Next Generation 100 Gigabit Optical Ethernet

Call For Interest

Dan Dove – HP Networking
Kapil Shrikhande – Force10 Networks
Pete Anslow – Ciena
Jonathan King – Finisar
Ryan Latchman – Mindspeed Technologies

Objective for this meeting

- To measure the interest in starting a study group for Next Generation 100Gb Optical Ethernet
- We don't need to
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose any one solution
 - Create PAR or five criteria
 - Create a standard or specification
- Anyone in the room may speak / vote
- RESPECT... give it, get it

Motivation of this Presentation

- There is a <u>market need for higher density</u> front panel interfaces to support bandwidth growth demand and to reduce cost and power of 100G optics:
 - Module electrical Interface density can be increased
 - MMF port density can be increased
 - SMF port density can be increased
- Define potential project opportunities
- Explain "Why IEEE Project Now?"

Acknowledgement & Support (Contributors and Supporters)

Jon Anderson - Opnext

Thananya Baldwin - Ixia

Michael Bennett - Lawrence Berkeley Lab

Vipul Bhatt - Lightwire

Sudeep Bhoja – Broadcom

Matt Brown - APM

Steve Carlson - High Speed Design

Martin Carroll - Verizon

Frank Chang - Vitesse

Chris Cole - Finisar

Kai Cui - Huawei

John D'Ambrosia - Force 10 Networks

Piers Dawe - IPtronics

Wael Diab - Broadcom

Mike Dudek - Qlogic

Harry Forbes - Nexans

Freddy Hongyan FU - Huawei

Ali Ghiasi - Broadcom

Mark Gustlin - Cisco

Hiroshi Hamano - Fujitsu Labs Ltd

Ziad Hatab – Vitesse

Huangxi - Huawei

Osamu Ishida - NTT

Hiro Iwadate - Sumitomo

Myles Kimmitt - Emulex

Scott Kipp - Brocade

Satoshi Kodama, NTT

Paul Kolesar - CommScope

Masashi Kono - Hitachi

David Lewis – JDSU

Robert Lingle, Jr. – OFS

Kent Lusted - Intel

Phil McClay - TEC

Jeff Maki - Juniper

John McDonough - NEC America

Gary Nicholl - Cisco

Ronald Nordin - Panduit

Mark Nowell – Cisco

David Ofelt – Juniper

George Oulundsen – OFS

Mike Peng Li – Altera

Petar Pepeljugoski - IBM

Jerry Pepper – Ixia

John Petrilla – Avago Technologies

Rick Pimpinella – Panduit

Iain Robertson - Texas Instruments

Sam Sambasivan - AT&T

Oren Sela - Mellanox

Koichiro Seto - Hitachi Cable Ltd

Megha Shanbhag - TEC

Song Shang - Semtech Corporation

Siddharth Sheth - Inphi

Ted Sprague - Infinera

Peter Stassar - Huawei

Andre Szczepanek - Inphi

Nathan Tracy - TEC

Matt Traverso - Cisco

Francois Tremblay - Gennum

Steve Trowbridge, Alcatel-Lucent

Paul Vanderlaan - Nexans

Tim Warland - APM

Zengli – Huawei

Agenda

- Team members
- Review of 802.3ba
- Market Opportunity
- Proposed Project
- Areas of Study
- Organizational Structure
- Straw Polls

Team Members

- Dan Dove HP Networking
- Kapil Shrikhande Force 10 Networks
- Pete Anslow Ciena
- Jonathan King Finisar
- Ryan Latchman Mindspeed Technologies

Review of 802.3ba 100G Optical PHYs

Name	Description	
100GBASE-SR10	100 Gb/s PHY using 100GBASE-R encoding over ten lanes of multi- mode fiber, with reach up to at least 100 m (see Clause 86)	
100GBASE-LR4	100 Gb/s PHY using 100GBASE-R encoding over four WDM lanes on single-mode fiber, with reach up to at least 10 km (see Clause 88)	
100GBASE-ER4	100 Gb/s PHY using 100GBASE-R encoding over four WDM lanes on single-mode fiber, with reach up to at least 40 km (see Clause 88)	

Technology Used for 802.3ba (1 of 3)

- SMF solution based on 25Gb/s optics
 - 10x10G electrical interface to module
 - 25Gb/s signaling was too challenging at the time
 - Connector technology for 25Gb/s was not available at the time
 - 4x25G optical wavelengths
 - Lowest long term laser cost and power alternative
 - Enables investment in optimum long term technology
 - Gearbox converts 10x10 interface to internal 4x25G electrical lanes

Technology Used for 802.3ba (2 of 3)

- MMF solution based on 10Gb/s VCSELs
 - 10x10G optical channels -> Two 12-fiber optical cables per link
 - 25Gb/s signaling was too challenging at the time
 - Connector technology for 25Gb/s was not available at the time
 - 25G/s VCSELs were not available at the time

Note: figure shows implementation using un-retimed module. Retimed module also possible

Technology Used for 802.3ba (3 of 3)

- Electrical interfaces based on 10 Gb/s
 - 10x10G electrical channels, differential -> 40 high speed pins just for data
 - ASIC/FPGA I/O challenged to achieve high enough density
 - 32 CXP connectors possible on a faceplate would require 320 10G channels
 - 25Gb/s signaling too challenging at the time
 - Connector technology for 25Gb/s not available at the time
 - Low power 25Gb/s I/O not available at the time

CAUI Interface Loss Summary

Figure 83B–2—Chip-module loss budget at 5.15625 GHz

CPPI Interface Loss Summary

Figure 86A-11—Recommended insertion loss limits of host PCB, connector and HCB

100G SMF Port Density Opportunity

Line card illustrations

- a. 48 ports SFP+ @ 10GbE = 480 Gb/s
- b. 44 ports QSFP @ 40GbE = 1.76 Tb/s
- c. 32 ports CXP@ 100GbE= 3.2 Tb/s (MMF only)
- d. 4 ports CFP @ 100GbE= 400 Gb/s

Perceived opportunity @ 100G:

- CFP provides lower bandwidth density than10Gb/s
- 100Gb/s SMF solutions limited by CFP size
 - First Gen ICs & Optics require large module size to fit in all components and dissipate power
 - 10x10G interface requires 40 high speed data pins

Source: 100GbE Electrical Backplane/Cu Cable CFI

Multimode Cable Cost/Density Opportunity

Example 100GBASE-SR10 end-to-end channel

Using 12-fiber cables (common), one 100GBASE-SR10 link makes 2 appearances on the panel using 2 MPQ connectors

Going from 10Gb/s to 25Gb/s cuts infrastructure needs by half.

12 x 100GBASE-SR10, or 24 x "100GBASE-SR4"

All pictures in the slide are courtesy of CommScope

100G MMF Fiber Density/Cost Opportunity

- 20 fibers/link can be reduced to 8 fibers/link
- Significantly reduced lane count: 10 -> 4 pairs per duplex link
 - Lower power/bit, lower cost/bit, lower infrastructure costs
 - Reducing number of lasers/PDs will reduce port power/cost
- A narrower interface permits a higher density short reach optical interface for multimode fiber, which will offer multiple potential benefits compared with 100GBASE-SR10
- Direct scaling from 40G to 100G using the same cable infrastructure by increasing 4x10G to 4x25G

Images in this slide are courtesy of Finisar

Market Need for Bandwidth

- Bandwidth demand growing and driving density
 - Historically this has been seen with 10G
 - Market trends leading to 100G repeating that evolution

BW Growth: Example AMS-IX Data

Peak traffic in bits/sec from 2005-2010 shows exponential growth

PBytes per month, May 2007 to Apr 2011 shows ~ 45% AGR

Plotted from raw data available at http://www.ams-ix.net/statistics/

Courtesy AMS-IX

Market Opportunity for Size Reduction

- 40 high speed connector signal pins (62 including signal GND pins) and 40 PCB RF traces are reduced to 16 high speed connector pins (26 including signal GND pins) and 16 PCB RF traces
- Reducing optical module size allows higher switch density and improved rack utilization
- Reductions in space will provide opportunity to expand market faster and more efficiently

Market Opportunity for Power Reductions

- Power inside optical module is driven by optical components and electrical interface ICs types, and the number of optical lanes
- Reducing the number of optical lanes from 10 to 4 reduces the number of optical components from 10 to 4 and results in large reduction in module power
- Replacing the Gearbox IC by a Re-timing IC leads to additional power savings
- If technically feasible and necessary, removal of retiming IC leads to further power savings
- Reductions in size will provide opportunity to expand market faster and more efficiently

Market Opportunity for Cost Reduction

- For MMF, reducing the number of lasers from 10 to 4, and number of required parallel MMFs from 20 to 8 leads to cost reduction. (SMF already uses 4 lasers)
- Reducing the size and power of modules allows higher port density
- Increase in port density results in better amortization of switch infrastructure (fans, PC, chassis, etc.) which reduces cost per port
- Reductions in cost will provide opportunity to expand market faster and more efficiently

10G Ethernet Single-mode Optics: Evolutionary Path

10GbE evolution \rightarrow improvement in power, density, and cost due to:

- Higher electrical lane speed enabled reduction in number of electrical lanes
- Improved technology enabled lower power electrical and optical components

100G Ethernet Single-mode Optics: Possible Evolutionary Path

100GbE evolution → improvement in power, density, and cost due to:

- Higher electrical lane speed enabling reduction in number of electrical lanes
- Improved technology enabling lower power electrical and optical component

100G Ethernet Single Mode Optics: <u>Potential</u> Evolutionary Path using 4x25G interfaces

Potential areas for SMF study

- CAUI-4 (retimed 4 lane) and/or CPPI-4 (un-retimed or equivalent 4 lane) electrical interfaces
- Study alternate PMD technologies to determine if there is significant opportunity for additional size, power and cost reduction
- Reach on G.652 fiber
- Optical transmitter and receiver performance
- Link power and jitter budgets
 - Start with signaling rate scaled budgets
 - Use of retiming in module, EDC, and/or host card retiming near connector
 - Impact of power, cost, size requirements
- Performance of 4 x 25 GBd electrical connector
- Use of FEC and impact on budgets
 - valuable if it has no/v. low overhead (e.g. KR or similar) and v. low latency
 However, resides in the host ASIC/FPGA so only available for new designs

Potential areas for MMF study

- 4 x 25 GBd, 4 parallel fibers, each direction
- NRZ modulation format
- CAUI-4 (retimed 4 lane) and/or CPPI-4 (un-retimed or equivalent 4 lane) electrical interfaces
- Reach on OM3, OM4
- Optical transmitter and receiver performance
- Link power and jitter budgets
 - Start with signaling rate scaled budgets
 - Use of retiming in module, EDC, and/or host card retiming near connector
 - Impact of power, cost, size requirements
- Performance of 4 x 25 GBd electrical connector
- Use of FEC and impact on budgets
 - valuable if it has no/v. low overhead (e.g. KR or similar) and v. low latency.
 However, resides in the host ASIC/FPGA so only available for new designs

Potential areas for Cu study (electrical interface)

- 4 x 25 GBd
- NRZ modulation format
- CAUI-4 (retimed 4 lane)
- CPPI-4 (un-retimed or equivalent 4 lane)
 - Impact upon optical transmitter and receiver performance
- Performance of 4 x 25 GBd electrical connector and channel
- Equalization & de-emphasis requirements
- Electrical interface jitter budget, amplitude requirements

Why an IEEE Project Now

- Bandwidth demands are going up exponentially
- The only way to meet this demand is to increase density
- Density is being increased in the backplane and passive Cu already
- Density needs to be increased on the front panel
 - New electrical interfaces: CAUI-4, CPPI-4
 - New MMF interface: -SR4
 - Determine if there is sufficient market demand and technical maturity of feasible optics alternatives to justify a new duplex SMF interface in addition to existing -LR4
- Allow coordination with Backplane & Copper Cables while there is an opportunity to influence their direction

25G Lane Rate Standards Activity is Ramping Up

Optical Internetworking Forum (OIF) [1] CEI-28G-SR, -VSR • 19.9 to 28.05 GBd/lane • Chip-to-chip, chip-to-module CEI-25G-LR • 19.9 to 25.8 GBd/lane • Backplane Infiniband Trade Association (IBTA) EDR • 25.78125 GBd/lane • Passive copper, active cables	Organization	Project	Notes
• Chip-to-chip, chip-to-module CEI-25G-LR • 19.9 to 25.8 GBd/lane • Backplane Infiniband Trade Association (IRTA) • Chip-to-chip, chip-to-module • 19.9 to 25.8 GBd/lane • Backplane	•	CEI-28G-SR, -VSR	• 19.9 to 28.05 GBd/lane
• Backplane Infiniband Trade Association (IRTA) • Backplane • 25.78125 GBd/lane			• Chip-to-chip, chip-to-module
Infiniband Trade Association EDR • 25.78125 GBd/lane		CEI-25G-LR	• 19.9 to 25.8 GBd/lane
● 25.78125 GBα/lane			Backplane
	Infiniband Trade Association (IBTA)	EDR	·
	INCITS T11 Fibre Channel	32GFC	• 28.05 GBd (single lane)
• 28.05 GBd (single lane)			Chip-to-module, multimode and single-mode fiber
• 28.05 GBd (single lane) • Chip-to-module, multimode and	IEEE 802.3	100 Gb/s Backplane and Copper Study Group	• ~25 Gb/s/lane
• 28.05 GBd (single lane) • Chip-to-module, multimode and single-mode fiber IEEE 802.3 100 Gb/s Backplane and • ~25 Gb/s/lane			Backplane, copper cable

[1] Refer to the proceedings of the IEEE 802.3 Ethernet Working Group OIF CEI-28G-VSR liaison response ad hoc (http://www.ieee802.org/3/ad_hoc/OIF_VSR_liaison/index.html).

Organizational Structure of Project

- Division of activities
 - Multimode
 - Single-mode
 - Copper interface
- Proposed schedule
 - Tuesday, July 19th 3:30 PM to 5:00 PM CFI consensus building meeting
 - Thursday, July 21st 802.3 Vote to form SG
 - Friday, July 22nd EC vote whether to approve SG
 - Monday, August 8th Website & Reflector set up (pending EC approval)
 - Week of September 12th First SG meeting (pending EC approval)

Straw Polls - CFI

 Should a study group be formed for "Next Generation 100GbE Optical Interfaces"?

Y____ N___

Straw Polls - Participation

Number of CFI Attendees

Number ____

• I would participate in the Next Generation 100GbE Optical Interfaces Study Group in IEEE 802.3.

Number ____

 My company would support participation in the Next Generation 100GbE Optical Interfaces Study Group in IEEE 802.3.

Number ____

Straw Polls - Participation

• If a study group is formed, I plan to attend and participate in the September meeting.

Number ____

 If a study group is formed, I would like to attend both this SG and the 100G Backplane & Copper Cables meetings

Number ____

THANK YOU!