## **Gain Control of SOA Preamplifier**

Daisuke Umeda Sumitomo Electric Dekun Liu Huawei

## **Supporters**

#### **Motivation**

At the last meeting in Chicago, Motion #9 on the extension of the discovery message was passed.

#### Motion #9

In order to extend OLT burst receiver dynamic range, move to extend the discovery message shown in umeda\_3ca\_1b\_0318.pdf pages 7 and 8 to support ONUs with different RX\_RSSI to be registered in different time slots. Align the table with new bit positions in draft as amended in this meeting.

Moved: Daisuke Umeda Second: Dekun Liu

For: 19 Against: 0 Abstain: 3

Technical (≥ 75%) Motion Passed

■ In order to use RX\_RSSI indicator, we propose to announce OLT Rx thresholds and OLT/ONU transmitter powers from OLT to all ONUs in this contribution.

#### **Table 144-6 Discovery Information Fields**

|                  | GATE MPCPDU discovery information fields |                                                                                                                                                                                                                                                                                         |  |
|------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit              | Flag field                               | Values                                                                                                                                                                                                                                                                                  |  |
| 0                | Reserved                                 | Ignored on Reception                                                                                                                                                                                                                                                                    |  |
| 1                | OLT is 10G upstream capable              | 0 – OLT does not support 10 Gb/s reception<br>1 – OLT supports 10 Gb/s reception                                                                                                                                                                                                        |  |
| 2                | OLT is 25G upstream capable              | 0 – OLT does not support 25 Gb/s reception<br>1 – OLT supports 25 GB/s reception                                                                                                                                                                                                        |  |
| 3-4              | Reserved                                 | Ignored on reception                                                                                                                                                                                                                                                                    |  |
| 5                | OLT is opening 10G discovery window      | 0 - OLT cannot receive 10 Gb/s data in this window 1 - OLT can receive 10 Gb/s data in this window                                                                                                                                                                                      |  |
| 6                | OLT is opening 25G discovery window      | 0 - OLT cannot receive 25 Gb/s data in this window 1 - OLT can receive 25 Gb/s data in this window                                                                                                                                                                                      |  |
| <b>→</b> 7-8     | Reserved                                 | Ignore on Reception                                                                                                                                                                                                                                                                     |  |
| 7-9<br>→ 9-11    | ONU Rx_RSSI indication                   | 000: registration for all ONUs 001: registration for ONUs RSSI < th1 010: registration for ONUs RSSI > th1 100: registration for ONUs RSSI < th0 101: registration for ONUs RSSI > th0 & RSSI < th1 110: registration for RSSI > th1 & RSSI < th2 111: registration for ONUs RSSI > th2 |  |
| 10-15<br>→ 12-15 | Reserved                                 | Ignored on reception                                                                                                                                                                                                                                                                    |  |

- Recommend to leave reserved bits at Bits7-8 for future updates and shift "ONU RSSI indication" to Bits9-11.
- In order to use ONU RSSI indication, ONUs need RSSI thresholds th0-2 information.

$$th_x = TH_x + OLT_Tx - ONU_Tx$$
 (dBm)

TH<sub>x</sub>: OLT Rx threshold (dBm), OLT\_Tx: OLT Tx power (dBm), ONU\_Tx: ONU Tx power (dBm)

#### **Discovery with ONU RSSI Indication**

- 1. OLT announces parameters to calculate ONU RSSI thresholds by **DISCOVERY GATE message or a new MPCPDU.**
- 2. ONU receives the parameters and calculates ONU RSSI thresholds.
- 3. ONU monitors RSSI, compares the RSSI value with ONU Rx thresholds and determines the RSSI class.
- 4. OLT executes dedicated discovery by DISCOVERY GATE message with ONU RSSI Indication.
- 5. ONU responds to the DISCOVERY GATE with matched RSSI Indication.



### **Announcement of TH<sub>x</sub> and OLT/ONU\_Tx Parameters**

OLT announces the following parameters to all ONUs.

| Parameter          | Description                          | Example |
|--------------------|--------------------------------------|---------|
| TH0 <sup>(1)</sup> | OLT Rx threshold 0 (Low)             | -15 dBm |
| TH1 <sup>(1)</sup> | OLT Rx threshold 1 (Middle)          | -12 dBm |
| TH2 <sup>(1)</sup> | OLT Rx threshold 2 (High)            | -9 dBm  |
| OLT_Tx (2)         | OLT transmitter power                | 6 dBm   |
| ONU_Tx10G (3)      | ONU 10G transmitter power            | 6 dBm   |
| ONU_Tx25G (3)      | ONU 25G transmitter power            | 6 dBm   |
| (ONU_Tx50G) (3)    | Reserved (ONU 50G transmitter power) |         |

#### (Note)

(1) OLT announces "OLT Rx thresholds"  $TH_X$  and ONUs calculate "ONU RSSI tresholds"  $th_X$ .

```
th<sub>x</sub> for 10G US ONU: th<sub>x</sub>_10G = TH<sub>x</sub> + OLT_Tx - ONU_Tx10G (dBm) X=0,1,2 th<sub>x</sub> for 25G US ONU: th<sub>x</sub>_25G = TH<sub>x</sub> + OLT_Tx - ONU_Tx25G (dBm) X=0,1,2 th<sub>x</sub> for 50G US ONU: th<sub>x</sub>_50G = TH<sub>x</sub> + OLT_Tx - ONU_Tx50G (dBm) X=0,1,2
```

- (2) A typical, calibrated or TSSI value can be announced as OLT transmitter power.
- (3) Typical values are announced as ONU transmitter powers. ONU Tx power range is about 3dB and typical value is accurate enough.

#### **Calculation of ONU RSSI thresholds**

## 10G US ONU

2. Calculate  $th_{\chi}$  10G (dBm)

 $th_{x}_{10G} = TH_{x} + OLT_{Tx} - ONU_{Tx}_{10G}$ 

#### 1. Announce Parameters

**OLT** 

TH<sub>X</sub> X=0,1,2 OLT\_TX ONU\_Tx10G ONU\_Tx20G ONU\_Tx50G **25G US ONU** 

2. Calculate  $th_{x}$  25G (dBm)

 $th_x_25G = TH_x + OLT_Tx - ONU_Tx25G$ 

 $TH_X$ : OLT receiver thresholds  $th_X$ : ONU RSSI thresholds

**50G US ONU** 

2. Calculate  $th_{x}$  50G (dBm)

 $th_x_50G = TH_x + OLT_Tx - ONU_Tx50G$ 

### **Consideration on Asymmetric Channel Insertion Loss**

In some system tests, asymmetric C.I.L. configurations are needed.



### **Consideration on Asymmetric Channel Insertion Loss**

In some system tests, asymmetric C.I.L. configurations are needed.

Ex1. OLT sensitivity tests US loss > DS loss

 $OLT_Tx$ =  $OLT_Tx_{typ}$  - DL

## Ex2. ONU sensitivity tests DS loss > US loss

OLT announces OLT\_Tx or ONU\_Tx considering the loss difference between US and DS paths.

OLT VOA DS US

**10G US ONU** 

**25G US ONU** 

2. Calculate ONU\_Rx\_TH<sub>x</sub>\_25G (dBm)

$$th_{X}$$
25G =  $TH_{X}$  +  $OLT_{X}$  -  $ONU_{X}$ 25G

=

$$th_{X}$$
 25G =  $TH_{X}$  + (OLT\_ $Tx_{typ}$  - **DL**) - ONU\_ $Tx$ 25G

**50G US ONU** 

# Announcement TH<sub>x</sub> and OLT/ONU\_Tx Parameters by DISCOVERY GATE message

Use 16 Octets on DISCOVERY GATE MPCPDU to announce OLT Rx threshold and OLT/ONU transmitter power information.

- TH<sub> $\chi$ </sub>: OLT Rx thresholds are 16-bit signed two's-complement value, with the LSB equal to 0.1 uW, covering the range of 0 to 6.5535 mW ( $\sim$  -40 to +8.2 dBm)
- OLT\_Tx and ONU\_Tx: OLT/ONU Tx powers are 16-bit signed two's-complement values, with the LSB equal to 0.8 uW, covering the range of 0 to 52.428 mW ( $\sim$  -31 to +17.2 dBm)

| OLT Rx threshold and OLT/ONU Tx power Information fields |           |                                             |           |  |
|----------------------------------------------------------|-----------|---------------------------------------------|-----------|--|
| Octet                                                    | Field     | Value                                       | Unit      |  |
| 0-1                                                      | TH0       | 0 to 6.5535 mW 0.1 (~ -40 to 8.2 dBm) uW    |           |  |
| 2-3                                                      | TH1       |                                             | _         |  |
| 4-5                                                      | TH2       |                                             |           |  |
| 6-7                                                      | OLT_Tx    | 0 to 52.4 mW 0.8<br>(~ -31 to +17.2 dBm) uW |           |  |
| 8-9                                                      | ONU_Tx10G |                                             | 0.8<br>uW |  |
| 10-11                                                    | ONU_Tx25G | ( 51 (5 / 17/12 (5/11))                     |           |  |
| 12-15                                                    | Reserved  | Ignored on reception                        |           |  |

10G US ONU:  $th_{x}$ \_10G =  $TH_{x}$  \* OLT\_Tx / ONU\_Tx10G (mW) 25G US ONU:  $th_{x}$ \_25G =  $TH_{x}$  \* OLT\_Tx / ONU\_Tx25G (mW)



Figure 144-23 - DISCOVERY GATE MPCPDU

# Announcement TH<sub>x</sub> and OLT/ONU\_Tx Parameters by a new MPCPDU message

- Opcode : 0x001a (next available)
- TH $_{\rm X}$ : OLT Rx thresholds are 16-bit signed two's-complement value, with the LSB equal to 0.1 uW, covering the range of 0 to 6.5535 mW ( $\sim$  -40 to +8.2 dBm)
- OLT\_Tx and ONU\_Tx: OLT/ONU Tx powers are 16-bit signed two's-complement values, with the LSB equal to 0.8 uW, covering the range of 0 to 52.428 mW (~ -31 to +17.2 dBm)

| Octet | Field     | Value                                | Unit      |
|-------|-----------|--------------------------------------|-----------|
| 0-1   | TH0       | 0 to 6.5535 mW<br>(~ -40 to 8.2 dBm) | 0.1<br>uW |
| 2-3   | TH1       |                                      |           |
| 4-5   | TH2       |                                      |           |
| 6-7   | OLT_Tx    | 0 to 52.4 mW<br>(~ -31 to +17.2 dBm) |           |
| 8-9   | ONU_Tx10G |                                      | 0.8<br>uW |
| 10-11 | ONU_Tx25G |                                      |           |
| 12-15 | Reserved  | Ignored on reception                 |           |

| 10G US ONU: $th_{x}$ 10G = $TH_{x}$ * OLT_Tx / ONU_Tx10G         | (mW) |
|------------------------------------------------------------------|------|
| 25G US ONU: $th_{X}$ _25G = $TH_{X}$ * OLT_ $Tx$ / ONU_ $Tx$ 25G | (mW) |

| Destination Address    |
|------------------------|
| Source Address         |
| Length/Type = $0x8808$ |
| Opcode = 0x01a         |
| Timestamp              |
| TH0                    |
| TH1                    |
| TH2                    |
| OLT_Tx                 |
| ONU_Tx10G              |
| ONU_Tx25G              |
| Reserved/Pad           |
| FCS                    |

Octets

#### Reference Information of IEEE1904.1 SIPON

#### **Monitor functions**

#### 9.1.5.6 Optical transmitter output power

The ONU and OLT should support the measurement of the output power of the optical transmitter. The measured value is represented in the format of a 16-bit unsigned integer (with the value range of 0 to 65535), with the LSB equal to 0.1  $\mu$ W, covering the range of 0 to +6.5535 mW ( $\sim$  -40 to +8.2 dBm). The measurement accuracy is better than  $\pm 3$  dB across the total measurement range.

#### 9.1.5.7 Optical receiver input power

The ONU should support the measurement of the input power of the optical receiver. The measured value is represented in the format of a 16-bit unsigned integer (with the value range of 0 to 65535), with the LSB equal to 0.1  $\mu$ W, covering the range of 0 to +6.5535 mW ( $\sim$  -40 to +8.2 dBm). The measurement accuracy is better than  $\pm 3$  dB across the total measurement range.

## **Summary**

- Proposed to leave reserved bits of Bits7-8 for future updates and shift "ONU RSSI Indication" to Bits9-11.
- Proposed the announcement of OLT Rx thresholds and OLT/ONU transmitter powers by DISCOVERY GATE message, and by a new MPCPDU message.
- Recommend the announcement by DISCOVERY GATE message for simple implementation.

#### Motion #

Move to adopt slide 10 in umeda\_3ca\_1\_0518 to announce of OLT/ONU transmitter powers and thresholds of receiver power class.

Moved:

Second:

For:

Against:

Abstain: