

Pin Optimized PHY Interface Call For Interest Consensus Building

Jason Potterf Affiliated with Cisco November 12, 2024

Supporters and Contributors

- Tim Baggett Microchip Technology
- TJ Houck Marvell
- Chad Jones Cisco
- Peter Jones Cisco
- Ragnar Jonsson Marvell
- Jon Lewis Dell Technologies
- Brett McClellan Marvell
- Brian Murray Analog Devices
- Alireza Razavi Marvell
- Mehmet Tazebay Broadcom

- Max Turner Ethernovia
- Bob Voss Panduit
- Peter Wu Marvell
- George Zimmerman CME Consulting / ADI, APL Group, Cisco, Marvell, OnSemi, Sony, SenTekse

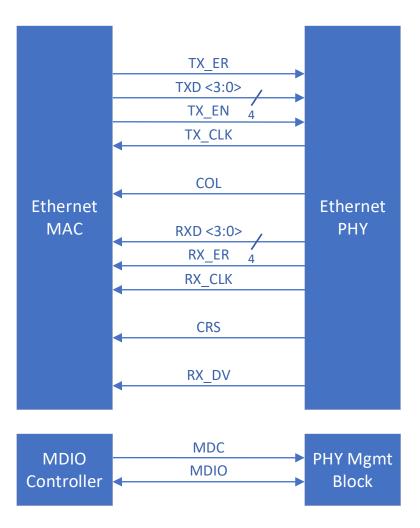
CFI Announcement

This is a call for interest to initiate a Study Group to develop a PAR and CSD for an Ethernet Media Independent Interface (MII) optimized for an exposed interconnect, e.g., chip-to-chip. The growing body of IEEE 802.3 Copper PHY standards that operate at lower speeds has intensified the demand for a modern, optimized MII. Application of PHYs such as 10BASE-T1L, 10BASE-T1S, proposed 100BASE-T1L, proposed 10BASE-T1M, and potentially future PHYs would see benefit in both single and multiport implementations. Such an effort may afford reduced pin count and implementation complexity while enabling data for multiple ports on a single interface and support for features such as PHY-Level Collision Avoidance (PLCA). Most importantly, it could provide a modern alternative interface for PHYs that would otherwise use various industry specifications not currently in IEEE Std 802.3.

CFI Consensus Building Agenda

- Brief History of Ethernet MII Solutions
- Motivating Factors in 802.3da and 802.3dg that Require a new MII
- Market Considerations
- Possible Path Forward
- Discussion and Straw Polls

Brief History of Ethernet MII Solutions


IEEE 802.3 Copper PHYs

- 802.3 is still developing new copper PHY standards
- In the past decade, half of the copper PHY projects have focused on rates **below** 1 Gbit
- 802.3 has not defined a new MII for these low-speed PHYs since 1995
- Multiple industry specs have attempted to fill some gaps, but significant deficiencies remain

Project	802.3 Clause(s)	PHY	Line Speed
802.3i-1990	14	10BASE-T	10 Mbit
802.3az-2010	14	10BASE-Te	10 Mbit
802.3u-1995	21,24,25	100BASE-T (TX)	100 Mbit
802.3ab-1999	40	1000BASE-T	1 Gbit
802.3an-2006	55	10GBASE-T	10 Gbit
802.3bp-2016	97	1000BASE-T1	1 Gbit
202.2ha 2016	113	25GBASE-T	25 Gbit
802.3bq-2016	113	40GBASE-T	40 Gbit
802.3bw-2015	96	100BASE-T1	100 Mbit
802.3bz-2016	126	2.5GBASE-T	2.5 Gbit
802.302-2010	126	5GBASE-T	5 Gbit
202 202 2010	146	10BASE-T1L	10 Mbit
802.3cg-2019	147	10BASE-T1S	10 Mbit
	149	2.5GBASE-T1	2.5 Gbit
802.3ch-2020	149	5GBASE-T1	5 Gbit
	149	10GBASE-T1	10 Gbit
802.3da-20xx	168	10BASE-T1M	10 Mbit
802.3dg-20xx	XX	100BASE-T1L	100 Mbit
802.3dm-20xx	XX	TBD	Asymmetric

IEEE 802.3 Clause 22. Reconciliation Sublayer (RS) and Media Independent Interface (MII)

MII Score Card			
Max Data Rate	100 Mbit/s		
Signal Count	16 Data + 2 Mgmt		
Bus Max Clock Rate	25 MHz		
Clock Scheme PHY Synchronous			
Command Space 4-bit			
Commands Assigned	Tx - 4/16, Rx - 5/16		
PLCA Support	Yes, Beacon and Commit		

MII Commands

- Cause Transmission or Indicate Reception of something other than valid data bytes on the wire
- Uses TX_EN / TX_ER / RX_En / RX_ER to create address space
- Currently Defined in 802.3 Clause 22
 - Assert LPI
 - PLCA Beacon Request / Indication
 - PLCA Commit Request / Indication
 - False Carrier Indication

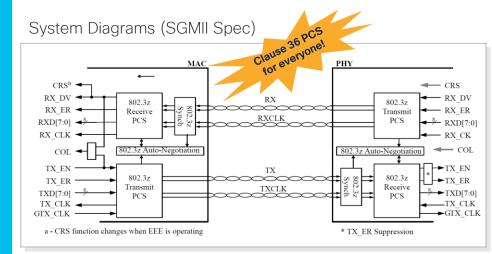
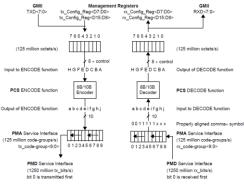

TX_EN	TX_ER	TXD<3:0>	Indication	
0	0	0000 through 1111	Normal inter-frame	
0	1	0000	Reserved	
0	1	0001	Assert LPI	
0	1	0010	PLCA BEACON request	
0	1	0011	PLCA COMMIT request	
0	1	0100 through 1111	Reserved	
1	0	0000 through 1111	Normal data transmission	
1	1	0000 through 1111	Transmit error propagation	

Table 22–2—Permissible encoding of RXD<3:0>, RX_ER, and RX_DV

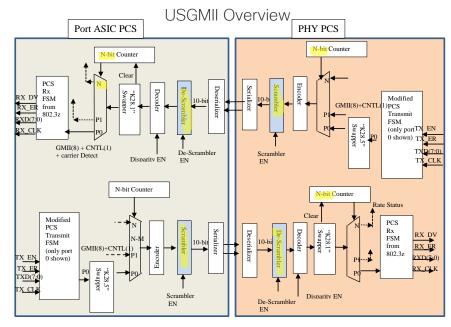

RX_DV	RX_ER	RXD<3:0>	Indication	
0	0	0000 through 1111	Normal inter-frame	
0	1	0000	Normal inter-frame	
0	1	0001	Assert LPI	
0	1	0010	PLCA BEACON indication	
0	1	0011	PLCA COMMIT indication	
0	1	0100 through 1101	Reserved	
0	1	1110	False Carrier indication	
0	1	1111	Reserved	
1	0	0000 through 1111	Normal data reception	
1	1	0000 through 1111	Data reception with errors	

Cisco Specification Serial-GMII (aka SGMII)

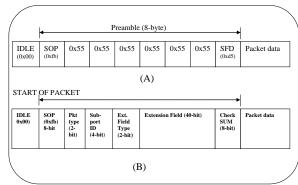
MII Score Card			
Max Data Rate	1000 Mbit/s		
Signal Count	4/port + 2 Mgmt		
SerDes Max Rate	1.25 Gbps		
Clock Scheme	SerDes or Source Sync		
Command Space	Large - Ordered Sets		
Commands Assigned	ed 8 Non-Idle Sets Defined		
PLCA Support	No		

PCS Scheme (Clause 36)

Commands (Clause 36)


Table 36–3—Defined ordered sets

Code	Ordered Set	Number of Code-Groups	Encoding
/C/	Configuration		Alternating /C1/ and /C2/
/C1/	Configuration 1	4	/K28.5/D21.5/Config_Reg ^a
/C2/	Configuration 2	4	/K28.5/D2.2/Config_Reg ^a
/1/	IDLE		Correcting /I1/, Preserving /I2/
/11/	IDLE 1	2	/K28.5/D5.6/
/12/	IDLE 2	2	/K28.5/D16.2/
	Encapsulation		
/R/	Carrier_Extend	1	/K23.7/
/S/	Start_of_Packet	1	/K27.7/
/T/	End_of_Packet	1	/K29.7/
/V/	Error_Propagation	1	/K30.7/
/LI/	LPI		Correcting /LI1/, Preserving /LI2/
/LI1/	LPI 1	2	/K28.5/D6.5/
/LI2/	LPI 2	2	/K28.5/D26.4/


Figure 36–3—PCS reference diagram

Cisco Specification Universal Serial GMII (aka USGMII)

MII Score Card			
Max Data Rate	1000 Mbit/s, with 8, 4, and 1 Port Modes		
Signal Count	4/Octal PHY + 2 Mgmt		
SerDes Max Rate	10.0, 5.0, 1.25 Gbps		
Clock Scheme	SerDes		
Command Space	Large – Ordered Sets Packet Control Header		
Commands Assigned	K28.1 Reserved 8 Non-Idle Sets Defined PCH Packet Types		
PLCA Support	No		

Packet Control Header

PCH Packet Types

00: Ethernet Packet with PCH 01: Ethernet packet, without PCH (packet information) 10: Idle Packet – Contains status data for a port – no packet data 11: Preemption Frame, aka Interspersing Express Traffic (IET) frame

In-Band PTP Timestamps via Extension Field 10

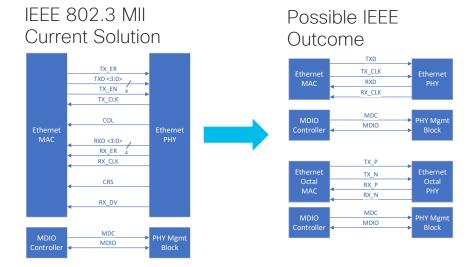
MII Evolution Summary

IEEE and Common Industry MII Specifications

	Max Data Rate	Signal Count	Bus Max Rate	Clock Scheme	Command Space	Commands Assigned	PLCA
MII	100 Mbit/s	16 Data + 2 Mgmt	25 MHz	PHY Synchronous	4-bit	Tx - 4/16, Rx - 5/16	Yes
RMII *	100 Mbit/s	7 Data + 1 Clk + 2 Mgmt	50 MHz	System Synchronous	2-bit	Tx - 2/4, Rx - 2/4 (Note 1)	No
GMII	1,000 Mbit/s	25 Data + 2 Mgmt	125 MHz	Source Synchronous	8-bit	Tx - 4/256, Rx - 5/256	No
RGMII *	1,000 Mbit/s	12 Data + 2 Mgmt	125 MHz	Source Synchronous DDR	8-bit	Tx - 2/256, Rx - 4/256	No
SMII *	100 Mbit/s	2/port + 2-5/PHY + 2 Mgmt	125 MHz	System or PHY Synchronous	8-bit bitfield	Tx - 5/8, Rx - 7/8 bits	No
SGMII *	1,000 Mbit/s	4/port + 2 Mgmt	1.25 Gbps	SerDes or Source Sync	K-Code Ordered Sets	8 Non-Idle Sets Defined	No
QSGMII *	1,000 Mbit/s (4 Ports)	4/Quad Phy + 2 Mgmt	5.0 Gbps	SerDes	K-Code Ordered Sets	K28.1 Reserved 8 Non-Idle Sets Defined	No
USGMII *	1,000 Mbit/s (8, 4, and 1 Port Modes)	4/Octal PHY + 2 Mgmt	10.0, 5.0, 1.25 Gbps	SerDes	K-Code Ordered Sets Packet Control Header	K28.1 Reserved 8 Non-Idle Sets Defined PCH Packet Types	No
XGMII	10,000 Mbit/s	72 Data + 2 Clk + 2 Mgmt	156.25 Mhz	Source Synchronous DDR	8-bit Bus Command Sequence Ordered Sets	Tx - 8/256, Rx - 8/256 Seq Ord Sets - 4/256	No
XAUI	10,000 Mbit/s	16 Data + 2 Mgmt	3.125 Gbps	SerDes	K-Code Ordered Sets Sequence Ordered Sets	Tx - 8/256, Rx - 8/256 Seq Ord Sets - 4/256	No
USXGMII *	10,000 Mbit/s (8, 4, 2, and 1 Port Modes)	4/Octal PHY + 2 Mgmt	20.625 Gbps	SerDes	K-Code Ordered Sets Packet Control Header	Seq Ord Sets - 4/256 PCH Packet Types	No

* Industry specification created outside of IEEE

Contribution to IEEE 802.3


See https://www.ieee802.org/3/dg/public/May_2022/potterf_3dg_01_012524.pdf for a detailed review of past industry-specified MIIs

Motivating factors in 802.3da and 802.3dg that prompt considering a new **IEEE PHY Interface** specification

Common Factors

- Pin Count Reduction
 - Industry MII specifications have one common thread – *fewer pins*
 - Current SPE solutions (SPI, 3-Pin) address the MAC interface or PHY PMD and thus do not solve the challenges in front of our current SPE projects
 - Pin count reduction is also beneficial to already defined PHY standards such as 10BASE-T1L, 10BASE-T1S, 10BASE-T, and 100BASE-TX PHYs


New PHY Interface Pin Count Reduction Goals

Current SPE Ecosystem Industry Specifications

Open Alliance 10BASE-T1x MAC-PHY Serial Interface

Host PICO Processor CS Open Alliance 10BASE-T1S PMD Transceiver Interface

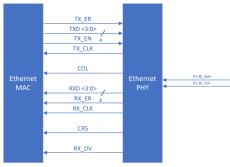
IEEE 802.3dg & 802.3da Motivating Factors

802.3dg 100 Mbps Long-Reach Single Pair Ethernet Benefits

- 802.3dg should provide a *modern* single-port solution for 100 Mbps data rates
 - SPI solution for 10 Mbps no longer works at 100 Mbps
 - Three-Pin PMD interface also is problematic at 100 Mbps
- Switch implementations desperately need a simpler multi-port solution
 - Existing multi-port MII solutions require a 10 Gbps SerDes which is overly complex

802.3da 10 Mbps Single Pair Multidrop Segments Enhancement Benefits

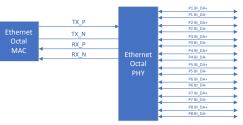
- PLCA over MII presents implementation challenges
- Multi-port MII solutions requiring a 10 Gbps SerDes are even less appropriate for 10 Mbps PHY implementations


Future Projects

- Existing IEEE and industry specified MII solutions are adequate for 1 Gbit/s and faster
 - Widely implemented
 - Minimal benefit to optimizing for this use case
- Asymmetric PHY projects could benefit from a reduced pin count solution with adaptive rates

Market Considerations

Enable efficient, adoptable SPE implementations


IEEE 802.3 MII MII:MDI Ratio = 8:1

Potential Single-Port MII MII:MDI Ratio = 2:1

Potential Multi-Port MII MII:MDI Ratio = 1:4

A reduced pin count chip-to-chip interface provides more value per IC package pin than an MII-based solution, reducing implementation complexity and encouraging adoption

Market for 10/100 PHYs Could Benefit

- Small processors frequently do not embed PHYs but instead provide a chipto-chip MII interface
- There is still a large market for single-port 10/100 PHYs that is underserved by existing industry specifications
 - IEEE MII Too pin-intensive
 - RMII Half the pins, but still but room for improvement
 - SPI Connected MAC/PHY Performance suffers in many applications
- Small devices multiplex pins, so choosing to adopt Ethernet instead of legacy serial buses carries a significant opportunity cost

Single-Pair Ethernet Adoption Accelerator

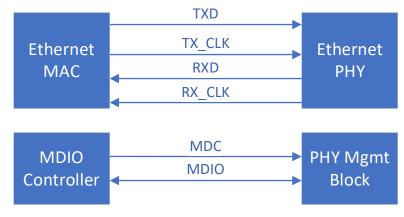
- PHY interconnect complexity for switches is hindering adoption
- Available MII interfaces prevent efficient implementation of 802.3cg
 10-BASET1S and 10-BASET1L switches
- Octal PHY Implementation Options for 80 Mbit/s total bandwidth
 - MII 16 pins / port x 8 ports + 2 Mgmt = 130 Pins
 - RMII 8 pins / port x 8 ports + 2 Mgmt = 66 Pins
 - SGMII 32 pins + 2 Mgmt = 34 pins and *eight 1 Gbps SerDes*!
 - USGMII 4 pins + 2 Mgmt = 6 pins, but requires a 10 Gbps SerDes!

Possible Path Forward

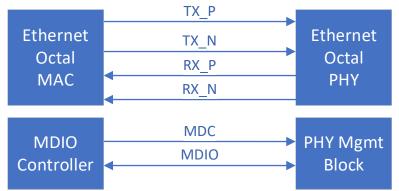
Path Forward – Identified Goals

Goals to Achieve

- Reduce pin count
- Reduce interface speed
- Enable both single and multiport PHYs
- Provide support for SPEspecific features such as PLCA


Outcomes to Avoid

- Avoid requiring a SerDes for single-port Mlls
- Avoid complex interfaces and excessive feature sets
- Avoid precluding features required by one SPE PHY to support or expedite another


Proposal SPE-SMII and SPE-MP-SMII

MII Score Card			
Max Data Rate	100 Mbit/s, with 8 and 1 Port Modes		
Signal Count	4 per PHY + 2 Mgmt		
Clock Scheme	SP -125 MHz Source Sync Clock MP - 1.0 Gbps SerDes		
Command Space	K-Code Ordered Sets		
Features	PTP Timestamping Preemption EEE PLCA		

Single-Port Configuration

Multi-Port Configuration

Issues for Study Group to Consider

Scope Issue 1 – PLCA RS

- In theory, the Reconciliation Sublayer (RS) controls the PHY's PLCA-related actions from the host side of the MII
- In practice, backwards compatibility with non-PLCA MCUs in the market has driven PLCA into the PHY
- Standardized registers to manage PLCA-aware PHYs could be of value as part of the 802.3 standard

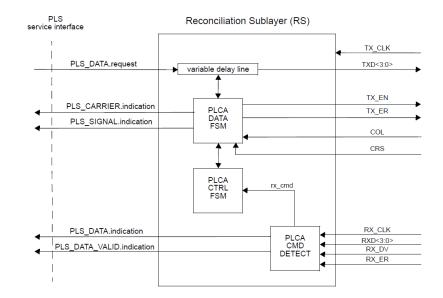
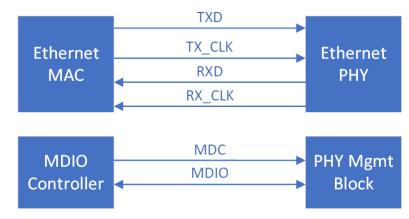
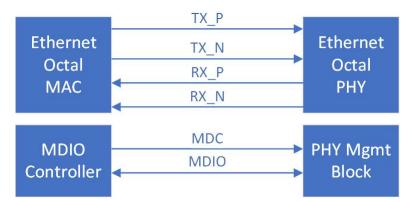



Figure 148–2—PLCA functions within the Reconciliation Sublayer (RS)

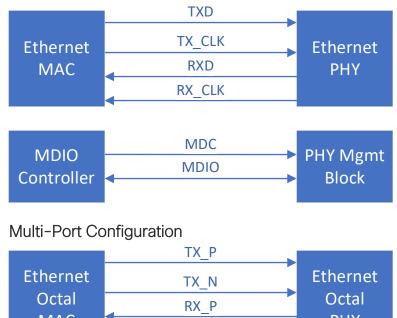
Scope Issue 2 – Single Port Interfaces

- Single Port Reduced Pin Interface
 - Complements Open Alliance Specs
 - SPI MAC/PHY Serial Interface
 - Three-Pin PMD Interface
 - More useful in 802.3dg than 802.3da due to ease of integration of a 10BASE-T1S PHY in an MCU with external PMD
 - Could be useful for 4-pair 10/100
 PHYs as well


Single-Port Configuration

Scope Issue 3 – Multi-Port Interfaces

- Features to Consider
 - Slow SerDes / No SerDes
 - Variable Port Mux Ratio
 - 1-8 Ports / Interface
 - Embedded MDIO
 - Ordered Sets for Control
 - PLCA, LPI, Faults, Collisions, etc.
 - PTP Timestamping
 - Preemption
 - Collision Tracing


Multi-Port Configuration

Scope Issue 4 – One Solution or Two

- Should we have a single logical solution that scales from single to multi-port?
- Should we allow multiple electrical interfaces to enable hardware optimization?
- See following slides for an example of a single logical solution...

Single-Port Configuration

Discussion and Straw Polls

Proposed Pin Optimized PHY Interface Study Group Motion

Move that the IEEE 802.3 Working Group request the formation of a Study Group to develop a Project Authorization Request (PAR) and Criteria for Standards Development (CSD) responses for an Ethernet Media Independent Interface (MII) optimized for an exposed interconnect.

Straw Poll Question # 1

Should a study group be formed to develop a PAR, CSD responses, and objectives for "Pin Optimized PHY Interface"?

∎Yes

∎No

□Abstain

Straw Poll Question # 2

Would you participate in the "Pin Optimized PHY Interface" Study Group in IEEE 802.3?

Yes

□No

□Abstain

Straw Poll Question # 3

Do you believe your affiliation would support your participation in the "Pin Optimized PHY Interface" Study Group in IEEE 802.3?

∎Yes

∎No

□Abstain

Supporting Material

Previous MII Straw Poll Results

Feature Requirement Straw Poll Results Summary

Features	Mandatory	Optional	Omit	Abstain
Control Bandwidth Reservation	15	2	3	13
Embedded MDIO	16	5	3	10
PTP Timestamping	14	9	1	10
Frame Preemption (802.1Q IET)	9	4	1	18
Energy Efficient Ethernet (LPI)	15	8	0	8
Four-Pair 10/100 PHY Compatibility	15	2	2	15
Half-Duplex Operation (COL)	15	4	2	11
Half-Duplex Late Collision Frame Correlation	4	4	4	24
PLCA Support	13	1	1	17

Options: Mandatory Feature, Optional Feature, Omit Feature

Contribution to IEEE 802.3

Previous MII Presentations

Previous MII-Related Presentations in 802.3dg

Title	Author	Affiliation	Presentation Date
Modifications to Constant Latency Mll Encoding and Ordered Sets Onto 8N/(8N+1) encoder	William Lo	Axonne	Sept 16, 2024 - IEEE 802.3 Interim
Progressing the MII discussion	Jason Potterf	Cisco Systems	July 15, 2024 - IEEE 802 Plenary
Constant Latency Mll Encoding and Ordered Sets Onto 8N/(8N+1) encoder (01a)	William Lo	Axonne	July 15, 2024 - IEEE 802 Plenary
Ethernet Mll Interfaces Refinement of Previous Proposals (LATE – updated with straw polls)	Jason Potterf	Cisco Systems	March 11, 2024 - IEEE 802 Plenary
Mil to SMil Proposal	William Lo	Axonne	March 11, 2024 - IEEE 802 Plenary
Adding Sequence Ordered Set to MII	William Lo	Axonne	March 11, 2024 - IEEE 802 Plenary
802.3 Mll Options - Past. Present, and Proposals for the Future	Jason Potterf	Cisco Systems	January 25, 2024 – IEEE 802.3 Interim
Enhanced SMII Proposal	William Lo	Axonne	November 15-16, 2023 - IEEE 802 Plenary
Eurther Consideration on the new MII	Tingting Zhang, Dongcheng Pan,Yan Zhuang	Huawei	September 13, 2023 - IEEE 802.3 Interim
Thoughts on the new MII	Dongcheng Pan, Tingting Zhang, Yan Zhuang	Huawei Technologies	July 11, 2023 - IEEE 802 Plenary
IEEE 802.3dg - Need for a new MII? (revised v1p1)	Piergiorgio Beruto	On Semiconductor	May 17, 2023 - IEEE 802.3 Interim