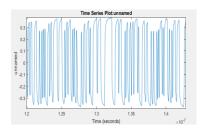
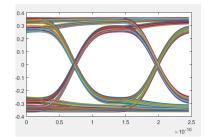
IEEE802.3ca Tx and Rx Spec Proposal Richard Mellitz, Intel

IEEE 802.3 Interim, Atlanta GA, January 2015

Tx Spec Host

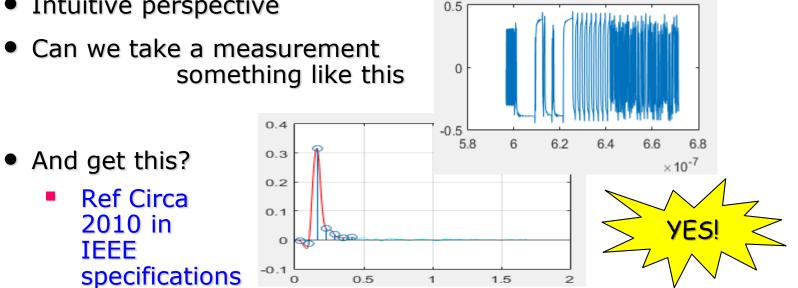
 Transmitted signal to noise distortion ratio (SNDR) and waveform parameters are from a fitted pulse from derived from a PRBS9 test pattern


 Jitter is determined from PRBS9 pattern


Parameter	Subclause reference	Value	Units
Differential peak-to-peak output voltage (max.) with Tx disabled	92.8.3.1		mV
DC common-mode voltage (max.)	92.8.3.1		v
AC common-mode output voltage, v _{cmi} (max., RMS)	92.8.3.1		mV
Differential peak-to-peak voltage, v _{di} (max.)	92.8.3.1		mV
Differential output return loss (min.)	92.8.3.2		dB
Common-mode to differential mode output return loss (min.)	92.8.3.3		dB
Common-mode to common-mode output return loss (min.)	92.8.3.4		dB
Transmitter steady-state voltage, v_f (min.) Transmitter steady-state voltage, v_f (max.)	92.8.3.5.1		v
Linear fit pulse peak (min.)	92.8.3.5.2	× v _f	v
Transmitted waveform abs coefficient step size (min.) abs coefficient step size (max.) minimum precursor full-scale ratio minimum post cursor full-scale ratio	92.8.3.5. 92.8.3.5. 92.8.3.5. 92.8.3.5.		
Signal-to-noise-and-distortion ratio (min.)	92.8.3.7		dB
Output jitter (max.) Even-odd jitter, peak-to-peak Effective bounded uncorrelated jitter, peak-to-peak Effective total uncorrelated jitter, peak-to-peak	92.8.3.8 92.8.3.8. 92.8.3.8.1		UI UI UI
Signaling rate, per lane	92.8.3.9		GBd
Unit interval nominal	92.8.3.9		ps

Transmitter Waveform

Questions often asked

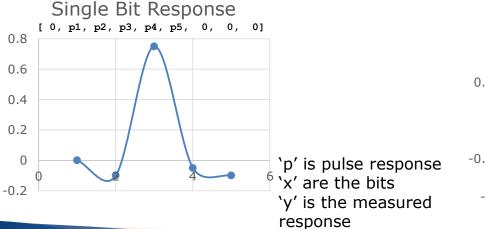

- What does the eye diagram or waveform mean to
 - The board
 - The device
- How much of the board ISI is compensated in the Device
- What is the affect of non linear devices
- How much noise is introduced outside of the lane under test?
- Its hard to tell

4 IEEE802.3ca 2.5G & 5G Backplane and Copper Cables Task Force

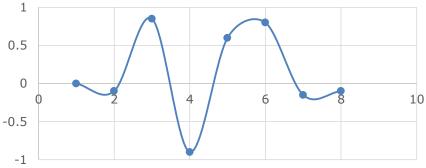
Common language

Pulse response

- AKA single bit response (SBR)
- Intuitive perspective
- Can we take a measurement something like this


Baseline Understanding of Superposition: Start with the Response to Single Bit

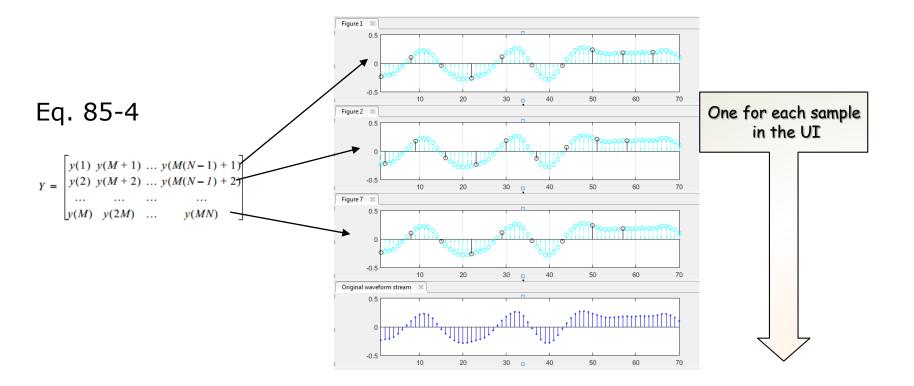
- A measured response may be generated for and arbitrary bit pattern
 - Using a shifted version of that pulse
 - And adjusting for whether the bit corresponding to the shift is a zero or 1
- Its just superposition


Spread Sheet Example: Superposition Review (M = 1 sample per UI)

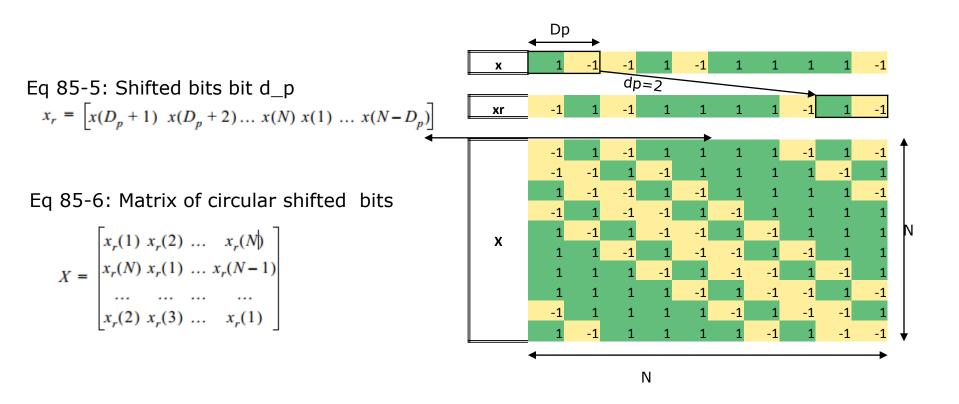
Single bit response samples										Interim bit response samples							
1	2	3	5	6	7	8	9	Bit stream		1	2	3	5	6	7	8	9
0	-0.1	0.75	-0.05	-0.1						0	-0.1	0.75	-0.05	-0.1	0	0	0
	0	-0.1	0.75	-0.05	-0.1			-(X)		0	0	0.1	-0.75	0.05	0.1	0	0
		0	-0.1	0.75	-0.05	-0.1				0	0	0	-0.1	0.75	-0.05	-0.1	0
			0	-0.1	0.75	-0.05	-0.1	1	$\boldsymbol{\Sigma}$	0	0	0	0	-0.1	0.75	-0.05	-0.1
	0, 0, 0	L, p2, p), p1, p	04, p5, 03, p4, p 02, p3, p 01, p2, p	p4, p5,	0]			X *1 *2 *3 *4			-0.1	0.85	-0.9 *X] ¹	0.6	0.8	-0.15	-0.1

[0, p1*x1, p1*x2 + p2*x1, p1*x3 + p2*x2 + p3*x1, p1*x4 + p2*x3 + p3*x2 + p4*x1, p2*x4 + p3*x3 + p4*x2 + p5*x1, p3*x4 + p4*x3 + p5*x2, p4*x4 + p5*x3, p5*x4]

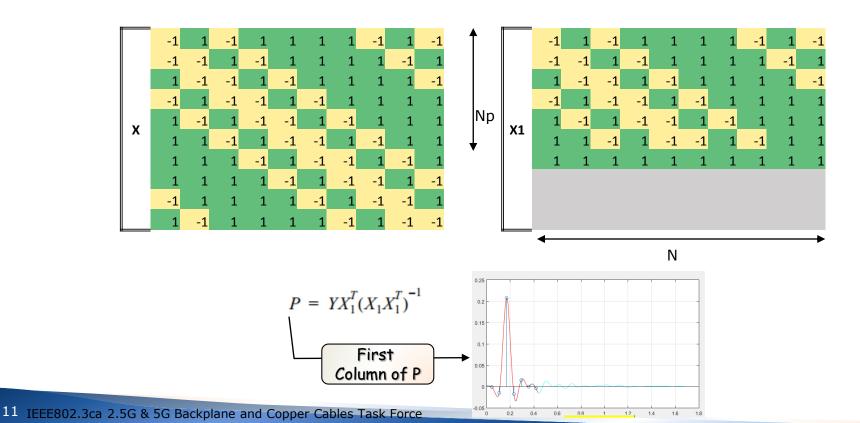
Bit stream response

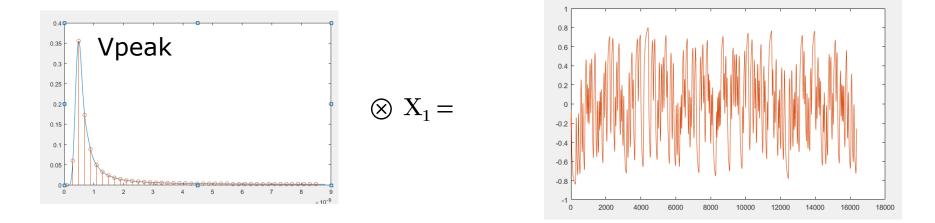

7 IEEE802.3ca 2.5G & 5G Backplane and Copper Cables Task Force.

M samples per UI

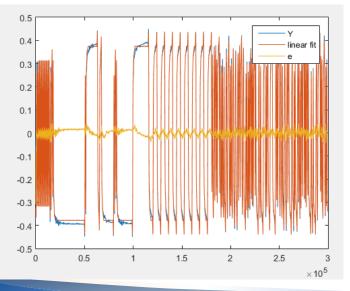

- Perform for each sample $y = [P^TX]^T$
- That suggest we can have M equations for linear fitting
- y is what we measure.
 - It has M samples per UI
 - Y is the collection of y's for each sample
- We can solve for P
 - P= YX^T(XX^T)⁻¹
 - The first row of P is single bit response

⁸ IEEE802.3ca 2.5G & 5G Backplane and Copper Cables Task Force


Clause 85 example: Create matrix Y for each sample


Clause 85 example: for bit vector, x for Dp=2 and Np=5

For IEEE802.3ca Recommendation: Dp=2, Np=40, fit is Np+Dp+1 bits



Reconstructed waveform out of fit pulse and data bits

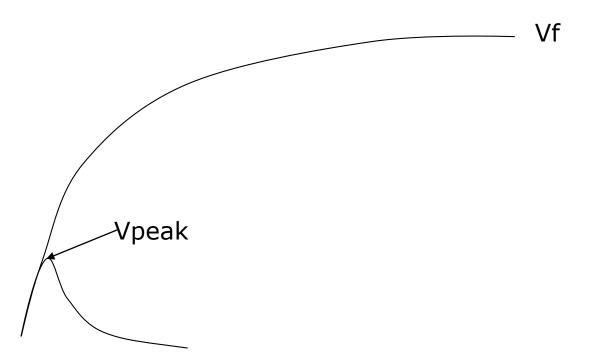
Errors per sample point outside the receiver's DFE reach

Eq 85-8: Errors are the Matrix of column E

The error waveform, e(k), is then read column-wise from the elements of E as shown in Equation (85–8).

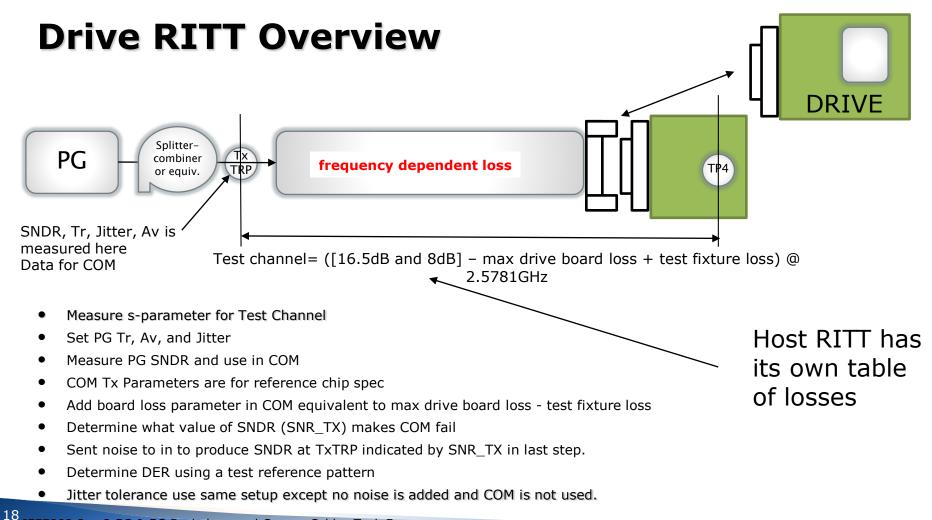
$$E = PX_1 - Y = \begin{bmatrix} e(1) & e(M+1) & \dots & e(M(N-1)+1) \\ e(2) & e(M+2) & \dots & e(M(N-1)+2) \\ \dots & \dots & \dots & \dots \\ e(M) & e(2M) & \dots & e(MN) \end{bmatrix}$$
(85-8)

- May be use to justify just how many taps of DFE are required.
- The rms of "E" is basically noise that receiver will see,
 - Lets call that σ_e
- It is in relation to the peak of the pulse
- So the SNR might be 20*log10(Vpeak/ σ_e)
- But there is more noise to consider


Other noise

- Now the measure waveform not averaged but pattern triggered so we look a that same run of zeroes or ones in the data pattern
- The rms of this noise is introduced outside the lane
 - Lets call this σ_n
 - We RSS σ_n's from the run of ones and the run of zeroes to and aggregate σ_n
- Combing the two rms values results in a Signal to noise and distortion ratio of SNDR

• SNDR=
$$\frac{V_{peak}}{\sqrt{\sigma_n^2 + \sigma_e^2}}$$


Spec Vf and Vpeak/Vf (it is related to loss)

Extracting FFE Tap Coefficients if required

- 2 measurement waveforms required
 - Without equalization
 - With equalization
- Extracted to fitted pulse responses IEEE802.3 Clause 92.8.3.5.1
 - Without equalization, R
 - With equalization, P
- P = R * C
 - Where C is the tap coefficient vector
- $C = (R^T * R)^{-1} * R^T * P$ for each sample
- The values of C are used where the error P-R(for each sample) is minimum.

Receiver tests

CHIP TO CHIP specs

- Borrow from IEEE802.3bj CL 93
- TX (Remove adaptive TX eq)
- RX
- Channel
 - Adopt reference package and ref equalizer developed in future adhoc work.