C/ 163A SC 163A.3.1.1 # 1 P 287 L 21 Samtec Mellitz, Richard

Comment Type TR Comment Status A TP0v/TP5v method (WG) Equation 163A-3 seems incorrect for a pulse response, h(t). Viref is intended to be a scalar not a vector function of t. I believe the idea is to be just add up Nv UI(T b) shifted

pulse responses. SuggestedRemedy

In Equation 163A-3:

Replace V f^(ref) with V f Nv(t).

V f^(ref) is the last value of v(t).

Or

 $V f^{(ref)} = V f Nv(T s+nV*T b)$

This would require defining T s in the prior paragraph as the time where h(t) reaches the peak value.

Response Status C Response

ACCEPT IN PRINCIPLE.

Reconcile Equation 163A-3 with the definition in 120D.3.1.4 with editorial license.

C/ 163A SC 163A.3.1 P 286 L 16 Mellitz. Richard Samtec

Comment Status R TP0v/TP5v method (WG) Comment Type

Figure 163A-3 is confusing and not entirely correct for ERL. The filter used for ERL is F r not F BT. The ifft is for a reflection and hard to show in the diagram.

SuggestedRemedy

Omit reference to ERL in the first sentence of 163A.3.1 and figure 163A-2.

Add a line at end of 163-A-3.1.

The differential return loss at TP0v is used to compute ERL. The channel used to compute ERL is the reference channel S^(0) cascaded with the parallel circuit for Rd.

Response Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

C/ 163A SC 163A.4.1 L 1 P 289 # 3

Mellitz, Richard Samtec

Comment Type TR Comment Status R TP0v/TP5v method (WG)

Figure 164A-3 is confusing and not entirely correct for ERL. The filter used for ERL is F r not F BT. The ifft is for a reflection and hard to show in the diagram.

SuggestedRemedy

Omit reference to ERL in the first sentence of 164A.3.1 and figure 164A-2.

Add a line at end of 164-A-3.1.

The differential return loss at TP5v is used to compute ERL. The channel used to compute ERL is the reference channel S^(0) cascaded with the parallel circuit for Rd.

Response Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

C/ 120G SC 120G.5.2 P 246 1 23 Mellitz, Richard Samtec

Comment Type TR Comment Status A EO method (bucket?)

Step h and j in 120G.5.2 Eye opening measurement method indicate "over the time interval ts s ± 0.05 UI and not "within 0.025 UI of time TCmid" Comment 41 was resolved with "Alt. 2" with TBD = 50 mUI from healey 3ck 02 1020 indicating 1 window around Ts for histogram measurements.

SuggestedRemedy

remove "and not within 0.025 UI of time Tcmid from steps h and j in 120G.5.2

Response Response Status C

ACCEPT IN PRINCIPLE.

The reference text is intended to point out that the phase "within 0.025 UI of time TCmid" is no longer relevant. However, as written it is somewhat ambiguous.

Change: 'and not "within 0.025 UI of time TCmid" To: 'instead of "within 0.025 UI of time TCmid"

C/ 120G SC 120G.3.1 P 231 L 17 # 5 C/ 162B SC 162B.1.3.2 P 262 L 43 Samtec Marvell Mellitz, Richard Dudek, Mike Comment Type TR Comment Status A EH/VEC (bucket3) Comment Type TR Comment Status A MTF ERL (bucket2) EH and VEC need be to computed for the histogram window. The ERL of the mated test fixture should be significantly better than the specification for the ERL of the device under test. The ERL of the QSFP-DD improved connector used for SuggestedRemedy channel modeling in e.g Didel 3ck 01 0320. has an ERL of 15.7dB. Change Eve height, differential (min) to 10 mV SuggestedRemedy Change Vertical eye closure (max) to 13 dB Change TBD to 14dB. Also put this in TF2 of the PICS. Presentation available Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. ACCEPT IN PRINCIPLE. Resolve using the response to comment #146 and #40. Resolve using the response comment #112. SC 162B.1 C/ 162B P 259 L 17 # C/ 162D SC 162D.1.1 P 283 L 31 Dudek. Mike Marvell Dudek. Mike Marvell Comment Type TR Comment Status A Comment Type T Comment Status A test fixture (bucket1) editorial (bucket1) The measurements at TP1 or TP4 etc. are made with the Cable Assembly Test fixture The 100GBASE-CR2 in the Title of Table 162D-3 should be 200GBASE-CR2. (162B.1.2) not the mated test fixture (162B.1.3) SuggestedRemedy SuggestedRemedy Change it On line 18 change 162B.1.3 to 162B.1.2 Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. ACCEPT. Change Title of Table 162D-3 to "200GBASE-CR2". C/ 162D SC 162D.1.1 L 50 C/ 162B SC 162B.1.3.2 P 262 L 41 # P 283 # 10 Dudek, Mike Marvell Dudek, Mike Marvell Т Comment Status A MTF ERL reference (bucket1) Comment Type Comment Status D withdrawn Comment Type There is an unfortunate page break in the middle of Table 162D-3 Table 162B-2 is related to crosstalk parameters not ERL SuggestedRemedy SuggestedRemedy Adjust formatting so that this table is all on one page Change 162B-2 to 162B-1 (two places0 Proposed Response Response Response Status C Response Status Z PROPOSED REJECT. ACCEPT. This comment was WITHDRAWN by the commenter.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 10

Page 2 of 40 2021-02-16 9:15:40 PM

C/ 163A SC 163A.4.1.2 L 46 # 11 C/ 120G SC 120G.3.1.5 P 233 L 17 P 289 # 14 Dudek, Mike Marvell Dudek, Mike Marvell Comment Type E Comment Status A editorial (bucket1) Comment Type TR Comment Status A TP1a EH/VEC EO XTALK missing space between "in" and "93A.5" The host output signal should be measured with a crosstalk signal equivalent to the largest and fastest signal that a module is allowed to create and the crosstalk signal risetime SuggestedRemedy should be measured from 20% to 80%. fix it SuggestedRemedy Response Response Status C Change to a target differential peak-to-peak amplitude of 900mV and the slew time to be 7.5ps measured between -270mV and +270mV ACCEPT. Response Response Status C P 291 C/ 163B SC 163B.2 L 9 # 12 ACCEPT IN PRINCIPLE. Dudek, Mike Marvell Comments 14, 84, 62, 68, and 124 propose a variation of values. Comment Type TR Comment Status A "P0v/TP5v example (bucket1) With this example test fixture moved to an Annex it is necessary to refer to the relevant The following presentation provides a summary of the proposals: clause that provides the package parameters etc. https://www.ieee802.org/3/ck/public/adhoc/ian20 21/brown 3ck adhoc 02a 012021.pdf SuggestedRemedy Implement the following with editorial license. Change "For this test fixture, the reference values determined according to the Calibrate the host output and module stressed input crosstalk parameters using transition methodology in 163A.3 are listed in Table 163B-1" to "For this test fixture, the reference time with peak to peak voltage of 900 mV and transition time of 8.5 ps. values determined according to the methodology in 163A.3 using the parameters supplied in Clause 163 are listed in Table 163B-1" Straw poll #14 Response Response Status C For TP1a. I support using the following basis for crosstalk calibration: A: transition time (per Annex 120E) ACCEPT. B: slew time (time between specified voltage thresholds) A: 28 B: 2 C/ 120G SC 120G.3.2 P 234 L 10 # 13 SC 120G.1 P 229 Dudek, Mike Marvell C/ 120G L 3 # 15 Comment Type Comment Status A editorial (bucket1) Marvell Dudek, Mike The references for both near and far eye measurements in table 120G-3 are to the host Comment Type Ε Comment Status A editorial (bucket1) output. They should be to the module output Clause 116.1.4 is included in the draft and should be a hot link SuggestedRemedy SuggestedRemedy Change the reference from 120G.3.1.5 to 120G.3.2.2 Make this a hot link. Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. ACCEPT. In Table 120G-3, for rows for NE EH, NE VEC, FE EH, and FE VEC change the reference

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

from "120G.3.1.5" to "120G.3.2.2".

C/ 120G SC 120G.1 P 229 L 2 # 16

Dudek, Mike Marvell

Comment Type TR Comment Status A editorial (bucket?)

135.1.5 does not appear to exist and if it did it is unlikely to include these AUI's

SuggestedRemedy

Change the reference from 135.1.5 to 135.1.4 and make it a hot link and either remove the reference to a tabke or create a table that summarizes the use of the 100GAUI whithin 135.1.4

Response Response Status C

ACCEPT IN PRINCIPLE.

The reference should be to 80.1.5, not 135.1.5.

Change "135.1.5" to "80.1.5" and make it an active cross-reference.

Import Table 80-4a from 802.3cu and update with columns for 100GAUI-1 C2M and C2C. Implement with editorial license.

C/ 120G SC 120G.3.2.2 P235 L34 # 17

Dudek, Mike Marvell

Comment Type TR Comment Status A

TP4 EO XTALK

The module near-end output signal should be measured with a crosstalk signal equivalent to the largest and fastest signal that the host can supply. The risetime for the far -end signal can be slower.

SuggestedRemedy

Change "The crosstalk generator is calibrated at TP1a (without the use of a reference receiver) with target differential peak-to-peak amplitude of TBD mV and target transition time of TBD ps." to "The crosstalk generator is calibrated at TP1a (without the use of a reference receiver) with target differential peak-to-peak amplitude of 870 mV and target transition time of 7.5 ps for the near end measurement and target transition time of 15 ps for the far-end measurement."

Response Status C

ACCEPT IN PRINCIPLE.

Comments 17, 63, 69, 86, 127 propose values for these parameters.

The following presentation provides a summary of the proposals: https://www.ieee802.org/3/ck/public/adhoc/jan20 21/brown 3ck adhoc 02a 012021.pdf

The following additional presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/21 01/dudek 3ck 01 0121.pdf

Implement the following with editorial license.

Calibrate the module output and host stressed input crosstalk parameters using transition time with peak to peak voltage of 870 mV and transition time of 10 ps.

Cl 120G SC 120G.3.3.2 P 238 L 6 # 18

Dudek, Mike Marvell

Comment Type T Comment Status A TP4a SIT

The host only needs to meet either the near-end or far-end parameters. This should be clear in this "shall" statement.

SuggestedRemedy

Change "The input shall satisfy the input tolerance with the parameters in Table 120G–7" to The input shall satisfy the input tolerance with either the near-end or the far-end parameters in Table 120G–7"

Response Status C

ACCEPT IN PRINCIPLE.

This comment proposes a technical change to the draft that does not address technical completeness.

A statement later in the subclause indicates that the host input need only meet one of the two stressors. See page 239 line 38.

However, it would be helpful to point out the same in this normative statement as well to avoid confusion.

Implement the suggested remedy with editorial license.

Cl 120G SC 120G.3.3.2.1 P 238 L 54 # 19

Dudek, Mike Marvell

Comment Type TR Comment Status A TP4a SIT XTALK (bucket3)

The crosstalk used in the calibration of the host stressed signal should match the crosstalk used for the test for the module output

SuggestedRemedy

Change "The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target amplitude of TBD mV peak-to-peak differential and 20% to 80% target transition time of TBD ps." to "The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target differential peak-to-peak amplitude of 870 mV and target transition time of 7.5 ps for the near end calibration and target transition time of 15 ps for the far-end calibration"

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 19

Page 4 of 40 2021-02-16 9:15:40 PM

C/ 120G SC 120G.3.4.1.1 P 242 L 2 # 20 C/ 162 SC 162.9.3 P 152 L 30 # 23 Huawei Dudek, Mike Marvell Brown, Matt Comment Type TR Comment Status A P1 EH/VEC XTALK (bucket3) Comment Type T Comment Status A TX RLCD The crosstalk used in the calibration of the module stressed signal should match the In Table 162-10, the specified value for transmitter common-mode to differential mode crosstalk used for the test for the host output return loss is TBD. SuggestedRemedy SuggestedRemedy Change to "a target amplitude of 900mV differential peak-to-peak and target slew time Provide a value or equation and update PICS. between -270mV and +270mV of 7.5ps" Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. ACCEPT IN PRINCIPLE. Resolve using the response to comment #118. Resolve using the response to comment #14. C/ 162 SC 162.9.4 P 158 L 16 C/ 120G SC 120G.1 L 5 P 229 Brown, Matt Huawei Dudek, Mike Marvell Comment Type T Comment Status A RX RI CD Comment Status A Comment Type E editorial (bucket1) In Table 162-13, the specified value for receiver differential to common-mode return loss is Annex 135A and 120A are part of this draft. SuggestedRemedy SuggestedRemedy Make these references hot links. Provide a value or equation and update PICS. Response Response Response Status C Response Status C ACCEPT. ACCEPT IN PRINCIPLE. Resolve using the response to comment #119. C/ 162B SC 162B.1 # 22 P 259 L 17 C/ 162 SC 162.11 P 163 L 17 Dudek, Mike Marvell Brown, Matt Huawei Comment Type TR Comment Status A test fixture (bucket?) CA ERL (bucket2) Comment Type T Comment Status A The measurements at TP2 or TP3 etc. are made with the Test fixture (162B.1.1) not the In Table 162-16, the specified value for cable assemby ERL is TBD mated test fixture (162B.1.3) SuggestedRemedy SuggestedRemedy Provide a value or equation and update PICS. On line 17 change 162B.1.3 to 162B.1.1 Response Response Response Status C Response Status C ACCEPT IN PRINCIPLE. ACCEPT IN PRINCIPLE. Resolve using response to comment#103 Change the first two sentences of 162B.1 as follows:

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Transmitter and receiver measurements at TP2 or TP3 for the 100GBASE-CR1, 200GBASE-CR2, and 400GBASE-CR4 hosts (see Annex 162D) and at TP1a or TP4a for the 100GAUI-1, 200GAUI-2, and 400GAUI-4 C2M hosts (see Annex 120G), are made utilizing the test fixture specified in 162B.1.1. Cable assembly measurements for the cable assembly types (see Annex 162D) are made between TP1 and TP4 with test fixtures as

specified in 162B.1.2 on both ends.

Comment ID 25

Page 5 of 40 2021-02-16 9:15:40 PM

C/ 163 SC 163.9.3 P 187 L 41 # 26 C/ 120F SC 120F.3.2.3 L 44 P 218 # 29 Huawei Huawei Brown, Matt Brown, Matt Comment Type Т Comment Status A RX RLCD Comment Type T Comment Status A RIT IL (bucket3) In Table 163-8, the specified value for receiver differential to common-mode return loss is The editor's note written in D1.0 indicates that the IL for stressed input test 2 (high loss) requires no confirmation. No proposals to change the specified values have been submitted. SuggestedRemedy SuggestedRemedy Provide a value or equation and update PICS. Remove the editor's note. Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. Resolve using response to comment #121 ACCEPT IN PRINCIPLE. Resolve using the response to comment #135. C/ 163 SC 163.10.4 P 192 L 44 # 27 C/ 120F SC 120F.4.2 P 222 L4 # 30 Huawei Brown, Matt Brown, Matt Huawei Comment Type T Comment Status A channel II DC Comment Type T Comment Status A channel IL (bucket3) The specified value for channel differential to common-mode conversion loss is TBD. The editor's note written in D1.0 indicates that the channel maximum insertion loss requires SuggestedRemedy further investigation. No proposals to change the specification have been submitted. Provide a value or equation and update PICS. SuggestedRemedy Response Response Status C Remove the editor's note. ACCEPT IN PRINCIPLE. Response Response Status C Resolve using the response to comment #122 ACCEPT IN PRINCIPLE. Resolve using the response to comment #135. C/ 120F SC 120F.3.1.2 P 214 L 35 # 28 Brown, Matt Huawei C/ 120F SC 120F.4.3 P 223 L 5 # 31 Comment Type T Comment Status A TX EQ (bucket3) Brown, Matt Huawei The editor's note written in D1.0 indicates that the transmitter c(-3) tap should be removed Comment Type T Comment Status A channel ERL (bucket3) if it is shown to have no value. There have been no proposals accepted to remove the tap. The specified value for channel ERL is TBD. SuggestedRemedy SuggestedRemedy Remove the editor's note. Provide a value and update PICS. Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. ACCEPT IN PRINCIPLE. Resolve using the response to comment #134. Resolve using the response to comment #123.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 31

Page 6 of 40 2021-02-16 9:15:40 PM

C/ 120G SC 120G.3.1 P 231 L 33 # 32 C/ 120G SC 120G.3.2 P 234 L 32 # 35 Huawei Huawei Brown, Matt Brown, Matt TP4 AC CM noise Comment Type Т Comment Status A CM noise, PP voltage, RLCC Comment Type т Comment Status A The editor's note written in D1.0 indicates that the specified values for host output AC CM The editor's note indicates that the value specified for the module output AC CM noise noise. PP output voltage, and RLCC require confirmation. No proposals to change the requires confirmation. No proposals to change the specified values have been accepted. specified values have been submitted. However, it should be noted that there is ongoing discussion on this topic. SuggestedRemedy SuggestedRemedy Remove the editor's note. Remove the editor's note. Response Response Response Status C Response Status C ACCEPT. ACCEPT IN PRINCIPLE. Resolve using the response to comment #126. SC 120G.3.1.5 P 233 L 17 # 33 C/ 120G C/ 120G SC 120G.3.2.2 P 235 L 33 # 36 Brown, Matt Huawei Brown, Matt Huawei Comment Type T Comment Status A EH/VEC EO XTALK (bucket3) TP4 EO XTALK (bucket3) Comment Type T Comment Status A The specified values for the host output EH/VEC crosstalk parameters (4x) are TBD. The specified values for the module output EH/VEC crosstalk parameters (2x) are TBD. SuggestedRemedy SuggestedRemedy Provide values. Provide values. Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. ACCEPT IN PRINCIPLE. Resolve using the response to comment #14. Resolve using the response to comment #17. C/ 120G SC 120G.3.2 L 17 # 34 P 234 C/ 120G SC 120G.3.3.2.1 L 54 P 238 # 37 Huawei Brown, Matt Brown, Matt Huawei Comment Type т Comment Status A TP4 ERL (bucket3) Comment Type Comment Status A TP4a SIT XTALK (bucket3) In Table 120G-3, the specified value for ERL at module output (TP4) is TBD. The specified values for the host stressed input crosstalk parameters (2x) are TBD. SuggestedRemedy SuggestedRemedy Provide a value and update PICS. Provide values. Response Response Status C Response Response Status C ACCEPT IN PRINCIPLE. ACCEPT IN PRINCIPLE. Resolve using the response to comment #125. Resolve using the response to comment #17.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 37

Page 7 of 40 2021-02-16 9:15:40 PM

CI 120G SC 120G.3.4 P240 L17 # 38

Brown, Matt Huawei

Comment Type T Comment Status A TP1 ERL (bucket3)

In table 120G-9, the specified value for module input ERL (min) is TBD.

SuggestedRemedy

Provide a value.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #125.

Cl 120G SC 120G.3.4.1.1 P 242 L 2 # 39

Brown, Matt Huawei

Comment Type T Comment Status A P1 EH/VEC XTALK (bucket3)

The specified values for the module stressed input crosstalk parameters (4x) are TBD.

SuggestedRemedy

Provide values.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

Cl 120G SC 120G.5.2 P 246 L 38 # 40

Brown, Matt Huawei

Comment Type T Comment Status A

EH/VEC

The editor's note indicates that the specified values for EH/VEC value may need to be updated due to measurement method being updated in D1.4.

SuggestedRemedy

Provide updated values for host output, module output, host input, and module input if necessary and remove editor's note.

Response Status C

ACCEPT IN PRINCIPLE.

Many comments propose new values for EH and VEC at TP1a, TP1, TP4, and TP4 as summarized in the presentation brown_3ck_01_0120.

Comment #146 adopted EH/VEC values with two PCB lengths for each module output setting.

Implement the following with editorial license:

For the host stressed input:

- For test with module output long setting requested, for calibration use PCB length 244.7 mm with EH of 15 mV and VEC range of 12 dB to 12.5 dB.
- For test with module output short setting requested, for calibration use PCB length 160 mm with EH of 15 mV and VEC range of 12 dB to 12.5 dB.

For the host output, set values as follows:

EH (min) = 10 mV

VEC (max) = 12 dB

For the module stressed input test calibration, set values as follows:

EH = 10 mV

VEC range of 12 dB to 12.5 dB

Straw poll #1:

For TP1a EH, I support the following value:

A: 9 mV

B: 9.5 mV

C: 10 mV

Chicago rules.

A: 7 B: 4 C: 29

Straw poll #2:

For TP1a VEC. I support the following value:

A: 12 dB

B: 12.6 dB

C: 14 dB

Comment ID 40

Page 8 of 40 2021-02-16 9:15:40 PM

Chicago rules.

A: 28 B: 14 C: 6

Straw poll #3:

For TP4 NE/FE EH, I support the following value:

A: 17/17 mV B: 22/11 mV

C: 25/15 mV

Chicago rules. A: 7 B: 4 C: 17

C/ 162B SC 162B.1.3.1

P **262**

L **36**

41

Brown, Matt Huawei

Comment Type T Comment Status A MTF FOMILD (bucket3)

The specified value for MTF FOM_ILD upper limit is TBD.

SuggestedRemedy

Provide a value.

Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #111.

C/ 162B SC 162B.1.3.2

P **262** L **43**

3 # 42

Brown, Matt Huawei

Comment Type T Comment Status A MTF ERL (bucket2)

The specified value for MTF ERL is TBD.

SuggestedRemedy

Provide a value and update PICS.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response comment #112.

C/ 162C SC 162C.2.2

.2.2

L 12

43

Brown, Matt Huawei

Comment Type T Comment Status A MDI graphic (bucket?)

P 275

The graphics in Figure 162C-3 and Figure 162C-44 are missing.

SuggestedRemedy

Provide graphics.

Response Status C

ACCEPT IN PRINCIPLE.

Insert graphics provided in the following presentation:

https://www.ieee802.org/3/ck/public/21_01/diminico_3ck_03_0121.pdf

C/ 163B SC 163B.2

P **291**

L 18

44

Brown, Matt Huawei

Comment Type T Comment Status A

'P0v/TP5v example (bucket3)

For the example test fixture, the reference value in Table 163B-1 for transmitter steadystate voltage is TBD.

SuggestedRemedy

Provide a value.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #132.

C/ 163B SC 163B.2

P **291**

L 20

45

Brown, Matt Huawei

Comment Type T

•

Comment Status A

'P0v/TP5v example (bucket3)

For the example test fixture, the reference value for transmitter linear fit pulse peak voltage is TBD.

SuggestedRemedy

Provide a value.

Response

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #132.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 45

Page 9 of 40 2021-02-16 9:15:40 PM

C/ 162 SC 162.9.4.1 P158 L 23 # 46

Brown, Matt Huawei

Comment Type T Comment Status A rate tolerance (bucket1)

The list of related subclauses should include 162.9.4.2.

SuggestedRemedy

Change "162.9.4.3 and 162.9.4.4" to "162.9.4.2. 162.9.4.3. and 162.9.4.4".

Response Status C

ACCEPT.

C/ 120F SC 120F.3.1 P 212 L 50 # 47

Brown, Matt Huawei

Comment Type T Comment Status A editorial (bucket?)

The following sentence is repeated in both 120F.3.1 and 120F.3.1.2. "The state of the transmitter equalizer may be configured via the transmitter control interface described in 120F.3.1.4."

SuggestedRemedy

Delete the sentence in 120G.3.1.

Response Status C

ACCEPT IN PRINCIPLE.

[Editor's note (to be removed prior to closing comment): 2021/2/1 Updated response. Removed from bucket #1.]

The suggested remedy should refer to 120F.3.1, not 120G.3.1.

The wording of the sentence in 120F.3.1 and 120F.3.1.2 is not identical, however both sentences are intended to convey the same message and both are not required.

In 120F.3.1 "The transmit output waveform may be manipulated via the transmitter control interface described in 120F.3.1.4."

In 120F.3.1.2 "The state of the transmitter equalizer may be configured via the transmitter control interface described in 120F.3.1.4."

Delete the sentence in 120F.3.1.

Cl 136 SC 136.8.11.7.1 P 114

Lusted, Kent Intel Corporation

Comment Type TR Comment Status A training (bucket1)

L 37

48

Based on the link training change proposed in

https://www.ieee802.org/3/ck/public/20_10/lusted_3ck_02_1020.pdf, a new variable "use_quiet_in_training" was defined in Clause 136.8.11.7.1. This variable has an explicit setting of FALSE for 50 Gb/s per lane PHYs. However, no specific mention of the variable value is made for 100 Gb/s per lane PHYs. This could lead to confusion in the industry as some vendors may interpret the "use_quiet_in_training" capability as optional to implement, while it was intended to be mandatory for 100 Gb/s per lane PHYs.

SuggestedRemedy

In Cl 162.8.11, add a new entry to the list as follows:

h) the variable "use_quiet_in_training" (see 136.8.11.7.1) is always set to TRUE for 100 Gb/s per lane PHYs."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #53.

Cl 162 SC 162.8.11 P150 L 34 # 49

Lusted, Kent Intel Corporation

Comment Type TR Comment Status A training (bucket1)

The requirement to "assert local_tf_lock ... provided that there is a compliant signal containing training frames at the PMD input" is insufficiently detailed. It is unclear if a receiver should react to a signal that is compliant with respect to amplitude, jitter, etc but does not have a valid training frame format. It is possible that a few of the first training frames during startup are malformed logically yet meet the electrical compliance requirements.

SugaestedRemedy

Change item g) to be "... provided that there is a compliant signal containing valid training frames at the PMD input."

Response Status C

ACCEPT.

Cl 1 SC 1.3 P 32 L 14 # 50 Lusted, Kent Intel Corporation Comment Type E Comment Status A editorial (bucket1) The publication date for the SFP-DD MSA v4.2 was August 17, 2020, not August 10, 2020 as shown in the draft. See http://sfp-dd.com/wp-content/uploads/2020/08/SFP-DDrev4.2.pdf SuggestedRemedy Change the date to August 17, 2020 Response Response Status C ACCEPT. C/ 162 SC 162.9.3.1 P 154 L 6 # 51 Mellitz, Richard Samtec Comment Type TR Comment Status D LF resolution (WG)

Samples per UI, M, may not be as straight forward for measurement equipment because architectures may vary amongst instruments. All things being ideal, as in simulation, specification of M would seem straight forward. However, what seems most important is the confidence of the results especially when we are evaluating sigma_e, sigma_n, and values extracted from histograms. For the example of histogram measurement, and good argument could be made for M to be at least 100. Setting M to at least 32 might be sufficient for V_f r c(i) measurements.

SuggestedRemedy

Add a line to line 7. Interpolations and raw measurement adjustments shall be sufficient to support a least a 95% confidence of all derived values for voltage and noise specifications.

Proposed Response Response Status Z

REJECT.

This comment was WITHDRAWN by the commenter.

Cl 136 SC 136.8.11.7.1 P114 L39 # 52

Slavick, Jeff Broadcom

Comment Type TR Comment Status A training (bucket?)

The use_quiet_in_training variable controls access to certain states. When TRUE it indicates access to the state is allowed. So the "and is set to FALSE otherwise" is just confusing since a boolean is either TRUE or FALSE and the first sentence is defining what happens when it's TRUE not what makes it TRUE

SuggestedRemedy

Remove "and is set to FALSE otherwise" from the first sentence in the definition of use quiet in training

Response Status C

ACCEPT.

Cl 136 SC 136.8.11.7.1 P114 L39 # 53

Slavick, Jeff Broadcom

Comment Type TR Comment Status A training (bucket1)

The intent of the new QUIET state is to make it so all newly developed PHYs will use this features to avoid the deadlock situation. So the QUIET state should mandatory except for 50G PHY types.

SuggestedRemedy

Change the last sentence of the use_quiet_in_training definition to read as "This variable is always set to FALSE for 50 Gb/s per lane PHYs, otherwise it's set to TRUE..

Response Status C

ACCEPT IN PRINCIPLE.

Change the last sentence of the use_quiet_in_training definition to read as "This variable is always set to FALSE for 50 Gb/s per lane PHYs, otherwise it is set to TRUE."

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Cl 120 SC 120.5.7.2 P102 L 45 # 54

Slavick, Jeff Broadcom

Comment Type TR Comment Status A editorial (bucket?)

The cross out of the text "The variables" and "by the PMD control function" in the second

The cross out of the text "The variables" and "by the PMD control function" in the second sentence of the paragraph seems to be too much since the sentence would read "precoder_tx_out_enable_i and precoder_rx_in_enable_i shall be set as determined in the LINK_READY state of the PMD control state diagram on lane i (see 136.8.11.7.5)"

SuggestedRemedy

Update the second senetence to be ""precoder_tx_out_enable_i and precoder_rx_in_enable_i shall be set as determined by the PMD control function in the LINK READY state on lane i (see Fig 136-7)"

Response Response Status C

ACCEPT IN PRINCIPLE.

Update the second sentence to be "precoder_tx_out_enable_i and precoder_rx_in_enable_i shall be set as determined by the PMD control function in the LINK_READY state on lane i (see 136.8.11.7.5 and Figure 136-7)"

Cl 120 SC 120.5.7.2 P102 L30 # 55

Slavick, Jeff Broadcom

Comment Type TR Comment Status A editorial (bucket1)

In the change to the first paragph it has removed the requirement of this paragraph for 50G copper PMDs.

SuggestedRemedy

Add 200GBASE-KR4/CR4 to the list in both the first and second sentences.

Response Status C

ACCEPT.

Cl 120 SC 120.5.7.2 P102 L44 # 56

Slavick, Jeff Broadcom

Comment Type TR Comment Status A editorial (bucket1)

In the change to the fourth paragph it has removed the requirement of this paragraph for 50G copper PMDs.

SuggestedRemedy

Add 200GBASE-KR4/CR4 to the list in the first sentence.

Response Status C

ACCEPT.

[Editor's note: Changed page from 103.]

Cl 162A SC 162A.2 P 253 L 24 # 57

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A editorial (bucket1)

TP0a had been replaced by TP0v in Clause 163.9.2.

SuggestedRemedy

Change "The recommended transmitter characteristics at TP0 as measured at TP0a are described in 163.9.2." shall be changed to "The recommended transmitter characteristics at TP0 as measured at TP0v are described in 163.9.2."

Response Response Status C

ACCEPT.

Cl 162A SC 162A.3 P 253 L 29 # 58

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A editorial (bucket1)

TP5a had been replaced by TP5v in Clause 163.9.3.

SuggestedRemedy

Change "The recommended receiver characteristics at TP5 as measured at TP5a are described in 163.9.3." shall be changed to "The recommended receiver characteristics at TP5 as measured at TP5v are described in 163.9.3."

Response Response Status C

ACCEPT.

Cl 162 SC 162.9.3.1.4 P155 L 46 # 59

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A TX EQ (bucket1)

The step size of TX EQ coefficient had been changed from 2% to 2.5%. The "coefficient step size" shall be modified from 0.02 to 0.025.

SuggestedRemedy

Change <... to a request to "increment" shall be between 0.005 and 0.02, ...> to <... to a request to "increment" shall be between 0.005 and 0.025, ...>.

Response Status C

ACCEPT.

C/ 162 SC 162.9.3.1.4 P155 L47 # 60

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A TX EQ (bucket1)

The step size of TX EQ coefficient had been changed from 2% to 2.5%. The "coefficient step size" shall be modified from -0.02 to -0.025.

SuggestedRemedy

Change <... to a request to "decrement" shall be between -0.02 and -0.005.> to <... to a request to "decrement" shall be between -0.025 and -0.005.>.

Response Response Status C

ACCEPT.

C/ 120G SC 120G.3.1 P 231 L 17 # 61

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A EH/VEC (bucket3)

Due to we adopted the new EH & VEC test methods in D1p4, the specifications of EH & VEC for "Table 120G-1 - Host output characteristics at TP1a" and "Table 120G-10 - Module stressed input parameters" shall be updated to reflect the impact by new method.

SuggestedRemedy

Response

Propose to change EH from 15 mV to 8 mV in Table 120G-1 & 120G-10. Propose to change VEC from 9.0 dB to 12.0 dB in Table 120G-1. Propose to change VEC (max) from 9.5 dB to 12.5 dB in Table 120G-10.

Response Status C

Propose to change VEC (min) from 9.0 dB to 12.0 dB in Table 120G-10.

Detailed analysis is included in wu_3ck_01_0121.pdf

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #146 and #40.

C/ 120G SC 120G.3.1.5

P **233**

L 17

62

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A

EH/VEC EO XTALK (bucket3)

There are some TBDs for crosstalk calibration specs for Host Output test. According to the analysis explored in wu_3ck_adhoc_02_010621.pdf, the target swing at TP4 shall be aligned with that of Module output spec, which is 900 mV. Similarly, the output voltage swing at TP1a, which is 870 mV now, shall be aligned among Host output, Module output. Host input. & Module input specs.

SuggestedRemedy

Propose the following paragraph to replace the original one

Host output: 120G.3.1.4 (Page 233, L17)

"... with target differential peak-to-peak amplitude of 900 mV and slew time of 12 ps between -2.7 V and +2.7 V."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

Cl 120G SC 120G.3.2.2 P 235 L 33 # 63

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A

TP4 EO XTALK (bucket3)

There are some TBDs for crosstalk calibration specs for Host Output test. According to the analysis explored in wu_3ck_adhoc_02_010621.pdf, the target swing at TP4 shall be aligned with that of Module output spec, which is 900 mV. Similarly, the output voltage swing at TP1a, which is 870 mV now, shall be aligned among Host output, Module output, Host input, & Module input specs.

SuggestedRemedy

Propose the following paragraph to replace the original one

Module output: 120G.3.2.2 (Page 235, L33)

"... with target differential peak-to-peak amplitude of 870 mV and target transition time of 19 ps."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 63

Page 13 of 40 2021-02-16 9:15:41 PM

C/ 120G SC 120G.3.3.2.1 P 238 L 54 # 64

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A TP4a SIT XTALK (bucket3)

There are some TBDs for crosstalk calibration specs for Host Output test. According to the analysis explored in wu_3ck_adhoc_02_010621.pdf, the target swing at TP4 shall be aligned with that of Module output spec, which is 900 mV. Similarly, the output voltage swing at TP1a, which is 870 mV now, shall be aligned among Host output, Module output. Host input. & Module input specs.

SuggestedRemedy

Propose the following paragraph to replace the original one Host input: 120G.3.3.2.1 (Page 238, L54))

"... with target amplitude of 870 mV peak-to-peak differential and 20% to 80% target transition time of 19 ps as measured at TP1a ..."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

Cl 120G SC 120G.3.4.1.1 P 242 L 2 # 65

Wu, Mau-Lin MediaTek

Comment Type T Comment Status A P1 EH/VEC XTALK (bucket3)

There are some TBDs for crosstalk calibration specs for Host Output test. According to the analysis explored in wu_3ck_adhoc_02_010621.pdf, the target swing at TP4 shall be aligned with that of Module output spec, which is 900 mV. Similarly, the output voltage swing at TP1a, which is 870 mV now, shall be aligned among Host output, Module output, Host input, & Module input specs.

SuggestedRemedy

Propose the following paragraph to replace the original one Module input: 120G.3.4.1.1 (Page 242, L2)

"... with target amplitude of 900 mV peak-to-peak differential and target slew time between - 2.7 V and +2.7 V of 12 ps as measured at TP4 ..."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

Cl 163 SC 163.9.2.3 P 187 L 16 # 66

Healey, Adam Broadcom Inc.

Comment Type E Comment Status A (bucket1)

Subclause title is incorrect.

SuggestedRemedy

Change subclause title to "Difference steady-state voltage".

Response Status C

ACCEPT.

C/ 120G SC 120G.3.3.2.1 P 239 L 40 # 67

Healey, Adam Broadcom Inc.

Comment Type T Comment Status D

TP4a SIT levels

The stressed input signal calibration procedure states that "random jitter and the pattern generator output levels are adjusted (without exceeding the differential peak-to-peak input voltage tolerance specification as shown in Table 120G–6) to result in the eye height for all three eyes given in Table 120G–7 with the setting of the CTLE that minimizes the vertical eye closure." The term "output levels" is ambiguous. It could be interpreted to be "pattern generator output amplitude" or "individual PAM-4 signal levels". It seems that the latter is intended but the individual PAM-4 signal levels should not be allowed to be adjusted so far that the level separation mismatch ratio ("RLM") is too low.

SuggestedRemedy

Replace the sentence with the following text:

"The pattern generator output is adjusted so that the height of the smallest eye matches the value in Table 120G-7, and the height of all three eyes agree to the largest extent possible, for the CTLE setting that minimizes vertical eye closure. The differential peak-to-peak input voltage tolerance given in Table 120G-6 is not exceeded. Individual PAM-4 signal levels may be adjusted to improve the agreement of the three eye heights but the level separation mismatch ratio (RLM) is at least 0.95. RLM is defined in 120D.3.1.2 and is calculated using VM0, VM1, VM2, and VM3 as defined in 120G.5.2 in place of V0, V1, V2, and V3 respectively. Random jitter amplitude may also be adjusted to acheive the eye height targets.

A similar change is suggested for 120G.3.4.1.1 (page 242, line 17).

Proposed Response Response Status Z

REJECT.

This comment was WITHDRAWN by the commenter.

Cl 120G SC 120G.3.1.5 P 233 L 17 # 68

Healey, Adam Broadcom Inc.

Comment Type T Comment Status A EH/VEC EO XTALK (bucket3)

The target differential peak-to-peak amplitude and slew time of the crosstalk generator, as observed at TP4, are TBD.

SuggestedRemedy

Since the crosstalk generator is used to represent near-end aggression from the the module transmitter outputs, the largest amplitude and smallest transition time allowed for a module output (as observed at TP4) should be used to represent worst-case aggression. Change:

"The crosstalk generator is calibrated at TP4 (without the use of a reference receiver) with target differential peak-to-peak amplitude of TBD mV and slew time of TBD ps between - TBD V and +TBD V."

To:

"The crosstalk generator is calibrated so that the differential peak-to-peak output voltage and transition time, as measured at TP4, are as close to the limits in Table 120G-3 as practical."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

Cl 120G SC 120G.3.2.2 P 235 L 33 # 69

Healey, Adam Broadcom Inc.

Comment Type T Comment Status A TP4 EO XTALK (bucket3)

The target differential peak-to-peak amplitude and transition time, as observed at TP1a, are TBD.

SuggestedRemedy

Since the crosstalk generator is used to represent near-end aggression from the the host transmitter outputs, the largest amplitude and smallest transition time allowed for a host output (as observed at TP1a) should be used to represent worst-case aggression. Change:

"The crosstalk generator is calibrated at TP1a (without the use of a reference receiver) with target differential peak-to-peak amplitude of TBD mV and target transition time of TBD ps." To:

"The crosstalk generator is calibrated so that the differential peak-to-peak output voltage and transition time, as measured at TP1a, are a close to the limits in Table 120G-1 as practical."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

C/ 120G SC 120G.3.3.2.1 P 238

L **54**

4

70

Healey, Adam Broadcom Inc.

Comment Type T Comment Status A

TP4a SIT XTALK (bucket3)

The target differential peak-to-peak amplitude and transition time, as observed at TP1a, are TBD.

SuggestedRemedy

Since the crosstalk generator is used as a proxy for the host transmitter(s) during stressed input signal calibration, the amplitude and transition times should be set to agree with the values measured at the output of the host under test (TP1a). Change:

"The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target amplitude of TBD mV peak-to-peak differential and 20% to 80% target transition time of TBD ps as measured at TP1a (without the use of a reference receiver)."

To:

"The counter propagating crosstalk signals are asynchronous during calibration of the stressed signal. The crosstalk generator is calibrated so that the differential peak-to-peak output voltage and transition time, as measured at TP1a, are as close as practical to the values measured at the output of the host under test (at TP1a) without the use of a reference receiver."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

C/ 120G SC 120G.3.4.1.1

P **242**

L 2

71

Healey, Adam

Broadcom Inc.

Comment Type T

Comment Status A

P1 EH/VEC XTALK (bucket3)

The target differential peak-to-peak amplitude and slew time of the crosstalk generator, as observed at TP4, are TBD.

SuggestedRemedy

Since the crosstalk generator is used as a proxy for the module transmitter(s) during stressed input signal calibration, the amplitude and transition times should be set to agree with the values measured at the output of the module under test (TP4).

"The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target amplitude of TBD mV peak-to-peak differential and target slew time between -TBD mV and TBD mV of TBD ps as measured at TP4 (without the use of a reference equalizer)."

To:

"The counter propagating crosstalk signals are asynchronous during calibration of the stressed signal. The crosstalk generator is calibrated so that the differential peak-to-peak output voltage and transition time, as measured at TP4, are as close as practical to the values measured at the output of the module under test (at TP4) without the use of a reference receiver."

Response

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

C/ 120G SC 120G.3.1

P **231**

L 18

72

Healey, Adam

Broadcom Inc.

Comment Type T

Comment Status A

EH/VEC (bucket3)

The eye height and vertical eye closure limits were based on (simulated) measurements of a vertical slice of the eye at the nominal sampling time. The measurement method for eye height and vertical eye closure in 120G.5.2 has been modified to use a vertical slice of the eye spanning -50 to +50 mUI around the nominal sampling time. Comparison of measurement results implies that the change in the measurement method results in up to a 3 dB increase in vertical eye closure and a similar decrease in eye height.

SuggestedRemedy

In Table 120G-1, change "Eye height, differential (min)" to 10 mV and "Vertical eye closure (max)" to 12 dB.

In Table 120G-3, change "Near-end eye height, differential (min)" and "Far-end eye height, differential (min)" to 17 mV and "Near-end vertical eye closure (max)" and "Far-end vertical eye closure (max)" to 10.5 dB.

In Table 120G-7, change "Near-end eye height" and "Far-end eye height" to 17 mV and "Near-end vertical eye closure" and "Far-end vertical eye closure" to 10.5 dB.

In Table 120G-10, change "Eye height" to 10 mV, "VEC (max)" to 12.5 dB, and "VEC (min)" to 12 dB.

Response

Response Status C

ACCEPT IN PRINCIPLE.

TR

Resolve using the response to comment #146 and #40.

C/ 120G SC 120G.5.2

P 245

L 18

73

Ghiasi, Ali

Ghiasi Quantum/Inphi

Comment Type

Comment Status A

TP4 NE/FE names

In table 120G-11 we refer to TP4 near end and TP4 far end, but table 120G-4 we refer to AUI-S and AUI-L short and long. It would be helpful to be consistent with the terminology.

SuggestedRemedy

I suggest replacing TP4 near end with TP4-S or short and TP4 far end with TP4-L or long to align with AUI-S/L..

The ÅUI short covers from TP4 near end up to 10.975 dB, and AUI long covers from >10.975 dB to 16 dB channels.

Response

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the responses to comments #148.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 73

Page 16 of 40 2021-02-16 9:15:41 PM

C/ 120G SC 120G.3.2.1 P 235 # 74 C/ 120G SC 120G.3.2 P 234 L 10 L 11 # 77 Ghiasi, Ali Ghiasi Quantum/Inphi Ghiasi Quantum/Inphi Ghiasi, Ali Comment Type TR Comment Status A TP4 EQ settings Comment Type ER Comment Status A EH/VEC (bucket3) In table 120G-4 AUI-short and long are introduced but there is no description what AUI-S Given that now we have AUI-S/L near end VEC need to be defined and AUI-L are! SuggestedRemedy SuggestedRemedy The eve opening with 50 mUI rectangular window for AUI-S is VEC=12.5 dB. see We need to define channel loss range for AUI-S and AUI-L. ghiasi_3ck_01_0121 ghiasi 3ck 01 0121 investigates possible channel loss ranges for AUI S/L, the result Response Response Status C indicate 10 dB is about optimum but given how close 10 dB is to CR host loss of 10.975 dB ACCEPT IN PRINCIPLE. the proposal is to use 10.975 dB as the demarcation point for AUI-S/L. Resolve using the response to comment #146 and #40. Response Response Status C ACCEPT IN PRINCIPLE. C/ 120G SC 120G.3.2 P 234 L 14 Resolve using the response to comment #148. Ghiasi, Ali Ghiasi Quantum/Inphi C/ 120G SC 120G.3.2 P 234 L 11 # 75 Comment Type TR Comment Status A EH/VEC (bucket3) Given that now we have AUI-S/L far end VEC need to be defined Ghiasi, Ali Ghiasi Quantum/Inphi Comment Status A EH/VEC (bucket3) Comment Type TR SugaestedRemedy Given that now we have AUI-S/L near end eye would be AUI-S min eye opening The eve opening with 50 mUI rectangular window for AUI-L is VEC=14.5 dB, see ghiasi 3ck 01 0121 SuggestedRemedy Response Response Status C The eye opening with 50 mUI rectangular window for AUI-S is VEO=20 mV, see ACCEPT IN PRINCIPLE. ghiasi 3ck 01 0121 Resolve using the response to comment #146 and #40. Response Response Status C ACCEPT IN PRINCIPLE. L 17 # 79 C/ 120G SC 120G.3.2 P 234 Resolve using the response to comment #146 and #40. Ghiasi. Ali Ghiasi Quantum/Inphi C/ 120G SC 120G.3.2 P 234 L 13 # 76 Comment Type TR Comment Status A TP4 ERL (bucket3) FRI is TBD Ghiasi Quantum/Inphi Ghiasi, Ali TR Comment Status A Comment Type EH/VEC (bucket3) SugaestedRemedy Given that now we have AUI-S/L far end eye would be AUI-S min eye opening Replace TBD with 8.5 dB and see ghiasi_3ck_01_0121 SuggestedRemedy Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #125.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

The eye opening with 50 mUI rectangular window for AUI-L is VEO=11 mV, see

Response Status C

Resolve using the response to comment #146 and #40.

ghiasi 3ck 01 0121

ACCEPT IN PRINCIPLE.

Response

Comment ID 79

Page 17 of 40 2021-02-16 9:15:41 PM

P 231 L 17 # 80 C/ 120G SC 120G.3.1 Ghiasi Quantum/Inphi Ghiasi, Ali Comment Type TR Comment Status A EH/VEC (bucket3) Eve height need to be adjusted to account for the 50 mUI rectangular window SuggestedRemedy See ghiasi_3ck_01_0121 and reduce eye height window from 15 mV to 9.5 mV Response Response Status C ACCEPT IN PRINCIPLE. Resolve using the response to comment #146 and #40. C/ 120G SC 120G.3.1 P 231 L 19 # 81 Ghiasi Quantum/Inphi Ghiasi, Ali Comment Type EH/VEC (bucket3) TR Comment Status A VEC need to be adjusted to account for the 50 mUI rectangular window SuggestedRemedy See ghiasi_3ck_01_0121 and reduce eye height window from 7.5 dB to 14 dB Response Response Status C ACCEPT IN PRINCIPLE. Resolve using the response to comment #146 and #40. C/ 163B P 290 L 23 # 82 SC 163B.2 Ghiasi, Ali Ghiasi Quantum/Inphi Comment Type TR Comment Status R "P0v/TP5v example (bucket3) Example TP0V should be better defined SuggestedRemedy See ghiasi 3ck 02 0121 The DUT trace is constructed from 2 mm section of PCB trace with 102 Ohms (via model), followed by 66.8 mm 92.5 Ohms strip line, followed by 2 mm section of PCB trace with 102 ohms (via model) the total loss of this model at 26.55 GHz is 2.8 dB. The PCB model is per table 93-12. The equation for the loss =0.006+0.25*SQRT(f)+0.057*f, where f is in GHz. Response Response Status C

REJECT.

Resolve using the response to comment #132.

C/ 120G P 231 L 25 SC 120G.3.1 # 83 Ghiasi Quantum/Inphi Ghiasi, Ali Comment Type TR Comment Status A TP1a transition time At TP1a it is no possible to get 7.5 ps, please put something reasonable SuggestedRemedy A fast ASIC with 7.6 ps output rise time when passes through a mated board with just 5 dB loss produces 12 ps 20-80% rise time. I suggest 12 ps but no less than 10 ps. Response Response Status C ACCEPT IN PRINCIPLE. This comment proposes a technical change to the draft that does not address technical completeness. However, there are proposals to other comments relating to technical completeness that include changes to the transition time. The following presentations were review by the task force: https://www.ieee802.org/3/ck/public/21_01/dudek_3ck_01_0121.pdf https://www.ieee802.org/3/ck/public/adhoc/jan13 21/ghiasi 3ck adhoc 01 011321.pdf Change the host output transition time to 10 ps. Straw poll #10 (pick one) and #11 (chicago) I support changing the value of host output transition time (min) to: A: 7.5 ps (current value) B: 9.5 ps C: 10 ps #10 A: 7 B: 12 C: 14 #11 A: 6 B: 23 C: 25 C/ 120G SC 120G.3.1.5 P 233 L 17 # 84 Ghiasi, Ali Ghiasi Quantum/Inphi Comment Type TR Comment Status A EH/VEC EO XTALK (bucket3) Addressing the TBD in the paragraph

SuggestedRemedy

A fast ASIC with 7.6 ps output rise time when passes through a mated board with just 5 dB loss produces 12 ps 20-80% rise time. I suggest 24 ps for the slew from -400 mV to + 400 mV and with amplitude of 800 mV, the reason amplitude is reduced is due assumption that signal will have pre-emphasis on for this measurement otherwise one could go with 900 mV amplitude I don't believe that is reasonable.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

Cl 120G SC 120G.3.2 P 234 L 20 # 85

Ghiasi, Ali Ghiasi Quantum/Inphi

Comment Type T Comment Status A TP4 transition time

At TP4 it is no possible to get 7.5 ps, please put something reasonable

SuggestedRemedy

A fast ASIC with 7.6 ps output rise time when passes through a mated board with just 5 dB loss produces 12 ps 20-80% rise time, given that real module may have less than min HCB loss then 10 ps would be reasonable rise time.

Response Status C

ACCEPT IN PRINCIPLE.

[Editor's note: subclause, page, and line changed from 120G.3.1, 231, and 25.]

This comment proposes a technical change to the draft that does not address technical completeness. However, there are proposals to other comments relating to technical completeness that include changes to the transition time.

The following presentations were review by the task force: https://www.ieee802.org/3/ck/public/21_01/dudek_3ck_01_0121.pdf https://www.ieee802.org/3/ck/public/adhoc/jan13_21/ghiasi_3ck_adhoc_01_011321.pdf

Change the module output transition time (min) to 8.5 ps.

Cl 120G SC 120G.3.2.2 P 235 L 34 # 86

Ghiasi, Ali Ghiasi Quantum/Inphi

Comment Type TR Comment Status A TP4 EO XTALK (bucket3)

Addressing the TBD in the paragraph

SuggestedRemedy

A fast ASIC with 7.6 ps output rise time when passes through a mated board with just 5 dB loss produces 12 ps 20-80% rise time, the full swing is about 2x. But given that module PCB may have lower than HCB loss, then I suggest 20 ps for the slew from -350 mV to + 350 mV and with amplitude of 700 mV, the reason amplitude is reduced is due assumption that signal will have pre-emphasis on for this measurement otherwise one could go with 900 mV amplitude I don't believe that is reasonable.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

C/ **120G** SC **120G.3.3.2.1**

P **238**

L 54

87

Ghiasi, Ali Ghiasi Quantum/Inphi

Comment Type TR Comment Status A TP4a SIT XTALK (bucket3)

Addressing the TBD in the paragraph

SuggestedRemedy

A fast ASIC with 7.6 ps output rise time when passes through a mated board with just 5 dB loss produces 12 ps 20-80% rise time. I suggest 12 ps rise time and possibly as fast as 10 ps but would be difficult to generate such fast rise time through mated board. Given that the signal will have pre-emphasis enabled getting more than 800 mV could be difficult. I suggest to go with 800 mV

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

C/ 120G SC 120G.3.4.1 P 240 L 46 # 88

Ghiasi, Ali Ghiasi Quantum/Inphi

Comment Type TR Comment Status A EH/VEC (bucket3)

Table 120G-10 needs to be updated now that measurements are with 50 mUI window

SuggestedRemedy

See ghiasi_3ck_01_0121 and reduce eye height window from 15 mV to 9.5 mV See ghiasi 3ck 01 0121 and reduce eye height window from 7.5 dB to 14+/- 0.5 dB

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #146 and #40.

Cl 120G SC 120G.3.4.1.1 P 242 L 3 # 89

Ghiasi, Ali Ghiasi Quantum/Inphi

Comment Type TR Comment Status A P1 EH/VEC XTALK (bucket3)

Addressing the TBD in the paragraph

SuggestedRemedy

A fast ASIC with 7.6 ps output rise time when passes through a mated board with just 5 dB loss produces 12 ps 20-80% rise time, the full swing is about 2x. But given that module PCB may have lower than HCB loss, then I suggest 20 ps for the slew from -350 mV to + 350 mV and with amplitude of 700 mV, the reason amplitude is reduced is due assumption that signal will have pre-emphasis on for this measurement otherwise one could go with 900 mV amplitude I don't believe that is reasonable.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 89

Page 19 of 40 2021-02-16 9:15:41 PM

C/ 120G SC 120G.5.2 P 245 L 18 # 90 C/ 162 SC 162.11 P 162 L 40 # 93 Ghiasi, Ali Ghiasi Quantum/Inphi Molex Haser, Alex Comment Type TR Comment Status R TP4 qDC (WG) Comment Type E Comment Status D withdrawn aDC near end of -2 dB result in some cases VEC to increase by more than 10 dB when TX "Cable assembly supports... achievable cable length of at least 2 m"; spec is written FIR is optimized about in the middle and when that module is plugged into low loss host around a 1.75 m cable then you end up with excessive peaking! SuggestedRemedy SuggestedRemedy Change text to "...achievable cable length of at least 1.75 m" Please reduce qDC for TP4 near end from -2 dB to -1 dB Proposed Response Response Status Z Response Response Status C PROPOSED REJECT. REJECT. This comment was WITHDRAWN by the commenter. This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group C/ 162 SC 162.11 P 163 L 18 ballot. Haser, Alex Molex C/ 162 SC 162.11 P 162 # 91 Comment Type TR Comment Status A CA ERL (bucket2) L 36 Fill in TBD for CA ERL limit Molex Haser, Alex SugaestedRemedy Comment Type Ε Comment Status D withdrawn Replace TBD with 7.4 dB based on champion 3ck 02 1020.pdf slide 6 "Cable assembly supports... achievable cable length of at least 2 m": spec is written around a 1.75 m cable Response Response Status C SuggestedRemedy ACCEPT IN PRINCIPLE. Change text to "...achievable cable length of at least 1.75 m" Resolve using response to comment#103 Proposed Response Response Status Z C/ 162 SC 162.11.7.2 P 171 L 1 # 95 PROPOSED REJECT. Molex Haser, Alex This comment was WITHDRAWN by the commenter. Comment Type E Comment Status A COM XTALK (bucket1) C/ 162 # 92 SC 162.11 P 162 L 38 "The crosstalk paths for each MDI type are given in Table..."; the table specifies the number of crosstalk paths, not the paths themselves Haser, Alex Molex Comment Type Ε Comment Status D withdrawn SuggestedRemedy Change text to "The number of crosstalk paths of each MDI..." "Cable assembly supports... achievable cable length of at least 2 m": spec is written around a 1.75 m cable Response Response Status C SuggestedRemedy ACCEPT. Change text to "...achievable cable length of at least 1.75 m"

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Response Status Z

This comment was WITHDRAWN by the commenter.

Proposed Response

PROPOSED REJECT.

Comment ID 95

Page 20 of 40 2021-02-16 9:15:41 PM

C/ 162B SC 162B.1 P 259 L 20 # 96 C/ 162B SC 162B.1.3.2 P 263 L 16 # 99 Molex Haser, Alex Molex Haser, Alex MTF ERL Tfx Comment Type т Comment Status D MTF IL Comment Type ER Comment Status A The reference MTF IL at 26.56 GHz is 6.66 dB The other ERL parameter tables throughout the specification include a note explaining the value for T fx: we should add one here too, especially since it's different than the other SuggestedRemedy T fx values used in ERL calculations Change text from 6.6 dB to 6.7 dB to capture rounding correctly SuggestedRemedy Proposed Response Response Status Z Add a note to Table 162B-1 containing the following text: "The specified T fx value represents a propagation delay of zero which captures to electrical characteristics of the REJECT. entire test fixture, including the test connector and test fixture transmission line in its entirety." This comment was WITHDRAWN by the commenter. Response Response Status C C/ 162B SC 162B.1.3.1 P 262 L 36 # 97 ACCEPT IN PRINCIPLE. Haser, Alex Molex Add note to Tfx as follows: Comment Status A Comment Type TR MTF FOMILD (bucket3) "NOTE—The mated test fixture test connector and transmission line are not time-gated in Fill in TBD for MTF FOM ILD limit order to include the entire test fixture." SuggestedRemedy C/ 162B SC 162B.1.3.6 P 265 L 36 # 100 Fill in a value of 0.18 dBrms based on haser 3ck adhoc 01c 062420.pdf slide 7 Haser, Alex Molex Response Response Status C Comment Type ER Comment Status A MTF RLDC name (bucket?) ACCEPT IN PRINCIPLE. CMDRL(f) is defined as common-mode return loss; this is incorrect Resolve using the response to comment #111. SuggestedRemedy C/ 162B SC 162B.1.3.2 P 262 L 43 # 98 Define CMDRL(f) as common-mode to differential mode return loss Molex Haser, Alex Response Response Status C Comment Status A MTF ERL (bucket2) Comment Type TR ACCEPT. Fill in TBD for MTF ERL limi

SuggestedRemedy

Replace TBD with 9 dB based on diminico_3ck_03a_1020.pdf slide 7

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response comment #112.

Cl 162 SC 162.11.4 P 165 L 8 # 101

Champion, Bruce TE Connectivity

Comment Type T Comment Status R CA RLCD

Cable Assembly Diff-to-Common Mode Return loss is too tight for high volume production testing at the higher frequencies. Failures are occuring because of testing artifacts and not because of poor cable assemblies. A slight relaxation of the limit is requested to account for this.

SuggestedRemedy

It is recommended to use the following equation for this limit:

Return Loss(f) \geq 22-10(f/26.56) for 0.05 \leq f \leq 26.56 Return Loss(f) \geq 19 - 7(f/26.56) for 26.56 \leq f \leq 40 GHz See presentation

Response Response Status C

REJECT.

This comment proposes a technical change to the draft that does not address technical completeness.

The following presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/21_01/champion_3ck_02a_0121.pdf

There was no consensus on a single remedy. The commenter is encouraged to provide further evidence how system performance is impacted.

 CI 162
 SC 162.11.6
 P 166
 L 37
 # 102

 Champion, Bruce
 TE Connectivity

 Comment Type
 T
 Comment Status
 A
 CA RLCC

There is a disrepancy between what is specifed for the MTF CM-to-CM RL and the cable assembly CM-to-CM RL.

The MTF CM-to-CM RL limit is set to -3 dB. When MTFs designed close to this limit are used in cable assembly Tp1-Tp4 channels, the Tp1-Tp4 CM-to-CM RL will fail the -2 dB limit.

SuggestedRemedy

It is recommended to use the following equation to take into account the worst case MTF design.

Return Loss(f) \geq 1.8 for $0.05 \leq f \leq 40$

Response Status C

ACCEPT IN PRINCIPLE.

The following presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/21 01/champion 3ck 01a 0121.pdf

Implement suggested remedy.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 102

Page 22 of 40 2021-02-16 9:15:41 PM

C/ 162 SC 162.11 P 163 L 18 # 103 C/ 162B SC 162B.1.3.2 P 262 L 43 # 105 TE Connectivity TE Connectivity Champion, Bruce Champion, Bruce Comment Type T Comment Status A CA ERL Comment Type T Comment Status A MTF ERL (bucket2) Cable Assembly ERL listed as TBD in Table 162-16 MTF ERL is listed at TBD in draft SuggestedRemedy SuggestedRemedy TBD to be changed to 7.4 dB. See champion_3ck_02_1020.pdf TBD to be chaned to 9 dB. See diminico_3ck_03a_1020.pdf Response Response Response Status C Response Status C ACCEPT IN PRINCIPLE. ACCEPT IN PRINCIPLE. Resolve using the response comment #112. The task force reviewed the following presentation: https://www.ieee802.org/3/ck/public/21_01/champion_3ck_03_0121.pdf C/ 162B SC 162B.1.3.2 P 262 L 43 # 106 DiMinico, Christopher MC Communications Straw poll #5 indicated no clear consensus on a value. Comment Type TR Comment Status A MTF ERL (bucket2) Commenters agreed to settle on middle value of 8.25 dB as compromise. Provide value for mated test fixture ERL TBD. Set the value of cable assembly ERL to 8.25 dB. SuggestedRemedy Straw Poll #5 The mated test fixture ERL shall be greater than or equal to 9 dB. I support the following value for the cable assembly ERL. Update PICS. A: 7.4 dB B: 8.0 dB See diminico_3ck_adhoc_01a_121620 slide 6. C: 8.5 dB Response Response Status C D: 9 dB ACCEPT IN PRINCIPLE. A: 15 B: 14 C: 15 D: 15 Resolve using the response comment #112. Chicago rules C/ 162B SC 162B.1.3.1 C/ 162B SC 162B.1.3.1 P 262 L 36 # 104 P 262 L 36 # 107 Champion, Bruce TE Connectivity DiMinico, Christopher MC Communications Comment Type TR Comment Status A MTF FOMILD (bucket3) Comment Type T Comment Status A MTF FOMILD (bucket3) Provide value for mated test fixture FOMILD TBD. FOM ILD is listed at TBD SuggestedRemedy SuggestedRemedy TBD to be changed to 0.18 dB Response Response Status C ACCEPT IN PRINCIPLE. See diminico_3ck_adhoc_01a_121620 Resolve using comment #111. Update PICS Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #111.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 107

Page 23 of 40 2021-02-16 9:15:41 PM

C/ 120F SC 120F.3.1.2 P214 L34 # 108

Hidaka, Yasuo Credo Semiconductor, Inc.

Comment Type TR Comment Status A TX EQ (bucket3)

C(-3) has been discussed and the editor's note should have been removed long time ago.

SuggestedRemedy

Remove editor's note on the pre-cursor tap c(-3).

Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #134.

Cl 162 SC 162.9.3.4 P 156 L 46 # 109

Hidaka, Yasuo Credo Semiconductor, Inc.

Comment Type T Comment Status R PRBS9Q (WG)

A detail definition of PRBS9Q with the entire sequence is recommended to avoid implementation errors.

SuggestedRemedy

Define PRBS9Q as a new clause in clause 120.5.11.2 using clause 120.5.11.2.1 as a template.

Modify the second paragraph of 120.5.11.2.1 as follows:

When the PRBS9Q test pattern enabled, it replaces the signal on the output lane(s) for which it is enabled. The PRBS9Q test pattern is a repeating 511-symbol sequence formed by Gray coding pairs of bits from two repetitions of the PRBS9 pattern into PAM4 symbols as described in 120.5.7. The PRBS pattern generator produces the same result as the implementation shown in Figure XX–X, which implements the generator polynomial shown in Equation (YY-Y). Since the PRBS9 pattern is an odd number of bits in length, bits which are mapped as the first bit of a PAM4 symbol during one repetition of the PRBS9 sequence are mapped as the second bit of a PAM4 symbol during the next repetition of the PRBS9 sequence, and bits which are mapped as the second bit of a PAM4 symbol are mapped as the first bit of the following symbol in the next repetition of the PRBS9 sequence. For example, if the PRBS9 generator used to create the PRBS9Q sequence is initialized to a seed value of 111111111 (with the leftmost bit in S0 and the rightmost in S8), the PRBS9Q sequence is the following Gray coded PAM4 symbols, transmitted left to right: 0012322303231310010331213302202231320111030230213332303130303000 1003020031203332002123313231011003321022213103113222031333131300 0201311013311222101130233203202201221210013321323200113322333330 011033220323230012023310221121101030131200322132021002322002223 3010130102311113013221021203033011133122320310321223102110202000 1302033021032223303201211311312302232330021132121300321122111100 033111231121200023121031233233303100202301123213133012123012222.

Draw Figure XX-X "PRBS9 pattern generator" similar to Figure 94-6 but according to polynomial $1 + x^5 + x^9$.

Define Equation (YY-Y) as $G(x) = 1 + x^5 + x^9$ or make a reference to the polynomial in Table 68-6.

Make a reference to the new clause from 162.9.3.4.

Response Status C

REJECT.

This comment proposes a change to the draft that is not necessary for technical completeness. The commenter is encouraged to resubmit this comment during working group ballot.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 109

Page 24 of 40 2021-02-16 9:15:41 PM

C/ 162 SC 162.9.3.4 P 156 L 46 # 110

Hidaka, Yasuo Credo Semiconductor, Inc.

Comment Type Т Comment Status R PRBS9Q (WG)

A detail definition of twelve edges in PRBS9Q is recommended to improve reproducibility of even-odd iitter measurement.

SuggestedRemedy

Add a new table "PRBS9Q pattern symbols used for even-odd jitter measurements" similar to Table 120D-4, but replacing the values as follows:

Label: Description: Grav coded PAM4 symbol: first: TR begins: TR ends: last REF: Reference: 33333 :í :-:- :5 R03:0 to 3 rise: 1000 331 : 260 : 263 : 264 : 266 F30:3 to 0 fall: 233333 001 : 511 : 5 :6 :8 R12:1 to 2 rise: 3111 23 : 265 : 268 : 269 : 270 F21:2 to 1 fall: 1222 10 : 466 : 469 : 470 : 471 R01:0 to 1 rise: 2000 13 : 195 : 198 : 199 : 200 F10:1 t0 0 fall: 21111 0003 : 256 : 260 : 261 : 264 R23: 2 to 3 rise: 3222 330 : 210 : 213 : 214 : 216 F32:3 to 2 fall: 0333:20 : 401 : 404 : 405 : 406 R02:0 to 2 rise: 2000 23 : 275 : 278 : 279 : 280 F20: 2 to 0 fall: 12222 001 : 321 : 325 : 326 : 328

Add an exception to use the new table instead of Table 120D-4, when PRBS9Q is used as the test pattern for even-odd jitter measurement.

: 166 : 169

: 107 : 110

: 170

: 111 : 112

: 172

Response Response Status C

R13:1 to 3 rise: 0111 331

F31:3 to 1 fall: 0333 10

REJECT.

This comment proposes a change to the draft that is not necessary for technical completeness. The commenter is encouraged to resubmit this comment during working group ballot.

C/ 162B SC 162B.1.3 P 262 L 36 # 111 Kocsis, Sam Amphenol Comment Type TR Comment Status A MTF FOMILD

SuggestedRemedy

Replace TBD with 0.18dB

Response Response Status C

MTF FOM ILD requirement is TBD

ACCEPT IN PRINCIPLE.

Straw poll #12 (chicago rules)

Change the transition time T t to 8.5 ps and set the FOMILD (max) value to 0.13 dB.

Straw poll #13 (pick one) I support the following proposal to address MTF FOMILD: A: FOMILD (max) = 0.18 dB, $T_t = 8.5 \text{ ps}$ B: FOMILD (max) = 0.13 dB, T t = 8.5 psC: FOMILD (max) = 0.18 dB, $T_t = 7.5 \text{ ps}$

SP12: A: 15 B: 21 C: 21 SP13: A: 7 B: 17 C: 11

Straw poll #6 (chicago rules)

Straw poll #7 (pick one)

I support the following value for the FOMILD transition time (T_t) parameter:

A: 7.5 ps (currently in D1.4)

B: 9 ps C: 9.6 ps D: 10 ps

SP6: A: 12 B: 16 C: 14 D: 11 SP7: A: 8 B: 5 C: 5 D: 7

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Page 25 of 40 2021-02-16 9:15:41 PM

CI 162B SC 162B.1.3.2 P 262 L 43 # 112

Kocsis, Sam Amphenol

Comment Type TR Comment Status A MTF ERL

MTF ERL requirement is TBD (also in PICS TF2)

SuggestedRemedy

Replace TBD with 10dB

Response Status C

ACCEPT IN PRINCIPLE.

Adopt the value of 10.3 dB using the ERL parameters on slide 5 of the following presentation:

https://www.ieee802.org/3/ck/public/21_01/diminico_3ck_01a_0121.pdf Implement with editorial license.

Straw poll #4

I support using the following value for the MTF ERL.

A: 9 dB B: 10.3 dB A: 6 B: 26 Choose one.

Comment Type TR Comment Status A CA ERL (bucket2)

CA ERL requirement is TBD

SuggestedRemedy

Replace TBD with 9dB

Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using response to comment#103

Cl 162B SC 162B.1.3.3

P **263**

L 34

114

MTF RL mask

Kocsis, Sam Amphenol

Comment Type TR Comment Status A

Recommended MTF RL mask does not provide useful information to the reader

SuggestedRemedy

Remove the mask from the spec

Response Status C

ACCEPT IN PRINCIPLE.

Delete subclause 162B.1.3.3 Mated test fixtures differential return loss.

CI 162 SC 162.11.7 P167 L21 # [115

Li, Mike Intel

Comment Type TR Comment Status R COM Cp (CC) (WG)

Cp of 8.7x1e-5 nF could be improved to provide the needed channel/link solution margin and it is supposed by the latest package technology/product (see oif2020.224.01). Moreover, such an improvement would be aligned with the latest CEI-112G-LR-PAM4 spec, and benifiting the ecosystem at large.

SuggestedRemedy

change Cp to 6.0x1e-5 nF

Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

Resolve with comments #116 (Clause 163) and #117 (Annex 120F).

Note that CEI-112G-LR-PAM4 Version 11 provided in the OIF liaison to IEEE data 7 January 2021 specifies 60 nF for Cp.

https://www.ieee802.org/3/private/liaison_docs/OIF/0121_OIF_liaison_IEEE_CEI_Projects_cover_drafts_07Jan21.pdf

[Editor's note: CC: 120F, 162, 163.]

Cp of 8.7x1e-5 nF could be improved to provide the needed channel/link solution margin and it is supported by the latest package technology/product (see oif2020.224.01). Moreover, such an improvement would be aligned with the latest CEI-112G-LR-PAM4 spec. and benifiting the ecosystem at large.

SuggestedRemedy

change Cp to 6.0x1e-5 nF

Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

Resolve with comments #115 (Clause 162) and #117 (Annex 120F).

Note that CEI-112G-LR-PAM4 Version 11 provided in the OIF liaison to IEEE data 7 January 2021 specifies 60 nF for Cp.

https://www.ieee802.org/3/private/liaison_docs/OIF/0121_OIF_liaison_IEEE_CEI_Projects_cover_drafts_07Jan21.pdf

[Editor's note: CC: 120F, 162, 163.]

Cp of 8.7x1e-5 nF could be improved to provide the needed channel/link solution margin and it is supported by the latest package technology/product (see oif2020.224.01). Moreover, such an improvement would be aligned with the latest CEI-112G-MR-PAM4 spec, and benifiting the ecosystem at large.

SuggestedRemedy

change Cp to 6.0x1e-5 nF

Response Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

Resolve with comments #115 (Clause 162) and #116 (Clause 163).

Note that CEI-112G-MR-PAM4 Version 4 provided in the OIF liaison to IEEE data 7 January 2021 specifies 60 nF for Cp.

https://www.ieee802.org/3/private/liaison_docs/OIF/0121_OIF_liaison_IEEE_CEI_Projects_

cover drafts 07Jan21.pdf

[Editor's note: CC: 120F. 162, 163,]

CI 162 SC 162.9.3 P 152 L 30 # 118

Ran, Adee Intel

Comment Type TR Comment Status A TX RLCD

(addressing TBD)

Tx CM to differential return loss refers to 92.8.3.3 with equation TBD.

In clause 92 the RLCD of Tx and Rx have the same specifications - eq (92-2) in 92.8.3.3 and eq (92-21) in 92.8.4.3, respectively, which are identical; and there is no RLCD for cable assembly.

The conversion loss specifications may need more work, but for the purpose of technical completeness, it is suggested to use the same equation used for the cable assembly, since in both cases the measurement involves mated connectors and results should be comparable.

SuggestedRemedy

Add a subclause for Tx differential to common mode return loss, with equation identical to equation (162–9), or point to (162–9).

Response Status C

ACCEPT IN PRINCIPLE.

Add a subclause for Tx common-mode to differential return loss, with equation identical to equation (162–9).

Implement with editorial license.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 118

Page 27 of 40 2021-02-16 9:15:41 PM

 Cl 162
 SC 162.9.4
 P 158
 L 16
 # 119

 Ran, Adee
 Intel

 Comment Type
 TR
 Comment Status
 A
 RX RLCD

 (addressing TBD)
 RX RLCD

Rx differential to common-mode (conversion) input return loss refers to 92.8.4.3 with value TBD.

In clause 92 the RLCD of Tx and Rx have the same specifications - eq (92–2) in 92.8.3.3 and eq (92–21) in 92.8.4.3, respectively, which are identical; and there is no RLCD for cable assembly.

The conversion loss specifications may need more work, but for the purpose of technical completeness, it is suggested to use the same equation used for the cable assembly, since in both cases the measurement involves mated connectors and results should be comparable.

As an alternative consider removing this specification (the Rx owns its performance).

SuggestedRemedy

Add a subclause for Rx differential to common mode return loss, with equation identical to equation (162–9), or point to (162–9).

Response Status C

ACCEPT IN PRINCIPLE.

Implement the suggested remedy with editorial license.

Also, add "(min)" to the end of the parameter name.

 CI 162
 SC 162.11
 P 163
 L 17
 # 120

 Ran, Adee
 Intel

 Comment Type
 TR
 Comment Status
 A
 CA ERL (bucket2)

(addressing TBD)

Minimum cable assembly ERL is TBD.

In another comment I am suggesting setting the minimum ERL of a MTF to 10.3 dB to enable measurement of the internal host circuitry. Based on this proposal, the ERL of a cable assembly cannot exceed 10.3 dB.

It can be assumed that the cable has more uniform impedance than the host board, so its ERL will be closer to that of a MTF.

The suggested value allows 1.3 dB difference for cable assembly implementation.

SuggestedRemedy

Change TBD to 9 dB.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using response to comment#103

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 120 Page 28

Page 28 of 40 2021-02-16 9:15:41 PM

 CI 163
 SC 163.9.3
 P 187
 L 41
 # 121

 Ran, Adee
 Intel

 Comment Type
 TR
 Comment Status
 A
 RX RLCD

(addressing TBD)

Rx Differential to common-mode (conversion) input return loss refers to 93.8.1.4 with value TBD. This subclause uses equation (93-5) to define the limit.

The conversion loss specifications may need more work, but for the purpose of technical completeness, it is suggested to use a piecewise-linear equation similar to (93-5). Boundary lines are suggested to match the ones used in OIF CEI-112G-LR for the 53.125 GHz signaling frequency.

As an alternative consider removing this specification (the Rx owns its performance).

SuggestedRemedy

Add a new subclause for Rx differential to common mode return loss with the equation:

 $RLdc(f) \ge 25-20*(f/fb)$ for $0.05 \le f \le fb/2$

 $RLdc(f) \ge 15$ for $fb/2 < f \le 40$

where f is the frequency in GHz and fb=53.125.

Response Status C

ACCEPT IN PRINCIPLE.

Add a new subclause for RLCD

RLcd(f) = 25-20*(f/fb) for $0.05 \le f \le fb/2$

RLcd(f) = 15 for fb/2 < f <= 40

where f is the frequency in GHz and fb=53.125.

Update PICS

Implement with editorial license.

C/ 163 SC 163.10.4 P 192

Ran, Adee Intel

Comment Type TR Comment Status A channel ILDC

(addressing TBD)

For the KR PHY, the channel "differential to common-mode conversion loss of TP0 and TP5" is TBD.

L 44

122

For the CR PHY this parameter is specified in 162.11.5 as "The difference between the cable assembly differential to common-mode conversion loss and the cable assembly insertion loss" with equation (162-10).

For the purpose of technical completeness, a similar equation can be used for KR.

SuggestedRemedy

Rewrite this subclause based on 162.11.5, substituting "TP0 to TP5 channel" for "cable assembly" with editorial license.

Response Status C

ACCEPT IN PRINCIPLE.

Specify both ILDC and ILCD based on 162.11.5, substituting "TP0 to TP5 channel" for "cable assembly". Implement with editorial license.

C/ 120F SC 120F.4.3 P223 L5 # 123

Ran. Adee Intel

Comment Type TR Comment Status A channel ERL

(addressing TBD)

Channel ERL minimum is TBD.

The ERL parameters specific to C2C take into account the difference in reference receiver. With the respective parameters, ERL (which is the relative effect of reflections vs. signal) should have the same limit.

SuggestedRemedy

Set channel ERL minimum identical to 163.10.3 where the minimum is 9.7 dB.

Response Status C

ACCEPT IN PRINCIPLE.

Set ERL (min) to 9.7 dB and update PICS.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 123

Page 29 of 40 2021-02-16 9:15:41 PM

Cl 120G SC 120G.3.1.5 P 233 L 17 # 124

Ran, Adee Intel

Comment Type TR Comment Status A

EH/VEC EO XTALK (bucket3)

"The crosstalk generator is calibrated at TP4 (without the use of a reference receiver) with target differential peak-to-peak amplitude of TBD mV and slew time of TBD ps between –TBD V and +TBD V"

This is the host output test; the crosstalk generator represents the module output. We specify the PtP amplitude and transition time for modules at TP4 in Table 120G–3. The calibration should use the maximum amplitude and minimum transition time values from that table.

SuggestedRemedy

Change the quoted sentence to:

"The crosstalk generator is calibrated at TP4 (without the use of a reference receiver) with targets equal to the Differential peak-to-peak output voltage (max) and Transition time (min. 20% to 80%) in Table 120G-3".

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

Cl 120G SC 120G.3.2 P 234 L 17 # 125

Ran, Adee Intel

Comment Type TR Comment Status A TP4 ERL

(addressing TBD)

Module output ERL (min) is TBD

Since it is measured at TP4 the module ERL will be no better than that of a mated test fixture. In another comment I am suggesting setting the minimum ERL of a MTF to 10.3 dB to enable measurement of the internal host circuitry. Based on this proposal, the ERL of a module cannot exceed 10.3 dB.

The proposed value allows 1.3 dB difference for Tx and 1.8 dB for RX for module implementation.

Similarly in 120G.3.4 for module input ERL at TP1.

SuggestedRemedy

Change TBD to 9 dB for Tx ERL and 8.5 dB for Rx ERL.

Response Status C

ACCEPT IN PRINCIPLE.

Two comments propose values for module output ERL (min) as follows:

#79: 8.5 dB #125: 9 dB

Set the value to 8.5 dB for both module output (120G.3.2) and module input (120G.3.4).

CI 120G SC 120G.3.2 P 234 L 30 # 126

Ran, Adee Intel

Comment Type ER Comment Status A

TP4 AC CM noise

(Addressing editor's note requiring confirmation)

Editor's note indicates that AC common-mode specification needs confirmation. It has not been confirmed that the existing limit of 17.5 mV RMS is obtainable, but there is no consensus on another value.

Work is planned to refine the measurement method to allow separation of different sources of common mode signal and fine-tuned specification, but it will likely continue into later phases of P802.3ck.

This should not preclude progressing to WGB with the current method and limit.

SuggestedRemedy

Delete the editor's note.

Response Status C

ACCEPT.

C/ 120G SC 120G.3.2.2 P 235 # 127 L 34 Ran, Adee Intel Comment Type TR Comment Status A TP4 EO XTALK (bucket3) (addressing TBD)

"The crosstalk generator is calibrated at TP1a (without the use of a reference receiver) with target differential peak-to-peak amplitude of TBD mV and target transition time of TBD ps"

This is the module output test: the crosstalk generator represents the host output. We specify the PtP amplitude and transition time for hosts at TP1a in Table 120G-1. The calibration should use the maximum amplitude and minimum transition time values from that table.

SuggestedRemedy

Change the guoted sentence to:

"The crosstalk generator is calibrated at TP1a (without the use of a reference receiver) with targets equal to the Differential peak-to-peak output voltage (max) and Transition time (min. 20% to 80%) in Table 120G-1".

Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

C/ 120G SC 120G.3.3.2.1 P 238 L 54 # 128 Ran, Adee Intel

Comment Status A

Comment Type TR TP4a SIT XTALK (bucket3)

(addressing TBD)

"The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target amplitude of TBD mV peak-to-peak differential and 20% to 80% target transition time of TBD ps"

This is the host stressed input test; the actual counter-propagating signals are from the host's own transmitter. For calibration purposes we can assume that the host uses the maximum amplitude and minimum transition time. If the host does not reach the limits. then it may benefit from less crosstalk during the actual test - but as long as it meets the host output specifications, it is acceptable.

We specify the PtP amplitude and transition time for hosts at TP1a in Table 120G-1. The calibration should use the maximum amplitude and minimum transition time values from that table.

SuggestedRemedy

Change the quoted sentence to:

"The counter-propagating crosstalk signals are asynchronous with respect to the input signal and are calibrated at TP1a (without the use of a reference receiver) with targets equal to the Differential peak-to-peak output voltage (max) and Transition time (min. 20% to 80%) in Table 120G-1".

Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #17.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

"The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target amplitude of TBD mV peak-to-peak differential and target slew time between –TBD mV and TBD mV of TBD ps as measured at TP4"

This is the module stressed input test; the actual counter-propagating signals are from the module's own transmitter. For calibration purposes we can assume that the module uses the maximum amplitude and minimum transition time. If the module does not reach the limits, then it may benefit from less crosstalk during the actual test - but as long as it meets the module output specifications, it is acceptable.

We specify the PtP amplitude and transition time for modules at TP4 in Table 120G–3. The calibration should use the maximum amplitude and minimum transition time values from that table.

SuggestedRemedy

Change the quoted sentence to:

"The counter-propagating crosstalk signals are asynchronous with respect to the input signal and are calibrated at TP4 (without the use of a reference receiver) with targets equal to the Differential peak-to-peak output voltage (max) and Transition time (min, 20% to 80%) in Table 120G-3".

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #14.

CI 162B SC 162B.1.3.1 P 262 L 36 # 130

Ran, Adee Intel

Comment Type TR Comment Status A MTF FOMILD (bucket3)

(addressing TBD)

"FOMILD shall be less than (TBD) dB"

The importance of this parameter for quality of test fixtures in the context of this project has not been presented. ERL likely covers what FOMILD originally intended to cover.

The specification should be deleted without loss of technical completeness.

SuggestedRemedy

Delete the quoted sentence.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #111.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

"The mated test fixture ERL shall be greater than or equal to TBD dB"

We have adopted a minimum of 7.3 dB for a host ERL in Table 162–10 (with parameters in 162.9.3.5). The parameters for MTF are the same, except that "Time-gated propagation delay" is 0 instead of 0.2 ns.

The value 0 was accepted explicitly (comment #122 against D1.3) but the difference does not seem to be justified, since the MTF includes the test fixture used for host ERL measurement (where the connector is time gated). Different time gating creates difference in the meaning of ERL.

The ERL from a high-quality MTF is the upper bound for any measurement of a DUT which uses any one of the test fixtures. Therefore, it should be significantly higher than 7.3 dB.

It is suggested to divide the budget evenly to allow about the same reflection power from the DUT's internal circuitry as from the mated connectors; if each one is 10.3 dB then their combination (RSS, since reflections are independently distributed) would be 7.3 dB.

SuggestedRemedy

Change minimum ERL from TBD to 10.3 dB.

In Table 162B-1, change T fx from 0 to 0.2 ns.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response comment #112.

 Cl 163B
 SC 163B.2
 P 290
 L 16
 # 132

 Ran, Adee
 Intel

 Comment Type
 TR
 Comment Status
 A
 TP0v/TP5v example

(addressing TBD)

The example test fixture is defined only by the magnitude of its insertion loss. Therefore it is impossible for a reader to calculate reference values at TP0a, and this example does not help.

The lack of full channel information also prevents calculation of consensus values to replace the TBDs in Table 163B–1.

It is suggested to replace the definition to a full s-parameters model based on the equations in 162.11.7.1.1 with the same z_p, creating an IL of 4.33 dB at 26.56 GHz. This will enable calculation of the reference values.

Alternatively, use a smaller value for z_p to create an IL of 2.8 dB.

SuggestedRemedy

Replace the text of this paragraph with text referring to 162.11.7.1.1 and equation 162-12 and update the reference values (currently TBD) accordingly.

A presentation with a more detailed proposal is planned.

Response Status C

ACCEPT IN PRINCIPLE.

The task force reviewed the following presentation: https://www.ieee802.org/3/ck/public/21_01/ran_3ck_01_0121.pdf https://www.ieee802.org/3/ck/public/21_01/ghiasi_3ck_02_0121.pdf

Implement the proposal on slide 9 of ran_3ck_01_0121 with editorial license. Update Equation 163B-1 to describe the insertion loss model. Update the Figure 163B-1 showing the new insertion loss curve.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 132

Page 33 of 40 2021-02-16 9:15:41 PM

Cl 163 SC 163.9.2 P185 L 28 # 133 Intel

Comment Type E Comment Status D withdrawn

The editor's note states that "In Table 163–5, common-mode to common-mode return loss reference is not appropriate". But it is appropriate; comment #228 against D1.3 was referring to the frequency range of the test fixture's specification and did not request any change to this reference (the problem is in the response).

SuggestedRemedy

Delete the editor's note, without any change to the table.

Proposed Response Status Z

PROPOSED REJECT.

This comment was WITHDRAWN by the commenter.

C/ 120F SC 120F.3.1.2 P 214 L 34 # [134

Ran, Adee Intel

Comment Type ER Comment Status A TX EQ

The editor's note states that pre-cursor tap

c(-3) will be removed from this specification if it is shown to "have no value".

This has not been shown in four comment cycles since the addition of this note, so there is no need to keep it.

SuggestedRemedy

Delete the editor's note.

Response Status C

ACCEPT.

(Addressing editor's note requiring confirmation)

The editor's note states that the values specified for "Insertion loss at 26.5625 GHz" for test 2 require confirmation. (These values are for the high-loss test).

No proposal has been made to change the values in this table in four comment cycles since the addition of this note, so there is no need to keep it.

Note that the baseline proposal

https://www.ieee802.org/3/ck/public/19_09/li_3ck_01d_0919.pdf has a comment in slide 16 that "Max informative recommended loss value is place holder and require further investigation". But the value in this table is not the informative recommended loss - it is the normative loss of the interference tolerance test. The annex does not include a "max informative recommended loss value", so there is nothing to confirm/investigate.

The IL in the high-loss test suggests the maximum loss for a channel, but the project's objective are met regardless of the value.

SuggestedRemedy

Delete the editor's note.

Response Status C

ACCEPT IN PRINCIPLE.

Delete the editor's notes on page 218 line 43 and page 222 line 4.

Comment Type T Comment Status A

"Bessel-Thomson low pass response with 53 GHz 3 dB bandwidth" - we have 40 GHz in all other corresponding places in this draft.

This is for calibrating the pattern generator in the C2C Rx test setup. There is no reason for higher bandwidth in this specific subclause. All precedent cases use the same bandwidth for Rx

and for the Tx test (e.g. 33 GHz in 120D.3.2.1).

SuggestedRemedy

Change "53" to "40".

Response Status C

ACCEPT.

measurement BW

 CI 163
 SC 163.10.1
 P 190
 L 26
 # 137

 Ran, Adee
 Intel

 Comment Type
 E
 Comment Status
 A
 editorial (bucket1)

This subclause is titled "Channel Operating margin" so it should only discuss COM, not recommended IL limits and ERL requirements.

There are additional requirements not listed here (e.g. mode conversion loss, 163.10.4)

SuggestedRemedy

Move the second paragraph (which points to 163.10.2 and 163.10.3) to the parent subclause 163.10.

Consider adding a summary table in 163.10 as in the Tx and Rx characteristics.

Response Status C

ACCEPT IN PRINCIPLE.

Move the second paragraph (which points to 163.10.2 and 163.10.3) to the parent subclause 163.10. Implement with editorial license.

Adding a summary table may be an improvement to the draft, but is not necessary for technical completeness.

For module output (120G.3.2, table 120G-3), host input (120G.3.3, table 120G-6), and module input (120G.3.4, table 120G-9), the reference subclause for "Common-mode to

There is one subclause that discusses RLCD, 120G.3.1.1, but it is currently specific to host output.

SuggestedRemedy

Change reference from 120G.3.1.2 to 120G.3.1.1 in the 3 tables.

differential return loss (min)" is incorrect - 120G.3.1.2 discusses ERL.

Rephrase the text in 120G.3.1.1 to refer to both host and module, output and input.

Response Status C

ACCEPT IN PRINCIPLE.

The reference to 120G.3.1.2 is incorrect and should be 120G.3.1.1.

By convention, it is common to refer to specifications for different test points without changing the text in the referenced subclause.

However the specification for module input and host input should be differential to common-mode (RLCD).

Also, the variable in 120G.3.1.1 should be RLDC, not RLCD).

For common-mode to differential return loss in Table 120G-3, change the reference to 120G.3.1.1.

In 120G.3.1.1, change RLCD to RLDC.

For Host Input and Module input change the parameter to differential to common-mode return loss and specify based on 120G.3.1.1.

Implement with editorial license.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 138

Page 35 of 40 2021-02-16 9:15:41 PM

 Cl 163
 SC 163.10
 P 190
 L 28
 # 139

 Ran, Adee
 Intel

 Comment Type
 T
 Comment Status A
 channel RLCD (CC)

There is no specification for RLDC for the KR channel.

Without such specification, a channel can cause a strong common mode reflection signal that will be fed into the Tx - and since Tx RLCD/RLCC are not defined either, a differential or common mode signal can be reflected back without control.

The conversion loss specifications may need more work, but for the purpose of technical completeness, the channel RLDC from 162.11.4 can be used.

Also in missing 120F.

SuggestedRemedy

Add a new subclause for channel differential to common mode return loss, based on 162.11.4 with the same limits, with editorial license.

Apply similarly in 120F.

Response Status C

ACCEPT.

[Editor's note: CC 163, 120F]

 Cl 162
 SC 162.9.3
 P 152
 L 35
 # 140

 Dawe, Piers
 Nvidia

 Comment Type
 TR
 Comment Status R
 assymmetric hosts (WG)

The recommended maximum insertion loss allocation for the host traces plus BGA footprint and host connector footprint, of 6.875 dB, compares very poorly with C2M's host insertion loss up to 11.9 dB, making passive copper expensive and unattractive for a switch, while 6.875 dB is overkill for a NIC. Server-switch links will get made with an asymmetric loss budget, so it would be better for the standard to regularise what will happen anyway. By the way, many server-switch cables will be asymmetric too (different form factors at server and switch ends), and that's already allowed in this draft.

SuggestedRemedy

As we have done for C2M, create two kinds of CR ports. Host loss allocations of 3.75 dB and 10 dB. Short can connect to short or long; long to long is not supported. Add entries in Clause 73 Auto-Negotiation to advertise short and long to the other end.

In Table 162-10, provide separate limits for Linear fit pulse peak (min).

In Table 162-14, provide separate rows for Test channel insertion loss: for testing the short host input the values for Test 2 are 10-6.875 = 3.125 dB higher (26.75 dB and 27.75 dB), while for the long host input the values for Test 2 are 6.875-3.75 = 3.125 dB lower (20.5 dB and 21.5 dB). No change needed for Test 1.

In 162A.4, provide two equations for IL_PCBmax and for ILHostMax and show them in Fig 162A-1 and 2. Provide two Value columns in Table 162A-1. Adjust figures 162-3 and 4.

In 162.11.7.1.1, zp, representing the extra loss a host has above an MCB, could be made asymmetric but I believe that would not bring an improvement in accuracy. There could be a third kind of CR port with 6.875 dB but this would be useful for only a

There could be a third kind of CR port with 6.875 dB but this would be useful for only a subset of switch-switch links, for which passive copper is a subset anyway, so it doesn't seem worthwhile.

Response Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Cl 162 SC 162.9.3 P152 L 35 # 141

Dawe, Piers Nvidia

Comment Type E Comment Status R pulse peak (WG)

Clumsy "x vf" way of defining linear fit pulse peak (min)

SuggestedRemedy

Use "Linear fit pulse peak ratio" as in 163 and 163A.3.2.1. Note the unit in the table changes to V/V.

Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

C/ 162 SC 162.9.3.3 P156 L31 # 142

Dawe, Piers Nvidia

Comment Type T Comment Status A TX SNDR (bucket1)

The transmitter SNDR measurement uses the method described in

SuggestedRemedy

Transmitter SNDR is defined by the [measurement] method {of | described in}

Response Status C

ACCEPT IN PRINCIPLE.

Change:

"The transmitter SNDR measurement uses the method described in 120D.3.1.6 with the exception that the linear fit procedure in 162.9.3.1.1 is used."

To:

"The transmitter SNDR is defined by the the measurement method described in 120D.3.1.6 with the exception that the linear fit procedure in 162.9.3.1.1 is used."

Cl 162 SC 162.9.3.6 P 157 L 30 # 143

Dawe, Piers Nvidia

Comment Status R

- 1. This paragraph claims that the minimum common-mode to common-mode return loss is specified to reduce reflections of signals that were generated originally as differential and end up as differential. This is not the case: it is included to contain a gross build-up of CM voltage on the line that is otherwise unbounded. If it were intended to address mixed-mode issues it would be a tighter spec, but that's not viable for front-panel connectors. Other specs such as Rx Differential to common-mode return loss and Tx Common-mode to differential mode return loss address the problem stated.
- 2. This is a standard, not an attempt at a textbook. We don't give any justifications for most other specs; there is no reason that this one should be different.

SuggestedRemedy

Comment Type TR

Delete the paragraph

Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

Cl 163 SC 163.10.2 P192 L 28 # 144

Dawe, Piers Nvidia

Comment Type T Comment Status A channel IL

The limit at 40 GHz (not 45 as in the figure) excludes some acceptable channels.

SuggestedRemedy

Replace the straight part of the limit with one that curves down. (with an f^2 term). Correct the fmax in Figure 163-5.

Response Status C

ACCEPT IN PRINCIPLE.

The was an error in creating the figure that should be corrected.

Change figure 163-5 so curve ends at 40 GHz to match the equation.

The suggested remedy has not provided sufficient details to change the insertion loss curve. Also, the change is not required for technical completeness.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 144

Page 37 of 40 2021-02-16 9:15:42 PM

RX RLCC (WG)

Cl 120G SC 120G.3.2 P 234 L 10 # 145

Dawe, Piers Nvidia

Comment Type TR Comment Status A EH/VEC (bucket3)

For a reasonably clean module (or test equipment in a host stressed eye test), the driver swing has to be aggressively reduced to deliver only 24 mV at near end, short setting. 120E has 70 mV.

SuggestedRemedy

Eye height limits should be set sensibly for short and long modes, near and far - not all the same

Change the NEEH from 24 mV to 40 mV.

Response Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #146 and #40.

Cl 120G SC 120G.3.2 P 234 L 14 # 146

Dawe, Piers Nvidia

Comment Type TR Comment Status A

TP4 EH/VEC

As already discussed, the 2-settings method with only two compliance losses doesn't work. If the module is set to the short setting, and the host receiver isn't that near, the eye it is offered is smaller than 24 mV because of loss, and out of tune as well. If the module is set to the long setting and the host isn't that long, the eye is also out of tune. There's no guarantee that either setting is usable.

SuggestedRemedy

There should be 4 EH-VEC limit pairs: short near and far, and long near and far, in Table 120G. In 120G.3.2.2.1, give the four zp values: for short, 0 (as at present) and 184, for long, 61 and 244.7 (as at present).

Response Status C

ACCEPT IN PRINCIPLE.

[Editor's note: Changed line number from 26.]

The following presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/21_01/dawe_3ck_01_0121.pdf

Implement the following with editorial license.

Module output short setting:

0 mm: EH (min) = 15 mV, VEC (max) = 12 dB 160 mm: EH (min) = 15 mV, VEC (max) = 12 dB

Module output long setting:

80 mm: EH (min) = 15 mV, VEC (max) = 12 dB 244.7 mm: EH (min) = 15 mV, VEC (max) = 12 dB

Straw poll #8 (direction)

I support adding one extra EH/VEC test for each of near-end and far-end module output tests.

Yes: 26 No: 1

Straw poll #9 (direction)

I support adding one extra EH/VEC test for each of near-end and far-end module output tests for D1.5.

Yes: 18 No: 7

Comment Type T Comment Status A

TP4 EQ settings Com

TP4 EQ settings

The module output doesn't have to "support" two things (e.g. receive, co-operate, enable, or similar), it has to actually do them.

SuggestedRemedy

Change "The module output shall support two..." to "The module output shall operate in two..."

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #148.

C/ 120G SC 120G.3.2.1 P 234 L 38 # 148

Dawe, Piers Nvidia

Comment Type T Comment Status A

What the module output is being asked to do is not equalization, but the opposite (emphasis), and it may have to adjust its swing also. The two modes aren't states and there is no state machine.

SuggestedRemedy

Change "two equalization states: short and long." to "two output modes, called short and long." Change subclause title from "Module output transmit equalizer control" to "Module output mode control". Change table title from "Module state mapping" to "Module output modes".

Response Response Status C

ACCEPT IN PRINCIPLE.

The two "states" provide signals with a different set of characterisitics including shape and amplitude.

Change "two equalization states: short and long." to "two output modes: short and long." Change subclause title from "Module output transmit equalizer control" to "Module output mode control".

Change table title from "Module state mapping" to "Module output mode mapping". Remove the tx_eq_state variable.

In Table 120G-4, change middle column to "Module output mode", replace 0 with "short" and 1 with "long".

Implement with editorial license.

Cl 120G SC 120G.3.2.1 P 234 L 41 # 149

Dawe, Piers Nvidia

Comment Type TR Comment Status A TP4 EQ settings

The module output is not tx_anything, it's part of the receive path.

SuggestedRemedy

Change "tx_eq_state" to "module output mode".

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #148.

Cl 120G SC 120G.3.2.1 P 234 L 41 # 150

Dawe, Piers Nvidia

Comment Type T Comment Status A TP4

TP4 EQ settings

I wonder what "control variable" means, as I don't believe it is used anywhere else in this document and in this subclause it's "implementation dependent". Also I wonder whether providing this mapping from S and L to 0 and 1 is helpful - maybe it should be left to CMIS and the SFF committee.

SuggestedRemedy

Consider telling the story without "control variable", 0 and 1, and change the middle column of Table 120G-4 from 0 and 1 to S and L.

Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment #148.

Cl 120G SC 120G.3.2.1 P 235 L 2 # 151

Dawe, Piers Nvidia

Comment Type TR Comment Status A TP4 EQ settings

The list of module "Host Electrical Interface Codes" is kept in SFF-8024, Rev 4.8, Table 4-5 Host Electrical Interface Codes, and the column is headed "specification". "Application" is something else (a pair of host electrical interface and media interface specifications) as defined in CMIS.

SuggestedRemedy

Change "application name" to "host electrical interface" or "module electrical interface".

Response Status C

ACCEPT IN PRINCIPLE.

Change "Application Name" to "Host electrical interface".

TP4 EQ settings

C/ 120G

Dawe, Piers

Cl 120G SC 120G.3.2.1 P235 L8 # 152

Dawe, Piers Nvidia

Comment Type E Comment Status A

Comment Type TR Comment Status R

SC 120G.5.2

Comment Type TR Com

EO method

154

"IEEE Interface Type" is too grand: IEEE is much wider than 802.3, and the Capitals Are Unwarranted.

SuggestedRemedy

Change to "IEEE 802.3 interface type"

Response Status C

ACCEPT.

C/ 120G SC 120G.5.2 P 245 L 9 # [153

Dawe, Piers Nvidia

Comment Type TR Comment Status R TP1a gDC (WG)

By allowing stronger gDC with stronger gDC2, we can have up to 12 dB of peaking for gCD2 = -1 but up to 16 dB for gDC2 = -3 - yet we don't expect the maximum channel loss to vary like that.

SuggestedRemedy

For TP1a, change the second -12 to -11, and -13 to -10 (so the strongest "CTLE peaking" is 13).

Response Status C

REJECT.

This comment proposes a change to the draft that does not address technical completeness. The commenter is invited to resubmit this comment during working group ballot.

Of all the options in dawe_3ck_01a_1020, this draft has the most primitive (rectangular eye mask) although it is described as a histogram. It's an inefficient/inaccurate way of measuring a signal and provides weak and uncertain protection against too much jitter. This will get worse if we relax the VEC limits, and is a particular concern for very short host channels (see Mike Dudek's work).

P 246

Nvidia

L 23

SuggestedRemedy

Change from a 4-cornered mask with corners at t = ts+/-0.05, V = +/-Hmin/2 to a 10-cornered mask with corners at t = ts+/-0.05, ts+/-0.07, ts+/-0.1, V = +/-Hmin/2, $+/-Hmin^*0.4$, +/-0.1

(In case it's not clear, Hmin, already specified, is the greater of EH and Eye Amplitude - VEC. There will be discussion about changing those limits from other comments, but this is a simple scalable method that can remain as the EH and VEC limits are revised.)

Response Status C

REJECT.

This comment proposes a technical change to the draft that does not address technical completeness.

The following presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/21_01/dawe_3ck_01_0121.pdf

Also, the slide 3 of the following presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/21 01/brown 3ck 04 0121.pdf

The currently methodology was chosen over an eye mask method like that being proposed in this comment.

The comment does not provide sufficient evidence to support the proposed changes.

There was no concensus to make the proposed change.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID