IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Approval was confirmed in the following announcement
Http://www.ieee802.org/3/email_dialog/msg01004.html
Implement the suggested remedy.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G $S C$ 120G.3.1	P221	$L 20$
Hidaka, Yasuo	Credo Semiconductor	$\# 11$

Comment Type TR Comment Status A
 VEC/EH/BMAX (nc2)

As we discussed in ad hoc in hidaka_3ck_adhoc_01_021920, I recommend max 9dB VEC
at TP1a with Rx noise of eta $0=4.1 \overline{\mathrm{E}}-8 \mathrm{~V}^{\wedge} 2 / \mathrm{GHz}$.
In the same presentation, $E \overline{(m i n})$ and $b \max (\mathrm{n})$ were also provided.

SuggestedRemedy

Change Table 120G-1 as follows:
Change the value of vertical eye closure (max) from TBD dB to 9 dB .
Change the value of eye height, differential (min) from 15 mV to 14 mV .
Change Table 120G-9 as follows:
Change the value of eta_0 from TBD $\mathrm{V}^{\wedge} 2 / \mathrm{GHz}$ to $4.1 \mathrm{E}-8 \mathrm{~V}^{\wedge} 2 / \mathrm{GHz}$.
Change the value of $b _\max (1)$ from TBD to 0.5 .
Change the value of $b _\max (2)$ from TBD to 0.15 .
Change the value of b _max (3) from TBD to 0.1.
Change the value of b _max(4) from TBD to 0.05
Alternatively, if a lower value of $b \max (1)$ is preferred, the following is also OK.
Change Table 120G-1 as follows:
Change the value of vertical eye closure (max) from TBD dB to 9 dB .
Change the value of eye height, differential (min) from 15 mV to 13.5 mV .
Change Table 120G-9 as follows:
Change the value of eta 0 from TBD $\mathrm{V}^{\wedge} 2 / \mathrm{GHz}$ to $4.1 \mathrm{E}-8 \mathrm{~V}^{\wedge} 2 / \mathrm{GHz}$.
Change the value of $b _m a x(1)$ from TBD to 0.3 .
Change the value of b_max(2) from TBD to 0.2.
Change the value of b_max(3) from TBD to 0.1.
Change the value of $b _\max (4)$ from TBD to 0.05 .

Response

Response Status C
ACCEPT IN PRINCIPLE.
The commenter indicated that no change to EH maximum value is required.
Resolve using the response to comments \#96 for the VEC value, \#115 for the eta0 value, and \#113 for the bmax values.

Cl 93A	SC 93A.1.6.1	P197	L33	\# 12

Hidaka, Yasuo Credo Semiconductor

Comment Type T Comment Status A
bucket
In the definition of sigma DFE^2 in equation (93A-37a), the range of index of $b^{\prime}(k)$ is not correct, because this value must be calculated for each potential bank location.

SuggestedRemedy
Change $b^{\prime}(k)$ to $b^{\prime}(n+k)$.
In the second sentence of step b on line 15, change "for each potential bank location" to "for each potential bank location n ".
Response
Response Status C

ACCEPT.

| Cl 120G SC 120G.4.2 | P232 | L 38 |
| :--- | :---: | :---: |\quad \# 13 | 13 |
| :--- |
| Hidaka, Yasuo |
| Comment Type T |

Comment Type "associated puck
It is written as "associated parameters in Table 120G-9" as if the receiver noise filter had
plural parameters. However, the receiver noise filter H_r(f) defined by equation (93A-20) has a single parameter f _r. A reference by a singular noun with the parameter symbol f _r is recommended for clarification.

SuggestedRemedy

Change "associated parameters in Table 120G-9" to "associated parameter f_r in Table 120G-9".

Response ACCEPT.	Response Status C		
CI 163 SC 163.9.1.2	P176	L53	\#
Sun, Junging	Credo Semiconductor		

Comment Type TR Comment Status A bucket 0.01 dB is found to be a typo

SuggestedRemedy
Change 0.01 dB to 0.1 dB as in clause 93.8.1.1.
Response Response Status C

ACCEPT.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI $162 \quad$ SC 162.8.11	P145	L23	\# 18
Sun, Junqing		Credo Semiconductor	
Comment Type	TR	Comment Status A	max_wait_timer [CC]

max_wait_timer nees to be extended for 100G due to high complexity. 15 seconds has been discussed.

SuggestedRemedy

set max_wait_timer equal to 15 seconds. 10 s is the second choice.
Response Response Status C

ACCEPT IN PRINCIPLE.
Based 2020/5/6 Strawpoll \#2 there is consensus to do the following
Set the value for max_wait_timer to 12 s in 162.8.11.
Also update link_fail_inhibit_timer in Table 73-7 with min and max values of 12.1 and 12.2.
For task force discussion.
2020/4/1 Straw Poll \#7 and \#8
I would support a max_wait_timer value, TMWT, in the range (assuming integer values):
A: TMWT $<=3 \mathrm{~s}$
B: $3 \mathrm{~s}<$ TMWT $<=6 \mathrm{~s}$
C: $6 \mathrm{~s}<$ TMWT $<=9 \mathrm{~s}$
D: $9 \mathrm{~s}<$ TMWT $<=12 \mathrm{~s}$
E: $12 \mathrm{~s}<$ TMWT $<=15 \mathrm{~s}$
F: 15 s < TMWT
G: Need for information
2020/4/1 Strawpoll \#7
Chicago rules:
A: 3 B: 7 C: 13 D: 15 E: 13 F: 4 G: 8
2020/4/1 Strawpoll \#8
Pick one:
A: 1 B: 3 C: 3 D: 6 E: 3 F: 2 G: 4
2020/4/1 Strawpoll \#9
I believe a value can be chosen this comment cycle:
Yes: 12
No: 9
Abstain: 16

2020/5/6 Straw Poll \#1
I would support a max_wait_timer value as follows:
A: 6 s
B: 9 s

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l 161$	$S C 161.6$	$P 123$	$L 25$

Slavick, Jeff Broadcom
Comment Type TR Comment Status A
PHY stackup is based upon the given PHY type. When layers within that stackup is optional to implement then the existence of that layer in the stackup maybe there or not. When the layer is mandatory to implement the layer is always there. If a layer is optional to use then a method to bypass it's function is provided for the cases when it's
implemented but functionality is being skipped. CI74 (74.8.2), CI108 (108.6.3), CI73
(73.6.10) all provide methods to "bypass" the functionality of the clause when not in use.

CI91 and Cl161 don't have this bypass function in the draft.

SuggestedRemedy

In Table 161-1 add mapping to register 1.200 .5 as RS_FEC_Int_enable. Add sub-clause describing this bit as "161.6,. 14 RS_FEC_Int_enable
The RS-FEC-Int sublayer shall have the capability to enable or disable the FEC function. An MDIO interface or an equivalent management interface shall be provided to access the variable RS_FEC_Int_Enable for the RS-FEC-Int sublayer. When RS_FEC_Int_Enable variable is set to a one, the RS-FEC-Int sublayer performs the transmit function as specified in 161.5.2 and the receive function as specified in 161.5.3. When the variable is set to zero, the transmit and receive functions are disabled, and the RS-FEC-Int sublayer is bypassed, effectively connecting its service interface to the service interface of its underlying sublayer. This variable is mapped to the bit defined in 45.2.1.110.aa."
In Table 45-88 assign bit 6 to be RS-FEC Enable with 1-RS-FEC is enabled, 0 - RS-FEC is disabled, R/W
Description for this bit "Bit 1.200.6 enables the Reed-Solomon FEC described in Clause 91 for PHYs that include both Clause 161 and Clause 91.
Bring in Table 91-2 from 802.3cd-2018 and add a row for RS-FEC Enable,
RS_FEC_enable, 1.200.6, RS_FEC_enable
Add new sub-clause to describe the FEC_enable variable as "91.6.2a RS_FEC_enable For PHYs supporting RS-FEC-Int operation this sublayer shall have the capability to enable or disable its FEC function. An MDIO interface or an equivalent management interface shall be provided to access the variable RS_FEC_Enable for the RS-FEC sublayer. When RS FEC Enable variable is set to zero, the RS-FEC sublayer performs the transmit function as specified in 91.5 .2 and the receive function as specified in 91.5.3. When the variable is set to a one, the transmit and receive functions are disabled, and the RS-FEC sublayer is bypassed, effectively connecting its service interface to the service interface of its underlying sublayer. This variable is mapped to the bit defined in 45.2.1.110.xx."

Response

Response Status C
ACCEPT IN PRINCIPLE.
The following presentation was reviewed by the task force:
http://www.ieee802.org/3/ck/public/20_03/slavick_3ck_01_0320.pdf

Cl 80	$S C 80.1 .5$	P75	$L 18$
Slavick, Jeff	Broadcom		\# 22

Comment Type T
Comment Status A
bucket
In Table 80-3 we list CUAI-4 and CAUI-10 as Optional sub-layers for a 100G-KR1/CR1 PHY. If these are utilized, don't they use a CI83 PMA? So shouldn't CI83 be also marked as Optional.

SuggestedRemedy

Add O in the column for CI 83 for 100GBASE-KR1 and 100GBASE-CR1
Response
Response Status C

ACCEPT.

Cl 161 SC 161.5.2.6	P114	L3	\# 23
Slavick, Jeff		Broadcom	
Comment Type E	Comment Status A		(nc2)

In a) and c) the first sentence if is "if" while the second sentence "if" is "If". Seems like the should be the same

SuggestedRemedy

Change them to all be "if"
Response Response Status C
ACCEPT IN PRINCIPLE.
Since this is a list rather than pseudocode, the first letter of the first word should be capitalized.

Change all to "lf".

Cl 161 SC 161.5.2.6	P114	L7	\# 24
Slavick, Jeff		Broadcom	
Comment Type E	Comment Status A		bucket

Comment Type E Comment Status A
Missing coma after the $\mathrm{x}<=3$
SuggestedRemedy
Add the coma
Response
Response Status
ACCEPT.

Implement slides 8 to 11 of the presentation referenced above with editorial.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 162	SC 162.7	$P 137$	L24
Slavick, Jeff	Broadcom		\# 25

Slavick, Jeff Broadcom
Comment Type TR Comment Status A
Table 162-5 has a bunch of new entries that don't map to anything. Some of the existing mappings are wrong as well

SuggestedRemedy
Using editorial license. Rename Table 162-5 to "MDIO/PMD variable mapping". Copy first 7 rows from Table 162-6 to Table 162-5, inserting before Restart training row. Delete Table 162-6. Replace the rows after Seed 0 in Table 162-5 with the following information for each lane
Receiver status \#
Frame lock \#
Start-up protocol status \#
Training failure \#
Receiver ready \#
Modulation and precoding sta

Rx frame lock \#
Initial condition request \#
Coefficient select \#
Coefficient select \#
Coefficient reque
Receiver ready \#
nitial condition status \#
Coefficient status \#
Modulation and precoding request \#| LD control \# $\||1 .(1320+\#) .11: 10| l o c a l _t p _m o d e$

Response Response Status

ACCEPT IN PRINCIPLE.
Updating references to variables is necessary, but the rearrangement of the tables is not
The format we've used for previous PMD Clauses has one table for status variables and another for control variables. The context here is relative to the register not the function where control means RW and status means RO.

The task force reviewed the following presentation:
http://www.ieee802.org/3/ck/public/20_03/slavick_3ck_02_0320.pdf
Implement option B in slides 9 to 11 in the referenced presentation with editorial license.

$C l 162$	$S C$	162.9.3.1.5	$P 150$
Slavick	L43	\# 26	

Slavick, Jeff Broadcom
Comment Type E Comment Status A
bucket
For testing the range of $c(1)$ and $c(-1)$ you lump that both $c(0)$ and the tap are at "their" minimum values, but with $c(-3)$ you use the form used for $c(-2)$ where $c(0)$ is at it's minmum and $c(-2)$ is at it's minimum

SuggestedRemedy
change "With $c(-2), c(-1)$ and $c(1)$ set to zero, $c(0)$ having received sufficient "decrement" requests so that it is at its minimum value, and $c(-3)$ having received sufficient "decrement" requests so that it is at its minimum value, $\mathrm{c}(-3)$ shall be less than or equal to -0.06 ." to be
With $c(-2), c(-1)$ and $c(1)$ set to zero and both $c(0)$ and $c(-3)$ having received sufficient "decrement" requests so that they are at their respective minimum values, $\mathrm{c}(-3)$ shall be less than or equal to -0.06."
Response Response Status C
ACCEPT.

$C l 162$	$S C$ 162.9.3.1.5	$P 150$	L33
Slavick, Jeff	Broadcom		\# 27

Comment Type CR Comment Status A bucket
There are 3 taps being set to zero now, however both refers to just 2.

SuggestedRemedy

Delete the "both" after c(-1)
Response Response Status C

ACCEPT.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

TP0a has been shown to be extremely difficult to be used as a point to measure Specified Tx compliance parameters.
SuggestedRemedy
Measurement will still be done at TP0a, but Tx is to be specified at TPO.
A new annex is to be defined to specify method of extrapolating/simulating each of the Tx
parameters from TP0 to TP0a.
A presentation will be provided.
Proposed Response Response Status
REJECT.

A reference TP0 - TP0a test fixture is specified. It is also indicated that the difference
between the test fixture and the actual implementation is to be taken into account in the
measurement. It is not stated how to do this adjustment.

SuggestedRemedy

Specify an achievable range for the TPO - TP0a test fixture: Loss @ ~26GHz <6dB ; ILD ; ERL? A presentation is to be provided with the actual suggestion
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Cl 163	SC 163.9.2.2	P179
Ben Artsi, Liav	Marvell	

Comment Type T Comment Status R
The Rx test fixture is embedded as part of the interconnect used for the interference tolerance test. Thus, there is no reason to limit the loss and behavior so tightly as done on line 21. Doing so will not enable connecting more than very few (if any!) Rx lanes to TP5a for testing.

SuggestedRemedy

Recommend increasing loss limits to 4 dB at 26.56 GHz
Response Response Status
REJECT.
No evidence is provided that the impact on TP5a measurement will not be adversely affected.

Although there is some support expressed for the proposal, further analysis and consensus building is encouraged. There is no consensus to make the proposed change at this time.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120F	SC 120F.3.1	P201	L10
Ben Artsi, Liav	Marvell		\# 35

Comment Type T Comment Status D TPO extrapolation
TP0a has been shown to be extremely difficult to be used as a point to measure Specified Tx compliance parameters.

SuggestedRemedy

Measurement will still be done at TP0a, but Tx is to be specified at TPO. A new annex is to be defined to specify method of extrapolating/simulating each of the Tx parameters from TP0 to TP0a. A presentation will be provided.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

| $C l$ | |
| :--- | :--- | :--- | :--- | :--- |
| 162 | $S C$ |
| 162.11.7.1 | |

Ben Artsi, Liav Marvell

Comment Type T Comment Status A
Cable assembly "include PCB" section lacks the representation of host board discontinuities as were presented in benartsi_3ck_01a_0919.pdf slide \#6
SuggestedRemedy
Update section 162.11.7.1 to accommodate the "include PCB" representation as described in benartsi_3ck_01a_0919.pdf slide \#6 e.g. add two capacitive discontinuities and set their values to $\overline{19} \mathrm{fF}$ and $\overline{2} \overline{\mathrm{fF}}$. Update the trace parameters according to the supplied in the slide

Response

Response Status C

ACCEPT IN PRINCIPLE.

Implement suggested remedy with editorial license.

$C l$	162	162.11.7.1	$P 160$	L 42

Ben Artsi, Liav Marvell

Comment Type T Comment Status A

Cable assembly "include PCB" section lacks the appropriate trace loss representation
SuggestedRemedy
Once adding two capacitive discontinuities to section 162.11.7.1 to accommodate the "include PCB" representation as described in benartsi_3ck_01a_0919.pdf slide \#6 trace parameters should be updated accordingly, thus set trace parameters according to the supplied in slide \#6 of benartsi_3ck_01a_0919.pdf
Response
Response Status
ACCEPT IN PRINCIPLE.
Implement suggested remedy with editorial license.

CI 161 SC 161.6	P123	L3
Gustlin, Mark	Cisco Systems	\# 42

Comment Type T Comment Status A
FEC histogram counter are very useful for understanding the performance of an interface. Add in optional histogram counters for the RS-FEC decoder.

SuggestedRemedy

Add into the RS-FEC-Int MDIO function mapping the following registers: RS-FEC symbol error per codeword 1 through RS-FEC symbol error per codeword 15 (a total of 15 registers). 32b each. Each counter counts the number of codewords that contain that specific number of errors. Also add an RS-FEC codeword counter that counts all of the codewords that are received (errored or not), also 32 bits. Note that each of these counters counts all codewords or symbol errors from both interleaved codewords, we do no break these out by interleaved instance.
Response Response Status C
ACCEPT IN PRINCIPLE.
The following presentation was reviewed by the task force: http://www.ieee802.org/3/ck/public/20_03/gustlin_3ck_01_0320.pdf

Implement the changes outlined in the referenced presentation, except specify that the counters are optional to implement.

Implement with editorial license

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l 73$	$S C$ 73.6.5.a	P69	L31
Brown, Matt	Huawei Technologies Canada		

Comment Type T

Comment Status A

It is more specifically for PHYs which support RS-FEC-Int in addition to the default Clause
91 FEC. It is not an operating mode, it's a choice of sublayer to invoke. What if neither requests RS-FEC-Int?

SuggestedRemedy
"For 100GBASE-P PHYs which support RS-FEC-Int (see Clause 161) in addition to the default RS-FEC (see Clause 91) the F4 field is used to negotiate which FEC sublayer is to be used. If either PHY requests RS-FEC-Int operation then RS-FEC-Int sublayer is enabled, otherwise RS-FEC sublayer is enabled."

Response

Response Status C
ACCEPT IN PRINCIPLE.
Remove "the default" from suggested remedy.
Change text in 73.6.5.a to:
For 100GBASE-P PHYs which support RS-FEC-Int (see Clause 161) in addition to RSFEC (see Clause 91) the F4 field is used to negotiate which FEC sublayer is to be used. If either PHY requests RS-FEC-Int operation then RS-FEC-Int sublayer is enabled, otherwise RS-FEC sublayer is enabled."

CI 73 SC 73.7.6	P70	L6	Huawei Technologies Canada	
Brown, Matt		H9		
Comment Type	E	Comment Status A		bucket

All of the changes described in the editing instruction are obvious from amendment markup and thus are unnecessary. The changes to the priority numbers in all of the rows should be shown.
SuggestedRemedy
Change editing instruction to: "Change Table73-5 (as modified by IEEE Std 802.3cb-2018 and IEEE Std 802.3cd-2018) as follows:"
Include all rows in the table and show the priority numbers changed to the new values.
Response
Response Status \mathbf{C}
ACCEPT.

Cl 152	SC 152	$P 110$

Comment Type E
Comment Status D
bucket
Clause 152 was updated in 802.3 ct Draft 1.2 such that the Inverse FEC is generic and no amendments are required

SuggestedRemedy
Delete Clause 152.
Proposed Response
Response Status Z

REJECT
This comment was WITHDRAWN by the commenter.

Cl 162	$S C$	162.9 .3 .1 .5	P150
Brown, Matt	Huawei Technologies Canada		

Comment Type Eomment Status A bucket
There are 3 taps so "both" should be deleted.
SuggestedRemedy
Change "both set to zero" to "set to zero".
Response Response Status C

ACCEPT IN PRINCIPLE.
Resolve per comment \#27.

Cl 162	SC 162.9.3.1.5	P150	L47	\# 52
Brown, Matt		Huawei Technologies Canada		
Comment Type	E	Comment Status D		bucket

Unnecessary comma. Not needed to separate two distinct phrases.
SuggestedRemedy
Change "162.8.11, or by" to "162.8.11 or by".
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l ~ 73$	$S C$ 73.6.5	P69
Brown, Matt	Huawei Technologies Canada	

Comment Type T Comment Status A
Why is the paragraph being deleted? Instead, further descriptions for the RS-FEC-Int should be provided

SuggestedRemedy
Show the paragraph without strikethrough and add the following sentence: "F4 is used by 100G PHYs where RS-FEC-Int (See Clause 161) is an alternative to the default RS-FEC (See Clause 91)."
Response Response Status C
ACCEPT IN PRINCIPLE.
Replace struck through text with:
"Bits F0 and F1 are only used for $10 \mathrm{~Gb} /$ s per lane operation PHYs. F2 and F3 are used for resolving FEC operation for 25G PHYs. F4 is used by 100G PHYs where RS-FEC-Int (See Clause 161) is an alternative to the default RS-FEC (See Clause 91)."

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 162	$S C$	162.9.3.1	$P 148$	$L 1$
Ran, Adee	Intel	\# 57		

Ran, Adee Intel

Comment Type T Comment Status R

The COM parameter $b _\max (\mathrm{n})$ for $\mathrm{n}=2$ is 0.3 . This resulted from observations that for some channels there is a large 2nd postcursor after the linear equalization performed in the COM calculation

However, it is likely that many real implementations will not implement a 2nd DFE tap and instead use linear equalization (a combination of CTLE, FFE in the receiver, and possibly the $T x$ equalizer $\mathrm{c}(+1)$ too) to handle this ISI.

If linear equalization is required for the $2 n d$ postcursor then it may be beneficial to make it available in the transmitter by adding c(+2). Implementation of another tap in the transmitter is simple (impact on power etc. is low). Receivers may chose whether to use internal equalization or utilize the training protocol to control $\mathrm{c}(+2)$.

Note that this additional coefficient does not necessarily need to have an equivalent in COM; it is observed that in COM results, even $c(+1)$ is left at 0 for most channels, so the addition of another tap may just increase run time and is not expected to change the results. However, $c(+1)$ (and the proposed $c(+2)$) can be used in actual implementations where the Rx may have different structure than the COM reference

SuggestedRemedy

A presentation is planned with further details.

Response
 Response Status \mathbf{C}

REJECT.
The task force reviewed the following presentation:
http://www.ieee802.org/3/ck/public/20_03/ran_3ck_04a_0320.pdf
Based on 2020/5/6 Straw Poll \#3 there is no consensus to make the changes proposed in the referenced presentation at this time.

2020/5/6 Straw Poll \#3
I would support closing comment \#57 using the proposal on slide 4 of ran_3ck_04a_0320:
Yes: 10
No: 17

$C l 163$	$S C$	163.9 .1	$P 175$	$L 35$

Ran, Adee Intel

Comment Type T Comment Status A
As was discussed in the January 2020 meeting there is interest in enabling DC-coupled channels in some applications (mainly backplane and C2C) when the two link partners support this operation. Avoiding AC coupling capacitors in the channels can help board design, improve signal integrity, and reduce costs, and it is becoming a common requirement.

Current channel specs refer back to 93.9 .4 where it is stated that AC coupling capacitors may not exist between TP0 and TP5, but in that case some specifications may need modifications for interoperability (without stating the modifications explicitly). This leaves the burden of defining new Rx and Tx specifications to implementers and integrators - with no standard to assist them.

Indeed, the current transmitter specifications in 120F.3.1 and in 163.9.1 allow high common mode voltage up to 1.9 V , which is detrimental for DC coupling with modern CMOS devices. This high value is also not useful for Tx design with modern applications.

DC coupling can be supported by limiting the Tx common mode voltage to a more reasonable and useful range. If this is done, the existing specs may be useable without change for DC coupled channels (although receivers may still need special support for this)

This proposal is specific for KR and C2C specifications which require on-board AC coupling; CR and C2M have AC coupling in the cable and in the module, respectively, so they need a separate discussion.
SuggestedRemedy
In the transmitter characteristics tables of Clause 163 and Annex 120F, Change the Tx common mode voltage to be between 0.2 and 0.8 volts.

Additional content may be beneficial for the AC coupling subclauses. I intend to provide some text in a presentation, to complement the suggested Tx specs

Response

Response Status C
ACCEPT IN PRINCIPLE
The following presentation was reviewed by the task force: http://www.ieee802.org/3/ck/public/20_03/ran_3ck_01a_0320.pdf

Implement the changes proposed on slides 4 and 5 in the referenced presentation, except set the cutoff frequency to 50 kHz and maximum common mode voltage of 1 V . Implement with editorial license.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l 120$	$S C 120.5 .7 .2$	$P 99$	$L 46$
Ran, Adee	Intel	\# 61	

Ran, Adee
Comment Type T Comment Status A bucket

Following up on comment \#220 against D1.0, which suggested that "136.8.11.7.5 is an incorrect cross-reference"

After the discussion in the January meeting it became clear that it is the correct cross reference, but the text is misleading. Instead of referring to the PMD control function, it should refer to the PMD control state diagram, which is where the cross-reference points to.

SuggestedRemedy

Change from
"precoder_tx_out_enable_i and precoder_rx_in_enable_i shall be set as determined by the PMD control function on lane i (see 136.8.11.7.5)"
"precoder tx out enable i and precoder rx in enable i shall be set as determined in the LINK_READY state of the PMD control state diagram on lane i (see 136.8.11.7.5)"

Response

ACCEPT
Cl 162
Ran, Adee Intel

Intel

Comment Status A

The maximum step size for $\mathrm{c}(1)$ is 0.05 , while for all other coefficient it is 0.02 .
Having a larger size for $\mathrm{c}(1)$ than for $\mathrm{c}(0)$ in the transmitter can create unexpected complexities to an optimization algorithm in the receiver (which has no way to tell if the sizes are equal or not). Training algorithms can be made simpler if the steps are nominally equal for all coefficients, so that decrements/increments in c(1) have the same effect on signal swing as other coefficients.

From the transmitter's point of view, there is little benefit, if at all, from having $c(1)$ with a larger step size than all others.

Note that this commend is specific to the Tx electrical specifications. The COM search grid does not necessarily have to change (especially since c(1) is usually set to 0 in COM).

A presentation with further explanations is planned.

SuggestedRemedy

Change step size limits for $\mathrm{c}(1)$ to align with all other coefficients.
Add a recommendation that implementations should have the same nominal step size for all coefficients, with editorial license.
Response Response Status C

ACCEPT IN PRINCIPLE.
The commenter requested that this comment be considered for Clause 163 and Annex 120 F , as well.

The relevant locations are 162.9.3, page 147, line 8, 163.9.1, page 176 , line 6 , and 120F.3.1, page 203, line 33.

Implement with editorial license.
Based on straw polls \#1 and \#2 do the following:
Change the TX tap maximum step size for TX characteristics to 0.025 for Clause 162, Clause 163, Annex 120F.

Add proposed recommendation with editorial license.
Straw poll \#1
support changing the maximum step size for all TX taps to 0.025 for Clause 162, Clause 163, and Annex 120F for transmitter characteristics (not COM).
A: Yes -- 22
B: No -- 11

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Straw poll \#2
I support adding the recommendation in the suggested remedy for comment \#62.
Yes: 14
No: 13
Straw poll \#3
I support closing comment \#62 using the direction given by Straw Poll \#1 and Straw Poll \#2
Yes: 18
No: 13

$C l$			
162	$S C$	162.9 .3	$P 140$
	L10	\#3	

Ran, Adee Intel

Comment Type T Comment Status A
c(n) max
The maximum step size of 2% for a PAM4 equalizer creates a significant increase in complexity for a DAC-based transmitter implementation, compared to the step size required in the 802.3 cd specs.

A PAM4 DAC with the 2.5% specification in 802.3 cd is required to be able of outputting $6 / 0.025=240$ possible values, while with a 2% step size it is requires $6 / 0.02=300$ possible values. This means an additional bit should be used in the logic implementing the FFE and DAC control, and the analog circuits should enable more combinations.

The estimated cost in power consumption of the FFE+DAC logic and analog circuits from this small change in resolution, with a non-naive design, is about 0.3-0.4 pJ/bit. This additional power is going to be consumed regardless of the channel in question.

As presented in ran 3ck adhoc 01021920 , COM sensitivity analysis shows the benefit from this finer resolution is negligible. It is expected that real life performance will also have little dependence on the step size. Therefore, requiring a smaller maximum step than $2 / 5 \%$ will just waste power.

SuggestedRemedy

Change the (max.) values for $c(-3), c(-2), c(-1)$, and $c(0)$ to 0.025
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment \#62.

Cl 162	SC 162.11.7	P160	L6
Mellitz, Richard	Samtec		\# 64

Mellitz, Richard Samtec

Comment Type TR Comment Status R
SNR_Tx needs to account for host board crosstalk as suggested in mellitz_3ck_03b_1119 and lim_3ck_01_1119.pdf

SuggestedRemedy
Replace TBD for SNR_Tx with 32 dB
Response \quad Response Status \mathbf{C}
REJECT.

Resolve with comment \#10014.

CI 162	SC 162.9.3	P147	L20
Mellitz, Richard	Samtec	\# 65	

Comment Type TR Comment Status A

SNDR needs be 0.5 dB less than SNR Tx to account for measurements. Straw poll on this subject was done without proper presented data

SuggestedRemedy
Replace SNDR 32.2 dB with 31.5 dB
Response
Response Status C

ACCEPT IN PRINCIPLE.
Based on straw poll \#2 there is consensus to make the following change
Implement the suggested remedy.
2020/4/22 Straw Poll \#2
I support closing comment \#64 using the suggested remedy.
Yes: 19
No: 12

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 162	SC 162.11.7	P158	L26
Mellitz, Richard	Samtec		\# 66

Cl 120F	SC 120F.4.1	P209	L52
Mellitz, Richard	Samtec		\# 69

Comment Type
 \qquad
 Comment Status R

Tr should be scaled from 50G BaseKR because other timing parameter were scaled.
SuggestedRemedy
Replace TBD for Tr with 6.01e-3 ns
Response Response Status C

REJECT.
Note that comment \#157 for 120F suggested a value of 6.5 ps for C2C. That comment was rejected due to lack of consensus after a series of straw polls.

Mellitz, Richard Samtec
Comment Type TR Comment Status A
C2C, KR, and CR devices may be the same ports on chips. Align Av, Afe, and Ane with table 163-10

SuggestedRemedy
replace the TBD"s with $\mathrm{Av}=0.0413$, Afe $=0.413$,Ane $=0.608$
Response
Response Status C

ACCEPT IN PRINCIPLE
Replace the TBDs with $\mathrm{Av}=0.413$, $\mathrm{Afe}=0.413$, $\mathrm{Ane}=0.608$

Cl 163	SC 163.10	P181	L28	\# 67
Mellitz, Richard		Samtec		
Comme	pe TR	Comment Status R		transition time (nc2)

SuggestedRemedy

Replace TBD for Tr with $6.01 \mathrm{e}-3 \mathrm{~ns}$
Response Response Status REJECT.

Note that comment \#157 for 120F suggested a value of 6.5 ps for C2C. That comment was rejected due to lack of consensus after a series of straw polls.

There is no consensus to implement the suggested remedy.

CI 163	SC 163.9.1	P175	L44
Mellitz, Richard	Samtec		\# 68

Comment Statu
Vfmin should align with Av in COM table 163-10 since $N p=200$
SuggestedRemedy
Replace 0.4 with 0.413
Response Response Status
REJECT.
There is no consensus to make the proposed change at this time.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI 120G SC 120G.1	P218	L48	\# 71
Mellitz, Richard	Samtec		

Comment Type TR Comment Status A

The equation is only reccomended. The way $120 \mathrm{G}-1$ is anotated before the graph is anotated suggest that that it is required for performance.

SuggestedRemedy

Add section titled 120G.1.1 Informative IL

Response

Response Status C
ACCEPT IN PRINCIPLE.
For the 100GAUI-1 and 200GAUI-2 descriptions, Equation 120G-1 is introduced as follows: "The supported insertion loss budget is characterized by Equation (120G-1) and illustrated in Figure 120G-5."

For the 400GAUI-4 description, Equation 120G-1 is introduced as follows: "The recommended insertion loss budget is characterized by Equation (120G-1) and illustrated in Figure 120G-5."

Both "supported" and "recommended" are not correct here. Should reflect that the IL specification reflects the intended lossiest channel.

Change the wording to reflect this.
Note that the three referenced paragraphs are being merged together per the response to closed comment \#91.

As the comment recommends, it would be beneficial to package up the channel specification in a channel subclause similar to 120F. 4 "Channel characteristics

Move the channel specifications to a new subclause "120G. 4 Channel characteristics".
Implement with editorial license.

CI 120G	SC 120G.	P218	L 48
Mellitz, Richard	Samtec		\# 72

Comment Type TR Comment Status A
The equation is only reccomended. The way $120 \mathrm{G}-1$ is anotated before the graph is anotated suggest that that it is required for performance.

SuggestedRemedy
Add section titled 120G.1.2 Informative COM based on sun 3ck 01a 0120.pdf slide 29 and 30
Response Response Status C
ACCEPT IN PRINCIPLE.
Contrary to the comment, the suggested remedy is proposing to add an additional informative constraint on the channel using COM with reference to a previously reviewed presentation.

The comment provides no justification for the proposed changes in the suggested remedy.
There is no consensus to make the proposed change at this time

CI 162	SC 162.9.3	P146	$L 19$
Healey, Adam	Broadcom Inc.		\# 73

Comment Type T Comment Status D

$\mathrm{A}+/-100 \mathrm{ppm}$ frequency tolerance on the signaling rate is "traditional" but I understand reference clocks with at least half of this tolerance are available at similar costs. Incremental improvements to receiver performance margin are available with the use of a higher precision reference.
SuggestedRemedy
Change the frequency tolerance to +/-50 ppm in Tables 162-8, 162-11, 163-5, 120F-1,
120G-1, 120G-3. 120G-4, and 120G-7.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI 162	SC 162.9.3	P147	L9
Healey, Adam	Broadcom Inc.		\# 74

| Cl 120F SC 120F.3.1.3 | P 205 | L 48 | \# 77 |
| :--- | :---: | :---: | ---: | :--- |
| Healey, Adam
 Comment Type\quad T | Comment Status D | | |

A 3rd pre-cursor coefficient is not that useful for chip-to-chip channels. It adds incremental complexity (implementation and configuration) for what should be a "lightweight" interface

SuggestedRemedy
Remove c(-3) tap for n00GAU-n C2C.
Proposed Response
Response Status Z

REJECT
This comment was WITHDRAWN by the commenter.

CI 163	SC 163.9.2.3	P179	L34

Healey, Adam Broadcom Inc

Comment Type \mathbf{T} Comment Status A
bucket
The receiver interference tolerance procedure defined in 120F.3.2.3 includes guidance on the output return loss of the test setup (item b). This guidance does not appear to be present in this description of a similar test procedure for n00GBASE-KRn.
SuggestedRemedy
Add an item stating "The return loss of the test setup in Figure 93C-4 measured at TP5 replica towards TPt meets the requirements of Equation (163-2).
Response
Response Status C
ACCEPT.

The suggested remedy does not propose specific changes to the draft.
CI $\mathbf{1 6 3} \quad$ SC 163.9.1
Healey, Adam

Comment Type T Comment Status A
The maximum step size for $c(1)(0.05)$ does not agree with the same value specifed in
Table 162-8 (0.02) for n00GBASE-CRn. There is no reason that they should be different.

SuggestedRemedy

Align the coefficient step size requirements between Tables 162-8, 163-5, and 120F-1.
Response Response Status C

ACCEPT IN PRINCIPLE.
See response to comment \#62

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI $163 \quad S C$ 163.9.1.1	P176	L27	\# 80
Healey, Adam	Broadcom Inc.		

Comment Type T Comment Status A
effective retion , as it is currently
defined, does not adequately constrain the re-reflection interference seen by the receiver.
SuggestedRemedy
Modify parameters and/or method to achieve better correlation to re-reflection interference and set the limit accordingly. Similar change would apply to Annex 120F.

Response
 Response Status C

ACCEPT IN PRINCIPLE.
Based on January strawpoll \#3 (see below), there was consensus to revisit the ERL methodology based on the presentation referenced in the comment.

The strawpoll details may be found in the meeting minutes here:
http://www.ieee802.org/3/ck/public/20_01/index.html
The following presentations were reviewed by the task force: http://www.ieee802.org/3/ck/public/20_03/mellitz_3ck_01b_0320.pdf http://www.ieee802.org/3/ck/public/20_03/kochuparambil_3ck_01_0320.pdf

No change to the ERL methodology is required. More analysis is required to determine some parameter values and ERL values.
Implement the parameter values summarized on slide 3 of kochuparambil_3ck_01a_0320 with editorial license using slides 4 to 17 as a guide.

The ERL values will remain TBD.

Cl 120G SC 120G.1	P217	L29	\#1
Healey, Adam Comment Type F	Broadcom Inc.		

The caption of Figure 120G-2 is cites the wrong frequency.

SuggestedRemedy

Change "100GAUI-1 C2M insertion loss budget at 25.56 GHz to "100GAUI-1 C2M insertion loss budget at 26.56 GHz".
Response Response Status
ACCEPT.

In figure 120G.1, I think "100GBASE-P" should be "100GBASE-R"
SuggestedRemedy
Change to "100GBASE-R"
Response Response Status C
REJECT.
100GBASE-P is correct. 100GBASE-P PHY and 100GBASE-R PHY are defined in IEEE Std 802.3-2018 1.4.31 and 1.4.32, reproduced below. 100GAUI-1 requires use of an RS $(544,514)$ FEC, which is specified for use only with 100GBASE-P PHYs.
1.4.31 100GBASE-P: An IEEE 802.3 family of Physical Layer devices using 100GBASE-R encoding and a PMD that employs pulse amplitude modulation with more than 2 levels (See IEEE Std 802.3, Clause 80.)
1.4.32 100GBASE-R: An IEEE 802.3 family of Physical Layer devices using 100GBASE-R encoding and a PMD that employs 2 -level pulse amplitude modulation. (See IEEE Std 802.3, Clause 80.)

Cl 162C SC 162C.2.6	P262	L29
Kocsis, Sam	Amphenol	

Comment Type ER Comment Status A bucket
Figure 162C-12 description says "OSFP"
SuggestedRemedy
Replace "OSFP" with "DSFP"
Response Response Status C
ACCEPT.
C

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.1	P217	L20
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 91	

Comment Type TR Comment Status A (nc2)

Figure 120G-2 covers 100 GbE , then two additional figures 120G-3, and 120G-4 to cover 200 and 400 GbE .

SuggestedRemedy

The three figures can be combined where the box reads 100GAUI-1, 200GAUIU-2, and 400GAUI-4 then number of connecting line could read 1,2 , or 4

esponse

Response Status C
ACCEPT IN PRINCIPLE.
Both the text and figures were purposely kept separate to keep the description clear. However, it is recognized that the same information is repeated three times, once for each rate in the figure and also in the text.

Merge the figures for the three rates
Where appropriate, merge text for the three rates.
Modify Annex 120F in the same way.
Implement with editorial license.

Cl 120G	SC 120G.1.1	P219	L26
Ghiasi, Ali	Ghiasi Quantum/Inphi	$\# 92$	

Comment Type TR Comment Status A

The bit error ratio (BER) not clear if this is pre or post .

SuggestedRemedy

The pre-FEC bit error ratio (BER) provided that the error statistics are sufficiently random when processed..

Response Response Status C
ACCEPT IN PRINCIPLE.
To address the comment, the leading portion of the sentence (see below) defines the BER as being measured after being processed by the PMA and, by exclusion, not an FEC; thus without error correction.
"The bit error ratio (BER) when processed according to Clause 135 for 100GAUI-1 C2M or Clause 120 for 200GAUI-2 or 400GAUI-4 C2M."

The proposal in the suggested remedy goes beyond the concerns raised in the comment The processing by a particular FEC is only relevant when defining an entire PHY. The BER specifications for PMDs that might be associated with this interface include allocation for errors, including worst case burst errors, for this interface.

Concerns relating to the errors bursts was addressed in the response to D1.0 comment \#202.
http://www.ieee802.org/3/ck/comments/8023ck_D10_final_closedcomments_200128.pdf
No further specification is required.
However, it would be helpful to clarify that the processing is by the PMA only.
Change: "processed according to"
To: "processed by the PMA according to"

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.3.1	P221	L21
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 96	

Comment Type
TR
Comment Status A
VEC

Vertical eye closure is TBD

Cl 120G	SC 120G.3.4.1.1	P230	L 14	\# 107
Ghiasi, Ali		Ghiasi Quantum/Inphi		

Comment Type TR
Comment Status A
Table reference is TBD

SuggestedRemedy

Replace TBD with table 120F-1
Response
Response Status

ACCEPT IN PRINCIPLE.
[Editor's note: The line number was changed from 52 to 14.]
The comment relates to the following sentence.
"Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given in Table TBD."

The suggested remedy proposes to point to Table 120F-1 which specifies the transmitter electrical characteristics for C2C (not C2M).

It is not clear which parameters in Table 120F-1 specify the output jitter profile.
See also comment \#108.
Change the sentence to
Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile
given by maximum JRMS and maximum J4u, and complies with the even-odd jitter specification in Table 120F-1."

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.3.3.2.1	P227	L52
Ghiasi, Ali		Ghiasi Quantum/Inphi	\# 108

Comment Type TR
Comment Status A
jitter profile

Table reference is TBD
SuggestedRemedy
Replace TBD with table 120F-1
Response Response Status C
ACCEPT IN PRINCIPLE.
The comment is referring to this sentence at the end of page 227:
"Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given in Table TBD."

The suggested remedy proposes to point to Table 120F-1 which specifies the transmitter electrical characteristics for C2C (not C2M).

It is not clear which parameters in Table 120F-1 specify the output jitter profile.
Change the sentence to the following:
"Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum JRMS and maximum J4u, and complies with the even-odd jitter specification in Table 120F-1."

CI 120G	SC 120G.3.3.2.1	P227	L52
Ghiasi, Ali		Ghiasi Quantum/Inphi	\# 109

Comment Type TR Comment Status D
Table reference is TBD
SuggestedRemedy
Replace TBD with table 120F-1
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Cl 120G	SC 120G.3.4.1.1	P231	L9
Ghiasi, Ali	Ghiasi Quantum/Inphi	$\# 110$	

Comment Type TR Comment Status A

loss at TP1a is TBD plus two more TBDs on the same line
SuggestedRemedy
..TP1a is 19.2 dB . The 19.2 dB loss represents 16 dB channels loss
Response
Response Status

ACCEPT IN PRINCIPLE.
Change text to
"TP1a is 18.2 dB . The 18.2 dB loss represents 16 dB channels loss"
Cl 120G SC 120G.3.4.1.1 \quad P231

Ghiasi, Ali Ghiasi Quantum/Inphi
Comment Type TR Comment Status R
CTLE setting for max loss is TBD
SuggestedRemedy
add table of supported CTLE per ghiasi_3ck_01_0320 where includes min g_DC and g_DC_HP, min g_DC=10 dB and min g_DC_HP=2 dB
Response
Response Status \mathbf{C}
REJECT.
More analysis is required to show that the constraints are appropriate. There is no consensus to implement the suggested remedy at this time.

Cl 120G	SC 120G.3.4.1.1	P231	L23
Ghiasi, Ali		Ghiasi Quantum/Inphi	\# 112

Comment Type TR Comment Status R
CTLE setting for min loss is TBD
SuggestedRemedy
add table of supported CTLE per ghiasi_3ck_01_0320 where includes min g_DC and g_DC_HP, min g_DC=4 dB and min g_DC_HP=1 dB
Response Response Status C
REJECT.
More analysis is required to show that the constraints are appropriate. There is no consensus to implement the suggested remedy at this time.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.4.2	P232	L 30
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 113	

Comment Type
Comment Status A
RR DFE taps

DFE tap weights are TBD
SuggestedRemedy
Replace $\operatorname{bmax}(1)=0.3$ and $\operatorname{bmax}[2-4]=0.1$, see ghiasi_3ck_01_0320 supporting presentation
Response Response Status C

ACCEPT IN PRINCIPLE.
After taking March 25 Strawpoll \#2 and Strawpoll \#3, there is consensus to close the comment as follows.

Change bmax(1:4) to $\{0.4,0.15,0.1,0.1\}$.

Straw Poll \#2
I support setting bmax(1:4) as follows:
A: $\{0.4,0.15,0.15,0.15\}$
A: $\{0.4,0.15,0.15,0.1$
B: $\{0.4,0.15,0.1,0.1\}$
B. C leave TBD

Chicago rules.
A: 18, B:17, C:4
Straw Poll \#3
l support setting $\operatorname{bmax}(1: 4)$ as follows.
A: $\{0.4,0.15,0.15,0.15\}$
B: $\{0.4,0.15,0.1,0.1\}$
Choose one.
A: 12 B: 18

Cl 120G	SC 120G.4.2	P232	L15
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 114	

Comment Type TR Comment Status A
Is not necessary to allow all combination of gDC and gDC2
SuggestedRemedy
Move gDC and gDC2 into a new table with 3 columns for TP1a, TP4, and TP5 per ghiasi_3ck_01_0320
Response
Response Status
ACCEPT IN PRINCIPLE.
Resolve using the responses to comment \#10157 and \#143.

Cl 120G	SC 120G.4.2	P232	L 32
Ghiasi, Ali		Ghiasi Quantum/Inphi	
Comment Type	TR	Comment Status A	\# 115
Cor noise			

One sided noise spectral density is TBD
SuggestedRemedy
Replae TBD with 8.2e-9 V^2/GHz
Response
Response Status C

ACCEPT IN PRINCIPLE.

Set eta_0 to 4.1e-8.					
Cl 120G SC 120G.3.1					
Ghiasi, Ali					
Comment Type TR					

$$
E R L \text { is } T B D
$$

SuggestedRemedy
$E R L=10.5 \mathrm{~dB}$, see ghiasi_3ck_03_0320
Response Response Status

REJECT.
See resolution to comment \#80.

Cl 120G	SC 120G.3.1.3	P223	L12
Ghiasi, Ali		Ghiasi Quantum/Inphi	\# 120
Comment Type	TR	Comment Status R	
ComL			

Comment Type Comment Status R

SuggestedRemedy
ERL=10.5 dB, see ghiasi_3ck_03_0320
Response
Response Status C
REJECT.
See resolution to comment \#80.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120F	SC 120F.4.1	P209	L52
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 132	

Comment Type TR Comment Status A

Transmitter differential peak output is TBD
SuggestedRemedy
Replace Av with 0.413 V
Replace Afe with 0.413 V
Replace Ane with 0.608 V
Response Response Status C
ACCEPT.

| Cl 120F | SC 120F.4.1 | P210 |
| :--- | ---: | ---: | ---: | :--- |
| Ghiasi, Ali | | Ghiasi Quantum/Inphi |
| Comment Type | TR | Comment Status A |

DFE tap length missing

SuggestedRemedy
Replace TBD with 5 or alternatively with 3 fixed+2 floating taps with span of 12 UI to support full range of channels and packages, for supporting material see ghiasi_3ck_02_0320.pdf
Response Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#16.

Cl 120F	SC 120F.4.1	P210	L21
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 135	

Comment Type TR Comment Status R

To keep C2C power low need to limit max loss incuding package/filter

SuggestedRemedy

Add new line to table 120F-5, Total IL_wpkgs_wTr (max)=28dB
Response
Response Status

REJECT.
Note that recommended channel loss is specified as 20 dB at Nyquist along with and insertion loss equation in 120F.4.2.

There is no consensus to make the proposed change at this time.

Cl 162	SC 162.11.7	P160	$L 11$
Dawe, Piers	Mellanox		\# 136

Comment Type TR Comment Status R
Slide 6 of heck_3ck_01_0919 shows that the DFE taps are 2 and 3 are always strongly positive, and no taps strongly negative, yet the draft would allow such
untypical/hypothetical channels that a real receiver need not, and maybe can't, cope with.
kasapi_3ck_01_1119 slide 7 shows the first tap also.
We need sensible minimum tap limits.
SuggestedRemedy
Add minimum tap weight limits:
Tap 1: $\min +0.3$
Tap 2: $\min +0.05$
Remembering that a tap weight limit isn't a hard pass-fail limit; channels can go outside it but pay a (very small, for one or two small excursions) increase in COM for the excess ISI noise that they cause; and that cable channels are smoother than backplane channels bu can have higher loss:
All other taps: min -0.03 (tighter than for KR).
Turn the existing "Normalized DFE coefficient magnitude limit"s into "Normalized DFE coefficient limit"s.
Update definition of COM in 93A. 1
Response Response Status
REJECT.
Although there is some support expressed for the proposal, there is concern that the limits may be too restrictive. Further analysis and consensus building is encouraged. There is no consensus to make the proposed change at this time

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.4.2	P232	L37
Dawe, Piers	Mellanox		\# 137

Dawe, Piers
Comment Type \quad TR \quad Comment Status A
This is incomplete: "Capture the signal according the method defined in 162.9.3.1.1",
because it throws away the noise and jitter in the signal. This method could be used to find the pulse response, DFE tap weights and sampling phase, but...

SuggestedRemedy

Make it clear that the signal that is used in step e "Compute the receiver input signal yrx(k) by applying the effect of the DFE" is captured acording to 120E but with a different observation filter. Actually, there is one measurement, and the measured signal is processed (e.g. averaged) to obtain the signal of 162.9.3.1.1.

Response Response Status c

ACCEPT IN PRINCIPLE.
It is intended that the eye opening measurement includes the effect of noise at the transmitter output.
162.9.3.1.1 references 85.8.3.3.4 "Waveform acquisition" which includes the following statement:
"Averaging multiple waveform captures is recommended."
The methodology further limits the number of samples to the length of the test pattern.
In order to retain the reference to 162.9.3.1.1, one or more exceptions would have to be added for it to be appropriate.
Since this eye opening methodology uses the methods in 120E.4.2 to derive EH, EW, and VEC, it makes sense to use the same or similar capture method.

In order to use the methodology from 120E, some changes are required. Rather than referring to 120 E , it is better to include the capture method in 120 G .

Procedure step e) is not clear regarding to which signal the effect of the DFE should be applied.

Change the first paragraph in 120G.4.2 and item a) as shown in slide 4 of
brown_3ck_04a_0320.

n step e).

Change:
"applying the effect of the DFE using"
To:
"applying the effect of the DFE to $\mathrm{y} 2(\mathrm{k})$ using"

Cl 162A	SC 162A. 5	P241	$L 13$
Dawe, Piers	Mellanox		\# 138

In Figure 162A
MCB, whil, TP4 and TP5 are shown aligned with each other, the MCB, while TP1 and the end of the MCB, and TP2 and the end of the HCB, are not aligned. Compare Figure 92A-2.

SuggestedRemedy

Show TP5 further right than TP4, and
TP0 to the left of the end of the MCB. Align TP1 and the end of the MCB, and TP2 and the end of the HCB.

Response Response Status C
ACCEPT IN PRINCIPLE.
Show TP5 further right than TP4.
Show TP0 to the left of the end of the MCB. Align TP1 and the end of the MCB.
Align TP2 and the end of the HCB.
Implement with editorial license.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l$	163	$S C 163.10$	$P 183$
Dawe, Piers	Mellanox	$L 13$	$\# 139$

Dawe, Piers Mellanox

Comment Type TR Comment Status R

Slide 6 of heck_3ck_01_0919 shows that the DFE taps are 2 and 3 are always strongly positive, and no taps strongly negative, yet the draft would allow such
untypical/hypothetical channels that a real receiver need not, and maybe can't, cope with. kasapi 3ck $01 \quad 1119$ slide 7 shows the first tap also
We need sensible minimum tap limits.

SuggestedRemedy

Add minimum tap weight limits:
Tap 1: $\min +0.3$
Tap 2: $\mathrm{min}+0.05$
Remembering that a tap weight limit isn't a hard pass-fail limit; channels can go outside it but pay a (very small, for one or two small excursions) increase in COM for the excess IS noise that they cause
All other taps: min -0.04 (looser than for CR).
Turn the existing "Normalized DFE coefficient magnitude limit"s into "Normalized DFE coefficient limit"s.
Update definition of COM in 93A.1.

Response

Response Status C
REJECT.
Although there is some support expressed for the proposal, there is concern that the limits may be too restrictive for low-loss channels. Further analysis and consensus building is encouraged. There is no consensus to make the proposed change at this time.

Cl 120G SC 120G.4.2	P 232 Mellanox	L 30	\# 140
Dawe, Piers Comment Type\quad TR	Comment Status A	RR DFE taps	

The C2M normalized DFE coefficient magnitude limits need to be chosen carefully so that the reference receiver is not better than, or grossly different to, a range of real receiver implementations. Optical modules probably won't use this classic DFE. This requires separate max and min tap limits. See hidaka_3ck_adhoc_01_021920 for example tap weights found.

SuggestedRemedy

Tap $1 \min 0.15 \max 0.45$
Tap 2 min -0.1 max 0.1
Taps 3, 4 min $-0.05 \max 0.05$
Adjust names of limits and 93A. 1 to support separate max and min limits; see another comment, against 162.11.7.
Response
Response Status
ACCEPT IN PRINCIPLE.
bmax limits have been approved based on the response to comment \#113
However, there was general agreement that we should consider different values for max and min limit. Further analysis and consensus building is encouraged.

Cl 120G SC	20G.4.2	P232	L33	\# 141	
Dawe, Piers		Mellanox			
Comment Type	TR	Comment Status R			(IR)

Need a way to account for the additional reflections that are plaguing our short-channel analyses, but trying to put capacitors on the software transmission line in the scope seems impractical.

SuggestedRemedy
Add a second noise items in the measurement, a set ratio to sum(AVupp + AVmid + AVIow). To be RSSd with the measured, equalised signal.
Response
Response Status C
REJECT.
The suggested remedy does not provide sufficient detail to implement.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.4.2	P232	$L 15$
Dawe, Piers	Mellanox		\# 143

| Dawe, Piers | Mellanox |
| :--- | ---: | ---: |
| Comment Type | TR \quad Comment Status |

The allowed CTLE settings for TP4 near end are not the same as for TP1a and TP4 far end, and as Ali and I have proposed, should not be simple min/max limits anyway.

SuggestedRemedy
Replace with tables from Ali or me. Also see D1.0 comment 157

Response
 Response Status C

ACCEPT IN PRINCIPLE
Add separate specifications for gDC and gDC2 for TP4 far-end and TP4 near-end with values TBD.

Implement with editorial license.

CI 162A SC 162A. 5	P241	L45	\# 145
Dawe, Piers		Mellanox	
Comment Type T	Comment Status D		
(IR)			

I wonder if there is an inconsistency between the numbers in Table 162A-1 and those in Figure 162A-2. The 0.2 dB "MCB via allowance" could be the cause of the confusion.

SuggestedRemedy

Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Cl 120F SC 120F.4.1	P210	L18	\# 146	
Dawe, Piers		Mellanox		
Comment Type	TR	Comment Status R		RR noise

Comment Type TR Comment Status R
One-sided noise spectral density of $8.2 \mathrm{e}-9 \mathrm{~V} 2^{\wedge} / \mathrm{GHz}$ is extremely aggressive and optimistic and was chosen to make 28 dB backplane channels pass COM. It is not appropriate for this 20 dB spec.

SuggestedRemedy
Change to $1.64 \mathrm{e}-8$, same as 50 GBASE-CR but lower than proposed for C2M (4.1e-8).
(For info, 50G/lane C2C (120C) has 2.6e-8.)
Response Response Status C
REJECT.
Since the noise target is practical for a KR receiver, it should be practical for a C2C
receiver. Allowing a higher noise at the receiver would require improvements somewhere else. There is a trade off between transmitter, receiver, and channel complexity to consider.

There is no consensus to make the proposed change at this time. Further analysis and consensus building is required.

| Cl 120F SC 120F.4.1 | P210 | L11 |
| :--- | ---: | ---: | ---: |
| Dawe, Piers | | Mellanox |
| Comment Type | TR | Comment Status A |

The C2C channel is only a little harder than the C2M one so a similar reference receiver could be used. Low power silicon will be needed if this application is to be viable.
SuggestedRemedy
4 taps, or 5 as Ali proposed. See my C2M comments for proposed tap weight limits.
Response
Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#16.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l \mathbf{1 6 2}$	$S C 162.11 .7$	$P 160$	$L 18$
Dawe, Piers	Mellanox		\# 148

Comment Type T Comment Status A (nc2)
This says "DFE floating tap span 40 UI" which is not what was intended. The span of the floating taps in this draft is $40-12=28$.

SuggestedRemedy
Change the name or the number. Adjust 93A. 1 if appropriate.
Response Response Status C

ACCEPT IN PRINCIPLE.
The name of the variable is somewhat ambiguous
Change description to:
"DFE maximum span including floating taps"
Implement with editorial license.

Cl 120G SC 120G.4.2	P232	L 32	\# 149
Dawe, Piers	Mellanox Comment Type TR	Comment Status A	

For the one-sided noise spectral density, currently TBD V^2/GHz, the middle option in hidaka_3ck_adhoc_01_021920 looks promising. However, expressing this as a noise sepctral density may be more clumsy and complicated than necessary.
SuggestedRemedy
Use 4.1e-8 for now.
Response Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#115.

Cl 162D $S C$ 162D	P306	$L 1$	$\# 150$
Dudek, Mike	Marvell		

Comment Type T Comment Status A
This section is informative and will be rather similar to 136D duplicating lots of information with technically obvious changes.

SuggestedRemedy
Consider deleting this section
Response
Response Status C

ACCEPT IN PRINCIPLE
Cable assembly lengths and MDIs are different in 136D.
136C and 136D (cable assembly enabling a 3 m length)
MDIs - SFP28,QSFP28,QSFP28-DD, OSFP
162C and 162D (cable assembly enabling a 2 m length)
SFP112,QSFP112,QSFP112-DD, OSFP, SFP112-DD, DSFP
Editorial license to generate Annex 162D content while minimizing duplication with 136D.

Cl 162B SC 162B.1.3.6	P249	L27	\# 152	
Dudek, Mike				
Comment Type	T	Comment Status A		(nc2)

This section is describing the test fixtures for 112 G use which are called SFP112 in 162C.2.1 which have different specifications to those for SFP28.
SuggestedRemedy
Change SFP28 to SFP112 in 4 places in annex 162B.
Response Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#43.

| Cl 120G SC 120G | P221 | L20 | \# 153 |
| :--- | ---: | ---: | ---: | ---: |
| Dudek, Mike | | | |
| Comment Type T | Marvell | | |
| Comment Status A | | bucket | |

The referenced section for the eye measurements is not correct as 120E.4.2 uses the wrong reference equalizer.
SuggestedRemedy
Change 120E.4.2 to 120G.3.1.6.
Response Response Status C

ACCEPT.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$\begin{array}{ll}\text { Kareti, Upen Reddy } & \text { Cisco } \\ \text { Comment Type TR Comment Status R }\end{array}$
DFE floating tap tail root-sum-of-squares limit 0.02 , which is changed from from adopted baseline value of 0.03
This constraint was created to avoid test programs to create unrelastic channel and subject serdes to pass such a channel This is not intended to limit resonable real channels. The value 0.03 is arrived by looking KR and CR channels for possible package combination. Constraing further only fails some of the channels including Task Force idendified must pass cahnnels.
SuggestedRemedy
Change back to Adopted base line value of 0.03 or eliminate this constatint altogether
Response
Response Status \mathbf{C}
REJECT.
[Editor's note: Changed page/line from 180/48 to 160/21.]
The change to 0.02 was adopted as a result of closing comment D1.0 comment \#152 based on straw poll \#12.

Based on straw poll \#1, there is no consensus to make the proposed change.
2020/4/22 Straw poll \#1
I support setting the DFE floating tap tail root-sum-of-squares number to:
A: 0.02
B: 0.025
C: 0.03
Chicago rules
A: 16 B: 11 C : 9

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI 162	SC 162.9.4	P152	L14
Mellitz, Richard	Samtec		\# 10010

SuggestedRemedy
Change to "Receiver ERL at TP3 shall be greater than or equal to 11 dB "
Response Response Status C
REJECT.
See resolution to comment \#80.

Cl 162	SC 162.11.3	P157	L 43	\# 10012
Mellitz, Richard		Samtec		ERL
Comment Type	TR	Comment Status A		

Comment Type TR Comment Status A
ERL
[Comment resubmitted from Draft 1.0. Subcl. 162.11.3-Pg 150 - In 39]
ERL of 13.5 dB seems to capture most of posted channel data as suggested in slide 3 mellitz_3ck_04_1119

SuggestedRemedy

Change line 39 to Cable assembly ERL at TP1 and at TP4 shall be greater than or equal to 13.5 dB for cable assemblies that have a COM less than 4 dB . Also change TBD parameters in table 162-14 beta_x, rho_x, N, and N_bx to 2.4 GHz, 0.21, 3000 UI , and 12 UI respectively as suggested on slide 4 of mellitz_3ck_04_1119.
Response
Response Status C

ACCEPT IN PRINCIPLE.

See resolution to comment \#80.

Cl 162	SC 162.11.3	P157	L11	\# 10013
Mellitz, Richard	Samtec			
Comment Type	TR	Comment Status R		ERL

Comment Type TR Comment Status R ERL
[Comment resubmitted from Draft 1.0. Subcl. 162.11.3-Pg 150-In 8]
ERL of 13.5 dB seems to capture most of posted channel data as suggested in slide 3 mellitz_3ck_04_1119
SuggestedRemedy
Change Minimum cable assembly ERL to 13.5 dB in table 162-13.
Response Response Status C
REJECT.
See resolution to comment \#80

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 162	SC 162.11.7	$P 160$	L6
Mellitz, Richard	Samtec		\# 10014

CI $162 \quad$ SC

162.11.7.1 \quad| P160 |
| :--- |

SuggestedRemedy
gamma0, a1, a2 $=[03.8206 \mathrm{e}-049.5909 \mathrm{e}-05] ;$ tau $=5.790 \mathrm{E}-03 \mathrm{~ns} / \mathrm{mm}$
Response Response Status C
ACCEPT IN PRINCIPLE.
Implement suggested remedy with editorial license.

$C l$				
162	$S C$	162.11.7.1.2	L161	\# 10018

Mellitz, Richard Samtec

Comment Type TR Comment Status A
[Comment resubmitted from Draft 1.0. Subcl. 162.11.7.1.2-Pg 153 - In 51]
Fill in TBD's with data from slide 8 of benartsi_3ck_01a_0719.
SuggestedRemedy
use same data as for signal path
Response Response Status C
ACCEPT IN PRINCIPLE.
Implement comment and suggested remedy with editorial license.

Cl 163	$S C$	163.9.1.1	P176
Mellitz, Richard	Samtec	L30	\# 10020

Comment Type TR Comment Status A
ERL
[Comment resubmitted from Draft 1.0. Subcl. 163.9.2.1-Pg 171-In 5]
$\mathrm{Nbx}=\mathrm{Nb}$ has been shown not correlate well to COM in mellitz_3ck_adhoc_02_100219.
$\mathrm{Nbx}=24$ seems to be a better choice
SuggestedRemedy
Change "Nbx is set to the value of Nb in Table 163-10" to "Nbx is set to 24 UI "
Response Response Status C
ACCEPT IN PRINCIPLE.
See resolution to comment \#80.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 163	SC 163.9.1.1	P176	L34
Mellitz, Richard	Samtec		\# 10021

Cl 163	SC $\mathbf{1 6 3 . 1 0 . 2}$	P184	L24
Mellitz, Richard	Samtec	\# 10024	
Comment Type	TR	Comment Status A	
l			

[Comment resubmitted from Draft 1.0. Subcl. 163.10.2-Pg 177 - In 13]
Table 163-11 was developed for a different data rate and reference package assumption. Recommendation were proposed in mellitz_3ck_01_1119 slide 5
SuggestedRemedy
In Table 163-11 set: beta_x=2.4 GHz , rho_x=. 19
Response Response Status C

ACCEPT IN PRINCIPLE.
See resolution to comment \#80.

SuggestedRemedy

Adopt the value proposed in Dudek_3ck_01_1119 (7.5dB). A presentation will be made providing more information.
Proposed Response Response Status
REJECT.
This comment was WITHDRAWN by the commenter.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.3.1.3	P222	L 37
Dudek, Mike	Marvell		\# 10057

Comment Type T
Comment Status A
ERL
[Comment resubmitted from Draft 1.0. Subcl. 120G.3.1.3-Pg 215 - In 29]
The test fixture delay should be clarified so that the connector is not included in the delay that is removed

SuggestedRemedy

Change "associated with the TP1a test fixture" to from the measurement point TP1a to the beginning of the TP1a test fixture MDI connector".

Response
 Response Status C

ACCEPT IN PRINCIPLE.
"The value of $T_{-} f x$ is twice the delay from the measurement point TP1a to the beginning of the host connector."

Add similar text for the module input and output.
Implement with editorial license.

CI 120G SC 120G.3.1.3	P222	L33	\# 10059	
Dudek, Mike		Marvell		
Comment Type E	Comment Status A		ERL	

Comment Type E Comment Status A
[Comment resubmitted from Draft 1.0. Subcl. 120G.3.1.3-Pg 215 - In 25]
This section labelled Host output effective return loss is referenced by the Module output test, the Host input test and the module input test.
SuggestedRemedy
Either add separate sections for the module output ERL test or broaden the title and text of this section to include the other points. I think it may be better to have two sections one for the Host tests (using the HCB) and one for the Module tests (using the MCB).

Response

Response Status
ACCEPT IN PRINCIPLE.
Create a new ERL subclause for each of the following: host input, module input, and module output using 120G.3.1.3 as a template. Update references appropriately.
Implement with editorial license.

CI 120G SC 120G.3.3	P226	L60	\# 10060

Dudek, Mike Marvell

Comment Type E Comment Status D
[Comment resubmitted from Draft 1.0. Subcl. 120G.3.3-Pg 219 - In 43]
The reference to ERL in table 120G-4 is directly to 120G.3.1.3 but there is a separate section 120G.3.3.1 (but it points directly to 120G.3.1.3 see other comment)

SuggestedRemedy

Either delete section 120G.3.3.1 or change the reference in table 120G-4 to 120G.3.3.1
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI 120G	SC 120G.3.4.1.1	P231	L22
Dudek, Mike	Marvell		\# 10062

Comment Type T Comment Status A

C2M VEC
[Comment resubmitted from Draft 1.0. Subcl. 120G.3.4.1.1-Pg 224 - In 22]
Multiple presentations have shown that the VEC at TP1a is more critical for end to end performance than just the eye opening.

SuggestedRemedy

Add a VEC min specification to Table 120G-8. Value TBD. Move the sentence on line 22 beginnin with "In both cases" to a separate paragraph (to emphasis that it applies to both the high and low loss cases) and change it to "In both cases, the input VEC is less than TBD dB and greater than the value in table 120G-8

Response

Response Status C
ACCEPT IN PRINCIPLE.
Move the sentence to a new paragraph and change to the following:
"In both the low-loss and high-loss cases, the input VEC is less than 9.5 dB and greater than the value in table 120G-8."

Add a VEC min specification to Table 120G-8 and set the value to 9 dB .
Implement with editorial license.

Cl 120G SC 120G.3.3.2.1	P228	L 39
Dudek, Mike	Marvell	

Comment Type T Comment Status A

[Comment resubmitted from Draft 1.0. Subcl. 120G.3.3.2.1-Pg 221 - In 39]
The draft is missing the information for how to set up the stressed receiver input signal.
SuggestedRemedy
Insert the following (modified from 120E.3.3.2.1) " Random jitter and the pattern generator output levels are adjusted (without exceeding the differential pk-pk input voltage tolerance specification as shown in Table 120G-4) to result in the eye height for all three eyes and eye width for the smallest eye given in Table 120G-5 with the setting of the CTLE that maximizes the product of eye height and eye width.
The far-end pre-cursor ISI ratio is measured using the method defined in 120E.3.2.1.2 and it shall meet the
specification in Table 120G-3. Pre-emphasis capability is likely to be required in the pattern generator to
meet this requirement". However consider whether the product of eye height and eye width is the best criteria or whether it would be better to replace "that maximizes the product of eye height and eye width" with "that minimizes the value of vertical eye closure.

Response

Response Status C
ACCEPT IN PRINCIPLE.
Insert the following:
"Random jitter and the pattern generator output levels are adjusted (without exceeding the differential peak-to-peak input voltage tolerance specification as shown in Table 120G-4) to result in the eye height for all three eyes and eye width for the smallest eye given in Table 120G-5 with the setting of the CTLE that minimizes the value of vertical eye closure.
The far-end pre-cursor ISI ratio is measured using the method defined in 120E.3.2.1.2 and it meets the specification in Table 120G-3. Pre-emphasis capability is likely to be required
in the pattern generator to
meet this requirement".

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI 120G	SC 120G.4.2	P233	L6
Dudek, Mike	Marvell	\# 10066	

Dudek, Mike
Comment Type E Comment Status A

The paragraph describing what the measured values of Eye height, Eye width and VEC are is difficult to follow.

SuggestedRemedy

Consider replacing this paragraph with "The measured values of eye height, eye width and vertical eye closure are the values obtained with the combination of gDC and gDC2 that produces an eye height above the target value and the minimum value of vertical eye closure.
Response Response Status C

ACCEPT IN PRINCIPLE.
There was discussion that the eye width should also be included in this algorithm. However, some analysis and consensus building is required.

Replace the paragraph with:
"The values of eye height, eye width and vertical eye closure are the values obtained with the combination of gDC and gDC2 that produces the minimum value of vertical eye closure where eye height also meets the target value."

Cl 163 SC 163.9.1.1	P176	L27	\# 10069	
Wu, Mau-Lin		MediaTek		
Comment Type T	Comment Status D		ERL	

[Comment resubmitted from Draft 1.0. Subcl. 163.9.2.1-Pg 171-In 5]
Current ERL calculation doesn't consider DFE "floating-tap". The concern is the ERL is very sensitive across " N _bx" boundary as raised in wu_3ck_02a_1119. We need to enhance ERL calculation methodology.

SuggestedRemedy

Modify ERL as capable of DFE floating tap as proposed in wu 3ck 01 0120. The same methodology shall be applied to CR TX, CR RX, KR TX, \& KR RX $\bar{E} R L$ calculations in the following subclauses
162.9.3.4 Transmitter effective return loss (ERL) 162.9.4.5 Receiver ERL
163.9.2.1 Transmitter ERL
163.9.3 Receiver characteristics

Proposed Response
Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l 162$	SC 162.11.2	P157	L11
Palkert, Tom	Molex		\# 10079

Palkert, Tom Molex
Comment Type T Comment Status R
Comment resubmitted from Draft 1.0. Subcl. 162.11.2-Pg 150-In 3]
Differential to common-mode return loss, Differential to common mode conversion loss and Common-mode to common-mode return loss are not required if ERL and COM are used to specifiy Cable Assembly characteristics.
SuggestedRemedy
Delete Differential to common-mode return loss, Differential to common mode conversion loss and Common-mode to common-mode return loss from Table 162-13 (Cable assembly characteristics summary)
Response Response Status
REJECT.
The cable assembly Channel Operating Margin (COM) for each lane is derived from measurements of the cable assembly signal, near-end crosstalk and far-end crosstalk paths. COM is computed using the path calculations defined in 162.11.7.1 and the procedure in 93A. 1

The cable assembly signal and crosstalk paths are impacted by the parameters requested to be removed. We have an explicit bound on these parameters with the expectation that a cable assembly meeting ERL, IL, and these specification parameters will pass COM i.e., cable assembly specification parameters independent of COM. At least one benefit of the specification parameters is to enable characterization of the cable assembly by direct measurement.

Cl 120G	SC 120G.4.2	P232	L19
Dawe, Piers	Mellanox		\# 10143

Comment Type T Comment Status A
[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2-Pg 225 - In 46]
Are 1 dB steps for gDC2 fine enough?
SuggestedRemedy
Change to $1 / 2 \mathrm{~dB}$?
Response
Response Status
ACCEPT IN PRINCIPLE
The comment provides no justification for the changing the step size.
However, discussion at the task force meeting was in favor of making the suggested change.

Change the step size for gDC2 to 0.5 dB .

CI 120G	SC 120G.3.2	P224	L50
Dawe, Piers	Mellanox		\# 10144

Comment Type TR Comment Status
[Comment resubmitted from Draft 1.0. Subcl. 120G.3.2-Pg 217 - In 50]
Far-end pre-cursor ISI ratio has not been justified and doesn't fit well with the other C2M specs. Better to choose the reference receiver tap limits wisely.
SuggestedRemedy
Remove the row for far-end pre-cursor ISI ratio from the table.
Response
Response Status C
REJECT.
The reference receivers being discussed does not include precursor equalization and thus will not impact precursor ISI.

The comment does not provide sufficient evidence that removing this parameter will result an interoperable interface.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.4.2	P232	L31
Dawe, Piers	Mellanox		\# 10145

Dawe, Piers		Mellanox
Comment Type	TR \quad Comment Status	

[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2-Pg 226 - In 10]
We need minimum limits for the C2M normalized DFE coefficient magnitudes. We saw for backplane that the minimum limits should be very different to the maximum limits.

SuggestedRemedy

Add bmin limits.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

CI 162	SC 162.11.7	$P 160$	$L 18$
Dawe, Piers	Mellanox		\# 10151

Dawe, Piers Mellanox

Comment Type TR Comment Status R
[Comment resubmitted from Draft 1.0. Subcl. 162.11.7-Pg 152 - In 45]
40 UI span was chosen to fit data on backplane channels, and is excessive even for them. Cable channels are smoother. Very short low loss cables should pass easily anyway.

SuggestedRemedy

Change 40 to an appropriate number, e.g. 24
Response Response Status C
REJECT.
The comment does not provide sufficient evidence to support the proposed change.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI 120G	SC 120G.4.2	P232	L36
Dawe, Piers	Mellanox		\# 10156

| Dawe, Piers | Mellanox |
| :--- | ---: | ---: |
| Comment Type \quad TR Comment Status | |

[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2-Pg 226 - In 13]
This recipe is a weird combination of the existing C2M measurement method and COM, which is a simulation not a measurement method, for channels not signals, and for backplanes with transmitter training not low power C2M.

SuggestedRemedy

Unless someone can show that it works, change to the CTLE/FFE method as in OIF CEI-112G-VSR.
Response Response Status C
REJECT.
The methodology specified is consistent with the adopted baseline (DFE not FFE).
The related motion is replicated here:
November 2019 Motion \#6
Move to adopt slides 5, 7, 8, 12 of sun_3ck_01b_1119 as a C2M baseline, with the following exceptions:...
$\mathrm{Y}: 49, \mathrm{~N}: 0, \mathrm{~A}: 5$
The comment does not provide evidence to support the proposal in the suggested remedy.
There is no support for the suggested remedy.

Cl 120G SC 120G.4.2	P232	L19		
Dawe, Piers		Mellanox	\# 10157	
Comment Type	TR	Comment Status A		RR ctle

[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2-Pg 225 - In 44]
This allows combinations such as $\mathrm{gDC}=-3, \mathrm{gDC} 2=-3$ that should not happen, receivers don't need to design for, and waste time in the "for each valid combination of gDC and gDC2" measurement procedure.

SuggestedRemedy

Limit the combinations:
gDC2 gDC
0 or 13 to 14
$2 \quad 6$ to 14
$3 \quad 9$ to 14
Response Response Status
ACCEPT IN PRINCIPLE.
Based on discussions at the task force meeting the implement following.
For TP1a reference receiver, update the the gDC and gDC2 specifications to allow the following combinations only:
gDC2 | gDC
0: | -2 to -9
-1: | - 2 to -12
2: | - 4 to - 12
-3: | -8 to -13

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G SC 120G.3.2	P224	L 28	\# 10191	Cl 120G		P224	L36	\# 10193	
Ghiasi, Ali	Ghiasi Quantum/Inphi			Ghiasi,		Ghiasi	hi		
[Comment resubmitted from Draft 1.0. Subcl. 120G.3.2-Pg 217 - In 28]				[Comment resubmitted from Draft 1.0. Subcl. 120G.3.2-Pg 217 - In 28]				C2M vec	
Need improve test methdology for moulde ouptut compliance				Module output VEC is TBDs and need values					
SuggestedRemedy				SuggestedRemedy					
See ghiasi_3ck_03_0120				See ghiasi_3ck_03_0120 and					
Proposed Response Response Status Z				Near end TP4 VEC $=7.0 \mathrm{~dB}$ Far end TP5-L1 VEC $=7.5 \mathrm{~dB}$					
REJECT.				Far end TP5-L2 VEC $=7.5 \mathrm{~dB}$					
This comment was WITHDRAWN by the commenter.				Proposed Response Response Status Z					
Cl 120G SC 120G.3.2 P224				REJECT.					
Ghiasi, Ali Ghiasi Quantum/Inphi				This comment was WITHDRAWN by the commenter.					
Comment Type TR Comment Status D C2M eye opening [Comment resubmitted from Draft 1.0. Subcl. 120G.3.2-Pg 217 - In 28]				Cl 120G		P227	L20	\# 10194	
				Ghiasi, Ali Ghiasi Quantum/Inphi					
Module output EH is TBDs and need values				Comment Type TR Comment Status D C2M eye opening					
SuggestedRemedy				[Comment resubmitted from Draft 1.0. Subcl. 120G.3.3.2-Pg 220 - In 6]					
See ghiasi_3ck_03_0120 and Near end TP4 EH = 50 mV Far end TP5-L1 EH $=32 \mathrm{mV}$ Far end TP5-L2 EH= 20 mV				Far end eye height is TBD					
Proposed Response REJECT.	Response Status Z			Proposed Response Response Status Z					
	REJECT.			REJECT.					
This comment was WITHDRAWN by the commenter.				This comment was WITHDRAWN by the commenter.					

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 120G	SC 120G.3.4.1	P229	L36
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 10195	

Comment Type TR Comment Status D C2M eye opening
[Comment resubmitted from Draft 1.0. Subcl. 120G.3.4.1-Pg 222 - In 32]
Module stress input eye height is TBD
SuggestedRemedy
Replace TBD with 15 mV @ nominal VEC of 8.5 dB
Add 2nd test condition 30 mV @ nominal VEC of 11 dB
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Cl 120G	SC 120G.4.2	P232	L15
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 10197	

Comment Type TR Comment Status D

[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2-Pg 226 - In 40]
gDC max gian of 14 dB is unecessary with a DFE receiver and channel $<=16 \mathrm{~dB}$
SuggestedRemedy
12 dB would be more than adequete and with further study we can even further reduce the gDC.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

CI 120G	SC 120G.4.2	P232	L19
Ghiasi, Ali	Ghiasi Quantum/Inphi	\# 10199	

Comment Type TR Comment Status D
[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2-Pg 226 - In 40]
To speed up testing and eliminating weired cases one should gDC/gDC2 combinations

SuggestedRemedy

See ghiasi_3ck_03_0120 for table of allowed CTLE combinations.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

$C l 162$	$S C 162.8 .11$	P145	$L 34$	\# 10247

Ran, Adee Intel

Comment Type T Comment Status R
[Comment resubmitted from Draft 1.0. Subcl. 162.8.11-Pg 138 - In 32]
The PMD control function as currently specified is only effective during start up.
Operation across a wide range of temperatures in some environments may cause slow changes in channel and device characteristics that may require occasional changes of the Tx equalization, preferably without link flaps. It would be good to enable doing it while the link is up.

In Data mode, the startup (training) protocol is inactive. We can specify that when mr_training_en set to 0, instead of exchanging the control and status fields through the protocol, these fields will be written to and read from management registers if MDIO is implemented. Management can relay the control and status fields to/from the link partner through higher level messaging (such as LLDP)

A detailed proposal is planned, but the requested addition in the PMD clauses is a subclause for behavior of the PMD control function when training is false (data mode).

SuggestedRemedy

Add the following paragraphs:
When the training variable is set to false (see 136.8.11.7.1), the PMD control function may optiionally continue using Equalization control as defined 136.8.11.4 in the SEND_DATA state, using MDIO registers or alternative methods to exchange control and status fields with the link partner instead of the training frame specified in 136.8.11.1.

NOTE--When training is false, any update to variables corresponding to a change of the Modulation and precoding request bits or the Initial condition request bits, or to setting the Coefficient request bits to "No equalization", can be disruptive to a network.
Response
Response Status C

REJECT.
There is no consensus to make the proposed changes at this time.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C / 162$	$S C 162.9 .3$	$P 147$	$L 10$
Ran, Adee	Intel	\# 10249	

Ran, Adee Intel

Comment Type T Comment Status D
[Comment resubmitted from Draft 1.0. Subcl. 162.9.3-Pg 140 - In 10]
The maximum step size of 2% for a PAM4 equalizer creates a significant increase in complexity for a DAC-based transmitter implementation, compared to the step size allowed in the 802.3cd specs.

A PAM4 DAC with the 2.5% specification in 802.3 cd is required to be able of outputting $6 / 0.025=240$ possible values, while with a 2% step size it is requires $6 / 0.02=300$ possible values. This means an additional bit should be used in the logic implementing the FFE and DAC control, and the analog circuits should enable more combinations.

The estimated cost in power consumption of the FFE+DAC logic and analog circuits from this small change in resolution, with a non-naive design, is about 0.3-0.4 pJ/bit. This additional power is going to be consumed regardless of the channel in question.

The benefit from this finer resolution has not been analyzed thoroughly enough to justify such an increase in implementation burden and power consumption.

SuggestedRemedy

Change the (max.) values for $\mathrm{c}(-3)$ to $\mathrm{c}(0)$ to 0.024 (which can be met with a DAC capable of 256 output values).

Proposed Response Response Status Z

REJECT.
This comment was WITHDRAWN by the commenter.
Cl $162 \quad$ SC 162.9.3 \quad P147
Ran, Adee Intel

Comment Type T Comment Status D

[Comment resubmitted from Draft 1.0. Subcl. 162.9.3-Pg 140 - In 24]
Maximum for even-odd jitter is specified here. This is mainly required for transmitters which are driven by a half-rate clock.

For >53.1 GBd signaling, $\mathrm{a}>26.3 \mathrm{GHz}$ clock is needed to drive the transmitter clock in halfrate. This is a high frequency for current CMOS processes and implementations with quarter-rate clocking (13.3 GHz clock) should be considered.

With quarter-rate signaling, even if the even-odd jitter (mismatches between phases 0:2 and between $1: 3$) is controlled to meet the specifications, the quadrature jitter (mismatches between phases $0: 1$ and between 2:3) can be large, and the current even-odd jitter measurements do not cover this impairment.

We need to limit quadrature jitter so a similar portion of the UI.
New specification for quadrature jitter will be provided in future contributions. I assume it will be similar to the EOJ measurment with slight modifications. For the time being the measurement method can be left as TBD.

SuggestedRemedy

Add a line for "Quadrature jitter, Pk-Pk", with subclause reference TBD, and value 0.019 UI.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

CI 120G SC 120G.4.2	P232	L3
Hidaka, Yasuo	Credo Semiconductor	\# 10273

Hidaka, Yasuo
Comment Type

[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2-Pg 225 - In 28]
Our study showed that VEC (vertical eye closure) is not a good performance metric of whole link performance, if we take account of receiver impairments. This is partly because VEC is not a function of channel insertion loss. EVEC (effective vertical eye closure) as proposed in sun_3ck_02_1119.pdf (page 3) is a better alternative, because it takes account of EH (eye height) as an indicator of channel insertion loss.

SuggestedRemedy

Replace "Vertical eye closure (max)" in Table 120G-1 with "Effective vertical eye closure (max)".
Add a sub section to define effective vertical eye closure.
A presentation of a detail proposal will be given at the January meeting.
Proposed Response
Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.
CI 120G SC 120G.4.2 P232 L33
Hidaka, Yasuo Credo Semiconductor

Comment Type TR Comment Status D

RR noise
[Comment resubmitted from Draft 1.0. Subcl. 120G.4.2 - Pg 226 - In 28]
In the performance study at TP1a in sun 3ck 02 1119.pdf, eta 0 noise of 8.20E-9
$V^{\wedge} 2 / \mathrm{GHz}$ was added at the CTLE input. However, eta 0 noise is not added in the reference recever described in 120G.4.2. If we do not add the eta_0 noise in the reference receiver in the scope, measurd eye opening will be larger than the performance study. This will creat a hole in the specification.

An easy fix is to add eta_0 noise in the reference receiver.
Another option is to re-do the performance study without eta_0 noise in the reference receiver in order to estimate the performance accurately, but it will take time. I recommend to add eta_0 noise in the reference receiver for now. We can remove it later, after we finish re-doing the performance study without eta_0 noise in the reference receiver.

SuggestedRemedy

Add eta 0 noise of $8.20 \mathrm{E}-9 \mathrm{~V}^{\wedge} 2 / \mathrm{GHz}$ to table 120G-9.
Add a step to add eta 0 noise after step b in page 226 .
Here, eta_0 noise is a gaussian noise consistent with the third term of (93A-41).
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

$C l$			
162	SC 162.11.2	P157	L15
DiMinico, Christopher	MC Communications	\# 10276	

Comment Type T Comment Status D
 [Comment resubmitted from Draft 1.0. Subcl. 162.11.2-Pg 150 - In 6]

Comment\#2
Min Cable/PCB calculation for 802.3cd assumed linear scaling for cable and PCBs.
Use same Cable/PCB IL assumptions for Max/Min Cable Assembly
Table 162-13-Cable assembly characteristics summary [Minimum insertion loss at 26.56 GHz 162.11.2 11.09 dB] Table 162A-1-Insertion loss budget values at 26.56 GHz [ILCamin 11.09 dB]

SuggestedRemedy

See diminico_3ck_2_0220.pdf
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

| $C l$ 162B | SC 162B.1.3 | P245 | L25 10277 |
| :--- | :--- | :--- | :--- | :--- |

DiMinico, Christopher MC Communications

Comment Type TR Comment Status D

[Comment resubmitted from Draft 1.0. Subcl. 162B.1.3-Pg 235 - In 24]
Annex 162B 162B.1.3 Mated test fixtures
Provide values for TBDs;
162B.1.3.1 Mated test fixtures differential insertion loss Equation (162B-3) and Equation 162B-5)
162B.1.3.3 Mated test fixtures common-mode conversion insertion loss Equation (162B-9)
162B 1 3.5 Mated test fixtures common-mode to differential mode return loss Equation
(162B-10).
SuggestedRemedy
See diminico_3ck_1_0220.pdf.
Proposed Response Response Status \mathbf{Z}
REJECT.
This comment was WITHDRAWN by the commenter.

