget

Ed Harstead, Nokia March 2018

Supporters

- Barry Colella, Source Photonics
- Mark Heimbuch, Source Photonics
- John Johnson, Broadcom
- David Li, Hisense
- Hiroshi Miura, Mitsubishi
- Naoki Suzuki, Mitsubishi
- Daisuke Umeda, Sumitomo Electric

Scope: 25G EPON, upstream direction, PR30 loss budget

Methodology

- Derive the 25G OLT receiver sensitivity specification from state-of-the-art 10G PON OLT receivers
 - 10G PON optics have been/are being tested by the market to meet requirements for low cost
 - The specifications already include margins for burst mode, yield, temperature and end-of-life.
- Deriving a specification from measurements of 25G APDs in continuous mode is problematic:
 - Small sample size measurements do not include the margins, in particular burst mode penalty
- Propose to use the same derivation method as for 25G ONU sensitivity in harstead_3ca_4_0117
- As a baseline, propose: **-29 dBm** @10 Gb/s, 1e-3 BER and ER=6. This is state-of-the-art for InP APDs.
 - Aggressive but achievable 10G specification to relax 25G ONU launch power, while
 - Having a viable path to an APD implementation (with no SOA preamp).
- Relax 25G DML ER from 6 dB to 5 dB per harstead_3ca_3_0917

10G PR30 OLT module sensitivity measurements in liu_3ca_1_1117

10G PR30 OLT	module se	nsitivity me	easuremen	ts in liu_3ca_1_111	7							
mean			-31.39			-30.15			-31.30			-29.57
sigma			0.54			0.51			0.50			0.48
mean+3sigma			-29.77			-28.61			-29.80			-28.14
	vendor	temp	sensitivity	vendor	temp	sensitivity	vendor	temp	sensitivity	vendor	temp	sensitivity
	A	25	-31.26	В	25	-29.61	A	65	-30.95	В	65	-29.32
	A	25	-31.29	В	25	-30.16	А	65	-30.88	В	65	-29.87
	A	25	-31.46	В	25	-31.03	А	65	-31.65	В	65	-30.34
	А	25	-31.26	В	25	-30.32	А	65	-30.95	В	65	-29.53
	A	25	-30.96	В	25	-30.1	А	65	-30.95	В	65	-29.51
	A	25	-31.64	В	25	-29.48	А	65	-31.53	В	65	-28.79
	A	25	-32.69	В	25	-30.35	A	65	-32.18	В	65	-29.66
	A	25	-30.62									
	A	25	-31.45									
	A	25	-31.22									
temp = 65 C												
	Vendor A	Vendor B										
mean	-31.30	-29.57										
sigma	0.50	0.48										
mean+3sigma	-29.80	-28.14										

C-temp mean+3 sigma is about -29 dBm. Does not include aging margin.

Derivation of 25G PR30 OLT receiver sensitivity specification Not including FEC improvement

*Similar derivation method as for 25G ONU sensitivity in harstead_3ca_4_0117

Additional sources of risk/loss

- There may be some risk associated with translating 10G APD performance to 25G APD performance.
- There will be somewhat greater risk of meeting spec at I-temp (required for remote OLTs) vs. C-temp.
 - The APD sensitivity difference is about 0.3 dB from 10G experience (D. Umeda).
- There will likely be a market need for combo modules.
 - Additional filtering can add 0.5-1 dB insertion loss (D. Umeda)
- To mitigate the above, propose to add an extra 0.5 dB of margin: -22.9 dBm @1e-3 BER, ER= 5 dB.
- Further risk mitigation:
 - Ge/Si APD per pan_3ca_1_0317.
 - SOA preamp (last resort, hopefully only necessary for initial deployments, at most)

TDP and FEC improvement

- For upstream 25G DML TDP, assume 2 dB per tanaka_3ca_1_1116
- 25G US FEC improvement = 1.5 dB, per powell_3ca_1a_0118 (via laubach_3ca_1b_0118: GE model, with interleaver, precoder on, minimum value).

*BER = 1e-2 nominally

NOKIA

Check proposed specification for 25G ONU DML

• Per vendor survey harstead_3ca_3_0917

cooled DML	number	mean	σ	
AVPmin (dBm)	6	6.5	0.5	
ER (dB)	6	5.2	1.0	

uncooled DML	number	mean	σ	
AVPmin (dBm)	5	4.7	1.0	
ER (dB)	5	4.6	0.7	

 $ONU AVP_{min} = 6.6 dBm, ER=5 dB is confirmed to be feasible for cooled DMLs.$

ONU AVP_{min} = 6.6 dBm, ER=5 dB may be feasible during the life of 25G PON with future improvements in technology.

Notes:

- "number" = number of responses
- "mean" = the average value of the responses. When a vendor gave a range for a value, the midpoint of that range was used.
- "σ" = the standard deviation of the responses.

Motion

The 25G-EPON PR30 specifications proposed in harstead_3ca_2_0318 page 6

- 25G OLT receiver sensitivity: -24.4 dBm at BER= 1e-2 and ER=5 dB
- 25G ONU transmitter: AVPmin = 6.6 dBm and ER min = 5 dB shall be adopted.
- Moved: Ed Harstead
- Seconded:
- For:
- Against:
- Abstain:

Example: Converting to OMA and OMA minus TDP (John Johnson)

NOKIA

Backup

Reason to avoid a 25G specification that will never be realizable with APD

- The 100G Ethernet ER4 (40 km) receiver specification was initially based on a PIN+SOA.
- Ever since, they have been working to correct this mistake, with APD-friendly ER4f/ER4lite and now <u>4WDM MSA</u>.
 Chris Cole, Finisar

100G 10km, 20km & 40km 4x25G NRZ WDM Optical Specifications Proposal, Draft 04

Specification	10km WDM4-10 w/ FEC 100G LR4 loss	20km WDM4-20 w/ FEC	40km WDM4-40 w/ FEC	
Rate ± 100 ppm Gb/s	25.78125	25.78125	25.78125	
Reach km (RX type)	10 (PIN)	20 (PIN)	40 (APD)	

- The cost of the SOA+PIN will depend on volumes, and it's now unlikely to have any significant volume from 100G Ethernet. Therefore it is likely to be high cost.
- The SOA+PIN will have significantly higher power dissipation than the APD. This will degrade OLT port density
- Therefore a 25G OLT specification requiring SOA+PIN will be a liability for 25G EPON market success

NOKIA