EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| CI FM SC FM | P1 | $L 10$ |
| :--- | :---: | :---: |
| Grow, Robert | RMG Consulting | \# 229 |
| Comment Type E | Comment Status A |  |
| (bucket1) |  |  |

From the amendment list starting at line 28, it appears the TF is planning to be included in the current revision project.
SuggestedRemedy
Add assigned amendment number 16.
Response Response Status C

ACCEPT.

| CI FM SC FM | P4 | L8 |
| :--- | :---: | :---: |
| Grow, Robert | RMG Consulting | \# 230 |
| Comment Type | E |  |

IEEE style has changed (2020 IEEE Standards Style Manual, 11.1).

## SuggestedRemedy

Delete 2nd paragraph of the Editor's Note.
Response Response Status C
АССЕРТ.

| Cl FM SC FM | P8 | L21 | \# 231 |  |
| :---: | :---: | :---: | :---: | :---: |
| Grow, Robert | RMG Consulting |  | (bucket1) |  |
| Comment Type E | Comment Status A |  |  |  |
| The ballot group is now known. |  |  |  |  |
| SuggestedRemedy |  |  |  |  |
| Add WG members list at start of P802.3ck WG ballot. |  |  |  |  |
| Response | Response Status C |  |  |  |
| ACCEPT. |  |  |  |  |
| Cl FM SC FM | P11 | L4 | \# 232 |  |
| Grow, Robert | RMG Consulting |  |  |  |
| Comment Type E | Comment Status A |  |  | (bucket1) |
| Amendment title missing. |  |  |  |  |
| SuggestedRemedy |  |  |  |  |
| Replace "Amendment title (copy from PAR)" with the title. |  |  |  |  |
| Response | Response Status C |  |  |  |
| ACCEPT. |  |  |  |  |


| Cl FM SC 0 | P3 | L2 |
| :--- | :---: | :---: |
| Wu, Mau-Lin | MediaTek Inc. | \# 226 |
| Comment Type | ER | Comment Status A |

Annex 163A through Annex 163B are lost here.
SuggestedRemedy
Change the setence to
"This amendment to IEEE Std 802.3-2018 adds Clause 161 through Clause 163, Annex
120F, Annex 120G, Annex 162A through Annex 162D, and Annex 163A through Annex 163B."

## Response Response Status W

ACCEPT IN PRINCIPLE.
Editor's note: Changed clause from 00 to FM.]
Resolve using the response to comment \#93.

| Cl FM SC 0 | P3 | L2 |
| :--- | :---: | :---: |
| Kabra, Lokesh | Synopsys Inc | \# 93 |
| Comment Type E | Comment Status A |  |
| (bucket1) |  |  |

Abstract does not mention addition of Annex 163A and 163B

## SuggestedRemedy

Annex 120F, Annex 120G, Annex 162A through Annex 162D, Annex 163A and Annex 163B
Response Response Status C

ACCEPT IN PRINCIPLE.
[Editor's note: Changed clause from 00 to FM.]
Change the first sentence in the abstract to: "This amendment to IEEE Std 802.3-2018 adds Clause 161 through Clause 163, Annex 120F, Annex 120G, Annex 162A through Annex 162D, Annex 163A, and Annex 163B."

| CI 00 SC 0 | PO | LO |
| :--- | :---: | :---: |
| Wienckowski, Natalie | General Motors | \# 71 |
| Comment Type E | Comment Status A |  |
| (bucket1) |  |  |

For all additions to tables, if there are rows before or after the rows shown in the spec, there needs to be a blank, merged row with an elipses in it to indicate all places where there are additional rows not shown. Search for "unchanged rows not shown" to find places where this is needed.

## SuggestedRemedy

Add additional rows, merged row with an elipses in it, to the top and/or bottom of tables as needed to indicate additional rows that are not shown.

## Response <br> Response Status $\mathbf{C}$

ACCEPT.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeI

| Cl 00 SC 0 | P0 | LO |
| :--- | :---: | :---: |
| Brown, Matt | Huawei |  |
| Comment Type | ER | Comment Status D |

In various clauses and annexes we specify various insertion loss, conversion loss, and return loss characteristics. The wording to identify and the variable names used to define these characteristcs is inconsistent.

## SuggestedRemedy

Use consistent terminology and variable names to describe and specify the various terms. A presentation will be provided to explain further and provide proposals.
Proposed Response
Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

| Cl FM SC 0 | P13 | L29 |
| :--- | :---: | :---: |
| Kabra, Lokesh | Synopsys Inc | \# 94 |
| Comment Type E | Comment Status A |  |
| (bucket1) |  |  |

## Abstract does not mention addition of Annex 163A and 163B

Comment Type E Comment Status A
(bucket1)

## SuggestedRemedy

Annex 120F, Annex 120G, Annex 162A through Annex 162D, Annex 163A and Annex 163B Response Response Status
ACCEPT IN PRINCIPLE.
[Editor's note: Changed clause from 00 to FM and page from 13 to 14.]
Change the first sentence to: "This amendment includes changes to IEEE Std 802.3-2018 and adds Clause 161 through Clause 163, Annex 120F, Annex 120G, Annex 162A through Annex 162D, Annex 163A, and Annex 163B."

| $C l$ FM SC 0 | P14 | L29 | \# 227 |
| :--- | :---: | :---: | :---: |
| Wu, Mau-Lin | MediaTek Inc. |  |  |

Comment Type ER Comment Status A (bucket1)

Annex 163A through Annex 163B are lost here.

## SuggestedRemedy

Change the setence to
"This amendment to IEEE Std 802.3-2018 adds Clause 161 through Clause 163, Annex 120F, Annex 120G, Annex 162A through Annex 162D, and Annex 163A through Annex 163B."
Response Response Status w
ACCEPT IN PRINCIPLE.
[Editor's note: Changed clause from 00 to FM.]
Resolve using the response to comment \#94.

| Cl 1 | SC 1.1.3.2 | P31 | $L 18$ |
| :--- | :---: | :---: | :---: |
| Wienckowski, Natalie | General Motors | \# 68 |  |
| Comment Type E | Comment Status A |  |  |

Subject/verb agreement (each is singular) \& grammer ("of" does not belong).
SuggestedRemedy
Change: For each of chip-to-chip and chip-to-module interfaces
To: For each chip-to-chip and chip-to-module interface
The same change is needed on P31L35 \& P31L50.

## Response

Response Status C
ACCEPT IN PRINCIPLE.
The current wording was intended to convey that chip-to-module and chip-to-chip
interfaces are not necessarily the same. However, the wording could be improved.
Change: "For each of chip-to-chip and chip-to-module interfaces"
To: "For chip-to-chip interfaces and for chip-to-module interfaces"

| Cl 1 | SC 1.1.3.2 | P31 | L18 | \# 74 |
| :--- | :---: | :---: | ---: | :--- |
| Huber, Tom |  | Nokia |  |  |
| Comment Type | E | Comment Status A |  |  |
| (bucket1) |  |  |  |  |

Awkward grammar: "For each of chip-to-chip and chip-to-module interfaces, four widths of CAUI-n/100GAUI-n are defined...".

## SuggestedRemedy

The introductory clause seems unnecessary since the preceding sentence already
establishes the use of CAUI-n/100GAUI-n for C2C and C2M interfaces. Change to "Four widths of CAUI-n and 100GAUI-n are defined..."
Response
Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#68.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Clause, Subclause, page, line

Page 2 of 50 2021-05-26 2:51:21 PM

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| $C l 1$ | $S C$ | 1.1.3.2 | P31 | L18 |
| :--- | :---: | :---: | :---: | :--- |

Comment Type E Comment Status A (bucket1)
"For each of chip-to-chip and chip-to-module interfaces" awkward wording, subject/verb agreement - also leaves open whether the definition is different if other than chip-to-chip or chip-to-module interfaces are used here - which does not seem to be the case. Seems it would be cleaner and clearer just to say "for each interface" and the extra words are unnecessary. This same problem exists 6 places on page 31 lines 18, 35, and 50; page 33, lines 5 and 33, and page 34 line 5
SuggestedRemedy
Change "For each of chip-to-chip and chip-to-module interfaces" to "For each interface" in all 6 instances (page 31 lines 18, 35, 50; page 33 lines 5 \& 33; and page 34 line 5)
Response

> Response Status C

ACCEPT IN PRINCIPLE.
Resolve using the response to comments \#68, \#75, and \#76.

| Cl 1 | SC 1.1.3.2 | P31 | L34 |
| :--- | ---: | ---: | ---: |
| Huber, Tom | Nokia |  | \# 75 |

Comment Type E
Comment Status A
(bucket1)
Awkward grammar: "For each of chip-to-chip and chip-to-module interfaces, three widths of 200GAUI-n are defined...".

## SuggestedRemedy

The introductory clause seems unnecessary since the preceding sentence already establishes the use of 200GAUI-n for C2C and C2M interfaces. Change to "Three widths of 200GAUI-n are defined..."

## Response

Response Status C
ACCEPT IN PRINCIPLE.
The current wording was intended to convey that chip-to-module and chip-to-chip
interfaces are not necessarily the same. However, the wording could be improved
Change: "For each of chip-to-chip and chip-to-module interfaces"
To: "For chip-to-chip interfaces and for chip-to-module interfaces"
Cl 1

Huber, Tom
Comment Type E Comment Status A
(bucket1)
Awkward grammar: "For each of chip-to-chip and chip-to-module interfaces, three widths of 400GAUI-n are defined..."

## SuggestedRemedy

The introductory clause seems unnecessary since the preceding sentence already establishes the use of 400GAUI-n for C2C and C2M interfaces. Change to "Three widths of $400 \mathrm{GAUI}-\mathrm{n}$ are defined..."
Response
Response Status
C
ACCEPT IN PRINCIPLE.
The current wording was intended to convey that chip-to-module and chip-to-chip
interfaces are not necessarily the same. However, the wording could be improved.
Change: "For each of chip-to-chip and chip-to-module interfaces"
To: "For chip-to-chip interfaces and for chip-to-module interfaces"

| Cl 1 SC 1.4.36 | P33 | L5 | \# 69 |
| :--- | :---: | :---: | :---: | :--- |
| Wienckowski, Natalie | General Motors |  |  |
| Comment Type E | Comment Status A | (bucket1) |  |

Subject/verb agreement (each is singular) \& grammer ("of" does not belong).

## SuggestedRemedy

Change: For each of chip-to-module and chip-to-chip interconnections
o: For each chip-to-module and chip-to-chip interconnection
The same change is needed on P33L33 \& P34L5.
Response Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the responses to comments \#77, \#78, and \#79.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeI

| Cl 1 | SC 1.4.36 | P33 | L5 |
| :--- | ---: | ---: | ---: |
| Huber, Tom | Nokia |  | 77 |

Comment Type E
Comment Status A
(bucket1)

Awkward grammar: "For each of chip-to-chip and chip-to-module interfaces, four widths of CAUI-n/100GAUI-n are defined...".

## SuggestedRemedy

The introductory clause seems unnecessary since the preceding sentence already establishes the use of CAUI-n/100GAUI-n for C2C and C2M interfaces. Change to "Four widths of CAUI-n and 100GAUI-n are defined..."

## Response

Response Status C

## ACCEPT IN PRINCIPLE.

The current wording was intended to convey that chip-to-module and chip-to-chip
interfaces are not necessarily the same. However, the wording could be improved.
Change: "For each of chip-to-chip and chip-to-module interfaces"
To: "For chip-to-chip interfaces and for chip-to-module interfaces


Awkward grammar: "For each of chip-to-chip and chip-to-module interfaces, three widths of 200GAUI-n are defined...".
SuggestedRemedy
The introductory clause seems unnecessary since the preceding sentence already establishes the use of 200GAUl-n for C2C and C2M interfaces. Change to "Three widths of 200GAUI-n are defined..."

## Response

Response Status
ACCEPT IN PRINCIPLE.
The current wording was intended to convey that chip-to-module and chip-to-chip
interfaces are not necessarily the same. However, the wording could be improved.
Change: "For each of chip-to-chip and chip-to-module interfaces"
To: "For chip-to-chip interfaces and for chip-to-module interfaces"

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| $C l 1$ | $S C 1.5$ | $P 34$ | $L 18$ | $\# 159$ |
| :--- | :---: | :---: | :---: | :---: |
| Zimmerman, George | CME Consulting/ADI, APL Gp, Cisco, CommScope, |  |  |  |

Comment Type E Comment Status A
(bucket1)
"FEC AM lock" While the abbreviation "AM" has been used for "Alignment Marker" in many multi-lane PHYs, it somehow was never entered in the abbreviations list (at least not that I can find, having checked 802.3-2018, where it is used, and 802.3cd). Because it has other common meanings, and this one is specific to IEEE Std 802.3, it shoudl be in the list... (simple things like FEC are). I plan to submit maintenance on this just to make it clear - but since it is an issue in this draft, you can fix it here...

## SuggestedRemedy

Add "AM Alignment Marker" to the list of abbreviations in 1.5 (page 34 of draft)

## Response

## Response Status $\mathbf{C}$

ACCEPT IN PRINCIPLE.
[Editor's note: Changed clause, subclause, page, line from $\{45,0,44,22\}$ to $\{1,1.5,34,18\}$.] The acronym AM is rarely used in text in 802.3-2018, 802.3cd-2018, and 802.3ck D2.0. Nor is the acronym ever properly introduced in the subclauses that use it. Normally, the full phrase "alignment marker" is used. So rather than adding yet another acronym to the list the full phrase should be used in place of the acronym. However, changing instances of
AM in Clause 45 would result in differences in nomenclature between Clause 45 and some sublayer clauses in the base specification and amendments.
In Clause 161 change 1 instance (Figure 161-5) of "AM" with "alignment marker". [Editor's note: CC: 1, 45, 161.]

| Cl 30 SC 30.5.1.1.2 | P35 | L17 |
| :--- | :---: | :---: |
| Wienckowski, Natalie | General Motors |  |

Wienckowski, Natalie General Motors
Comment Type E Comment Status A
(bucket2)
Inconsistent wording for the cable type
P32L30, P33L17, P33L44, P73L31, P73L35: shielded balanced copper cabling
P35L17, P35L27, P35L37: shielded copper balanced cable

## SuggestedRemedy

Change: shielded copper balanced cable
To: shielded balanced copper cabling
on P35L17, P35L27, \& P35L37.
Response Response Status ACCEPT IN PRINCIPLE.

In the following locations P35L17, P35L27, \& P35L37..
Change: "shielded copper balanced cable"
To: "shielded balanced copper cable"

| CI 30 | SC 30.5.1.1.16 | P35 | L48 | $\# 157$ |
| :--- | :---: | :---: | :---: | :---: |
| Zimmerman, George | CME Consulting/ADI, APL Gp, Cisco, CommScope, |  |  |  |
| Comment Type T | Comment Status A | (bucket1) |  |  | Comment Type T Comment Status A (bucket1) "RS-FEC-Int enabled RS-FEC-Int enabled" - gives absolutely NO useful information in the description. Please at least expand a little or give a cross reference to give the reader a clue. (other places where this abbreviation are used, such as 45.2.1.110.ab, generally do give more information)

## SuggestedRemedy

Change the description "RS-FEC-Int enabled" to "Clause 161 Codeword-interleaved ReedSolomon Forward Error Correction enabled".
Response
Response Status $\mathbf{C}$

## ACCEPT IN PRINCIPLE.

Resolve using the response to comment \#89

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| Cl 30 SC 30.5.1.1.16 | $P 35$ | $L \mathbf{5 0}$ | \# 89 |
| :--- | :---: | :---: | :---: |
| Slavick, Jeff |  | Broadcom |  |
| Comment Type T | Comment Status A |  |  |
| (bucket1) |  |  |  |

aFECmode was updated to include an enumeration for the Interleave FEC found in Cl161, but the text has not been updated.
SuggestedRemedy
Change the BEHAVIOR DEFINED AS: to read as follows:
A read-write value that indicates the mode of operation of the FEC sublayer for forward error correction (see 65.2, Clause 74, Clause 91, Clause 108, and Clause 161).

A GET operation returns the current mode of operation of the PHY. A SET operation changes the mode of operation of the PHY to the indicated value. The enumerations "BASE-R enabled", "RS-FEC enabled" and "RS-FEC-Int enabled" are only used by PHYs which support more than one type of FEC operation. For 25GBASE-CR, 25GBASE CR-S, 25GBASE-KR, and 25GBASE-KR-S PHYs operation in the no-FEC mode maps to the enumeration "disabled", operation in the BASE-R FEC mode maps to the enumeration enumeration "disabled", operation in the BASE-R FEC mode maps to the enumeration "BASE-R enabled", and operation in the RS-FEC mode maps to the enumeration "RS enabled" (see 110.6 and 111.6). For 100GBASE-CR1 and 100GBASE-KR1 PHYs
operation in RS-FEC mode maps to the enumeration "RS-FEC enabled" (see 91.6.2f) and operation in interleaved RS-FEC mode maps to the enumeration "RS-FEC-Int enabled" (see 161.6.23).

When Clause 73 Auto-Negotiation is enabled for a 25GBASE-R PHY, a SET operation is not allowed and a GET operation maps to the variables FEC_enable in Clause 74 and FEC_enable in Clause 108. When Clause 73 Auto-Negotiation is enabled for a non-25GBASE-R PHY supporting Clause 74 FEC a SET operation is not allowed and a GET operation maps to the variable FEC_enable in Clause 74. When Clause 73 AutoNegotiation is enabled for a 100GBASE--R PHY supporting Clause 161 FEC a SET operation is not allowed and a GET operation maps to the variable 100G_RS_FEC_enable in Clause 91 and 100G_RS_FEC_Int_enable in Clause 161.
If a Clause 45 MDIO Interface is present, then this attribute maps to the appropriate FEC control register based upon the PHY type and the FEC operating mode (see 45.2.10.3, 45.2.1.102 and 45.2.1.110).

Response
Response Status C
ACCEPT.
[Editor's note: Changed comment type from TR to T.]

aFECCorrectedBlocks needs to add the RS-FEC-Int into the laundry list of FEC types
SuggestedRemedy
Bring in the last paragraph of 30.5.1.1.17 and change "RS-FEC" to "RS-FEC and RS-FECInt"
Response Response Status C
ACCEPT.
[Editor's note: Changed comment type from TR to T.]

| Cl 30 SC 30.5.1.1.18 | P36 | L35 | \# 91 |  |
| :--- | :---: | :---: | :---: | :---: |
| Slavick, Jeff |  | Broadcom |  |  |
| Comment Type T | Comment Status A |  | (bucket1) |  |

aFECUncorrectedBlocks needs to add the RS-FEC-Int into the laundry list of FEC types

## SuggestedRemedy

Bring in the last paragraph of 30.5.1.1.18 and change "RS-FEC" to "RS-FEC and RS-FECInt"

## Response Response Status C

ACCEPT.
[Editor's note: Changed comment type from TR to T.]

"as specified in Clause 73 (see 73.6.5) and" - I see very little value in adding Clause and then subclause information - subclause information is sufficient
SuggestedRemedy
Change to "as specified in 73.6 .5 and"
Response Response Status C
ACCEPT.
-

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| $C l 45$ | $S C$ | 45.2.1.110 | P43 |
| :--- | :---: | :---: | :---: |

Comment Type E
Comment Status A
(bucket1)

Description text indicating Clause 91 and Clause 161 should be cross references (2 instances of each)

## SuggestedRemedy

Change "Clause 91" and "Clause 161" text in descriptions to active cross references.

## Response

Response Status C
ACCEPT.

| $C l 45$ | $S C$ 45.2.1.115a | $P 46$ |
| :--- | :---: | :---: |
| Anslow, Pete | Independent |  |

When a new subclause is inserted between two existing subclauses of the same level
(e.g., between 45.2.114 and 45.2.115) the new subclause number is the same as the lower of the two with "a" added. This is 45.2.114a in the example. See 2020 IEEE SA Style manual: https://mentor.ieee.org/myproject/Public/mytools/draft/styleman.pdf\#page=40 The same principle applies to inserted tables.
This needs to be corrected for 45.2.1.115a, Table 45-93a, 45.2.1.126a, Table 45-100a
SuggestedRemedy
Change the numbering of 45.2.1.115a, Table 45-93a, 45.2.1.126a, and Table 45-100a to be 45.2.1.114a, Table 45-92a, 45.2.1.125a, and Table 45-99a, respectively.
Response
Response Status C
ACCEPT.


Lots of unnecessary empty lines in between subclauses, tables, and text blocks.
SuggestedRemedy
Please remove all unnecessary white (empty) lines between (for example) 45.2.1.115 and 45.2.1.117 - these continue until at least page 54

Response
Response Status $\mathbf{C}$
REJECT.
The editorial policy in the 802.3ck project is to insert one empty line between each pair of editorial amendments. This is consistent throughout this draft. The intent is make a clear delineation between each new instruction AND to be consistent.

| Cl 45 | SC | 45.2.1.126a | P53 | $L$ |
| :--- | ---: | ---: | ---: | ---: |
| He, Xiang |  | Huawei |  | \# 214 |
| Comment Type | T | Comment Status R |  | counter size |

32 -bit counter may be too short for some of the codeword error bins. A brief calculation below shows the saturation time for the lower bins for $400 \mathrm{~Gb} / \mathrm{s}$ rate, if the overall BER is 2E-4 (random).

| Bin\# | Minutes to saturate |
| :--- | :--- |
| 1 | 2.5 |
| 2 | 4.6 |
| 3 | 12.7 |
| 4 | 46.9 |
| 5 | 217 |

5217
If considering burst errors, bin 2 and 3 will saturate even faster.
Bins saturated too early may not be able to provide useful information
SuggestedRemedy
Increase the size of counters for bin 1~3, if not for all, to 48 bits.
Response
Response Status C

REJECT.
Implementing 48-bit codeword error bin registers may not be straightforward, so there needs to be good justification for making this change.
For system debug, it is the uppermost 3-4 codeword error bins that are not zero which are of greatest interest, these bin counters increment slowly.
The important information for predicting the uncorrectable codeword ratio is in the high bins. Even if the first 3 lower bins are saturated, there are 12 more bins that contain enough information to extrapolate.
If the lower order bins are seen to be saturated, for debug purposes reading the registers every two minutes is reasonable.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| CI 45 SC 45.2 .1 .135 a | P55 | L11 | \# 2 |  |
| :--- | :---: | :---: | :---: | :---: |
| Anslow, Pete |  | Independent |  |  |
| Comment Type E | Comment Status A |  | (bucket1) |  |

Changes for table footnotes $b$ and $c$ are not shown correctly.
Similar issues in Tables 45-103b, 45-103c, and 45-103d.
SuggestedRemedy
In Table 45-103a:
in the row for 1.1120.4:2 underline the added " c "
Underline the whole of table footnotes $b$ and $c$
In Table 45-103b:
in the row for 1.1220.5:3 underline the added "b"
Underline the whole of table footnote $b$
In Table 45-103c:
in the row for 1.1320.4:2 underline the added "c"
Underline the whole of table footnotes $b$ and $c$
In Table 45-103d:
in the row for 1.1420.5:3 underline the added "b"
Underline the whole of table footnote b
Response Response Status C

ACCEPT.

| CI 45 | SC 45.2.1.135a | P55 | L12 |
| :--- | :---: | :---: | :---: |
| Wienckowski, Natalie | General Motors |  | \# 72 |

## Comment Type T <br> Comment Status A

(bucket1)
Unused bit combinations should be "reserved"
SuggestedRemedy
add a row with " $01 \mathrm{x}=$ Reserved" and
add a row with "1 $00=$ Reserved"
This also needs to be done on P56L7, P57L13, P58L7, \& P152L23.
Response
Response Status C

ACCEPT.
[Editor's note: CC: 45, 162 (Table 162-9).]


Table 45-103c concerns register 1.1320, but there are 4 instances of 1.1120 in the table. SuggestedRemedy

Change 1.1120 to 1.1320 in four places.
Response
Response Status
ACCEPT.

| Cl 45 | SC 45.2.7.12a.a | P60 | L52 |
| :--- | :---: | :---: | :---: |
| Slavick, Jeff |  | Broadcom | 92 |
| Comment Type T | Comment Status A |  |  |
| (bucket1) |  |  |  |

Comment Type $\quad$ Comment Status A
The RS-FEC-Int negotiated field is valid for all 100GBASE-P PHYs that supporting negotiating it. But text some "some" so

## SuggestedRemedy

Align the text with how RS-FEC negotiated reads. Change the last sentence to read "This bit is set only when RS-FEC-Int operation been negotiated for a 100GBASE-P PHY supporting negotiation of RS-FEC-Int operation."
Response
Response Status C
ACCEPT IN PRINCIPLE.
Change last sentence to: "This bit is set only if RS-FEC-Int operation has been negotiated or a 100GBASE-P PHY supporting negotiation of RS-FEC-Int operation.

| Cl 69 | SC 69.1.2 | P63 | L6 |
| :--- | :---: | :---: | :---: |
| Huber, Tom |  | Nokia | \# 80 |
| Comment Type E | Comment Status A |  |  |
| (bucket1) |  |  |  |

The editing instruction indicates that unchanged items are not included, yet items i) and j) have no changes indicated
SuggestedRemedy
Remove items i) and j), or change the editing instruction to indicate that 'some unmodified items are not included'.
Response Response Status C
ACCEPT IN PRINCIPLE.
In the editorial instruction change "(unchanged list items not shown):" to "(some unchanged ist items not shown):"

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| Cl 69 | SC 69.2.3 | P63 |
| :--- | :---: | :---: |
| Kabra, Lokesh | Synopsys Inc | L43 |
| Comment Type E | Comment Status A | \#8 |

Typo-error; 200Gb/s mentioned as $100 \mathrm{~Gb} / \mathrm{s}$
SuggestedRemedy
the PMD defined in Clause163, and specifies 200Gb/s operation using 4-level PAM over two differential
Response Response Status C
ACCEPT IN PRINCIPLE.
Change: "The 200GBASE-KR2 embodiment employs the PCS defined in Clause 119, the PMA defined in Clause 120, and the PMD defined in Clause 163, and specifies $100 \mathrm{~Gb} / \mathrm{s}$ operation using 4-level PAM over two differential paths in each direction."
To: "The 200GBASE-KR2 embodiment employs the PCS defined in Clause 119, the PMA defined in Clause 120, and the PMD defined in Clause 163, and specifies $200 \mathrm{~Gb} / \mathrm{s}$ operation using 4-level PAM over two differential paths in each direction."

| Cl 69 | SC 69.2.3 | P64 |
| :--- | :---: | :---: |
| Huber, Tom | Nokia | L48 |
| Comment Type | T | Comment Status A |

Not part of the new text for table 69-3b, but the title of clause 137 is incorrect in the table
SuggestedRemedy
Change 100GBASE-KR4 PMD to 200GBASE-KR4 PMD
Response

| ACCEPT. |  |  |
| :--- | :---: | :---: |
| CI 80 SC 80.1.4 | P73 | L47 |
| Hajduczenia, Marek | Charter Communications | 7 |
| Comment Type E | Comment Status A |  |
| (bucket1) |  |  |

Dead link "Clause 91 or Clause 161"
SuggestedRemedy
Add live hyperlink for these two clause numbers

## Response <br> Response Status C

ACCEPT.


The newly inserted row is not marked as such. Other tables with a mix of inserted rows and existing rows have underlined text for the new rows.
SuggestedRemedy
Underline the text of the new row.
Response Response Status
ACCEPT.

| Cl 91 | SC 91.6.2f | P86 | L5 |
| :--- | :---: | :---: | :---: |

"For PHYs supporting RS-FEC-Int operation" should have a reference, especially because
it would send the reader searching this clause (RS-FEC) for RS-FEC-Int, and not find it.

## SuggestedRemedy

change "RS-FEC-Int operation" to "RS-FEC-Int operation (see Clause 161)" similar to other references, where Clause 161 is a cross-ref.
Response Response Status C

ACCEPT.

| Cl $91 \quad$ SC 91.6.2f |
| :--- |
| Huber, Tom |
| Comment Type E |
| Awkward grammar - "When 100G_RS_FEC_Enable variable is set..." |

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı


EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeI

| Cl 93A S | SC 93A.5.2 | P214 | L34 | \# 113 | Cl 116 |  | 16.1.4 | P92 | L54 | \# |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ran, Adee |  | Cisco |  |  | Dudek, Mike |  |  | Marvell | (bucket1) |  |  |  |
| Comment Type | - TR | Comment Status A |  | (bucket1) | Comme |  | T | Comment Status A |  |  |  |  |

This amendment uses T_fx as a parameter of ERL calculation.
T_fx originally appears in Equation (93A-62), which is not included in this amendment (added by 802.3 cd ), with the text
"T_fx is twice the propagation delay in ns associated with the test fixture, obtained by measurement or inspection"

This text does not hold for the cases where the ERL is defined in this amendment; in some cases T_fx is defined as 0 or 0.2 ns (regardless of the test fixture), in other cases it is twice the delay between two specified test points (e.g. TP0 and TPOv).

SuggestedRemedy
Add 93A.5.2 and change the text following Equation (93A-62), adding after the quoted sentence:
", unless its value is specified by the clause that invokes this method"
Response
Response Status W
ACCEPT.


The last part of the text that is new, "for 400GBASE-KR4", is not shown as changed text (with an underline)

## SuggestedRemedy

Underline "for 400GBASE-KR4" so all changed text is identified.

## Response <br> Response Status

ACCEPT.
ACCEPT.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı


In items UNAUI and DNAUI, "through Annex 120G" is a newly inserted text.
SuggestedRemedy
Mark with underline in both cases.
Response Response Status W
ACCEPT.

| Cl 120F SC 120F.3.1 | P219 | L16 |
| :--- | ---: | ---: |
| Brown, Matt | Huawei |  |
| Comment Type E | Comment Status A |  |
| (bucket1) |  |  |

Align terminology with other clauses.
(bucket1)

## SuggestedRemedy

Change "Common-mode return loss" to "Common-mode to common-mode return loss" in Table 120F-1 and in PICS item TC8 in 120F.5.4.1.

| Response <br> ACCEPT. | Response Status C |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Cl 120F | SC 120F.3.1 | P219 | L22 | \# 215 |
| He, Xiang | Huawei |  |  |  |
| Comment Type E | Comment Status A |  | abbreviations |  |

A dot is added to the abbreviated word "abs" in this table but not in the others.

## SuggestedRemedy

Change "abs." to "abs" or add the dot for all other occurances.
Response Response Status C
ACCEPT IN PRINCIPLE.
In addition to the concern expressed in the comment the grammar in this parameter name is not good.
In Table 120F-1, change "abs." to "absolute value of"
In Table 162-10 and Table 163-5, change "abs" to "absolute value of".
[Editor's note: CC: 120F, 162, 163]

Equation (120D-10) and (120D-11) referred from 120F.3.2.3 step e are not accurate, because the dual-dirac jitter distributuion estimated by these equations does not match well with the original distributuion even if the original distributuion is pure dual-dirac distributuion. For instance, J4u of the estimated dual-dirac jitter distribution is always significantly smaller than the measured J 4 u . I propose to change these equations.
SuggestedRemedy
Add the following equations after step j, and change references to Equation (120D-10) and (120D-11) in step e with the new equations:
$D 4 d=\left(Q 4 d^{\wedge} 2+1\right)^{*}\left(J \_R M S \wedge 2\right)-(J 4 u / 2)^{\wedge} 2$
If $D 4 d>=0$,
A_DD $=\left(\mathrm{J} 4 \mathrm{u} / 2+\mathrm{Q} 4 \mathrm{~d}^{*} \operatorname{sqrt}(\mathrm{D} 4 \mathrm{~d})\right) /\left(\mathrm{Q} 4 \mathrm{~d}^{\wedge} 2+1\right)$ sigma_RJ = (J4u / $2-$ A_DD) / Q4d

If $D 4 d<0$,
Qx = sqrt((J4u / $\left.\left.2 / J \_R M S\right)^{\wedge} 2-1\right)$
A_DD $=(\mathrm{J} 4 \mathrm{u} / 2) /\left(\mathrm{Qx}^{\wedge} 2+1\right)$ sigma_RJ = sqrt((J_RMS^2) - (A_DD^2))
where Q4d $=3.7190$

Add the following Note after the equation:
Note $1-$ - Q4d is an approximated solution of $Q(Q 4 d)=1 \times 10^{\wedge}(-4)$, where the $Q$ function is defined in Equation (95-1).
Response Response Status
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#209.
[Editor's note: CC: 120F, 163]

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| $C l$ 120F | $S C$ 120F.3.2.5 | P225 | L22 |
| :--- | :---: | :---: | :---: |
| Ran, Adee | Cisco | \# 115 |  |

Comment Type E Comment Status A variable table (bucket1)
Table 120F-6 has a "reference" column that has identical values for all rows
(136.8.11.7.1). This reference is repeated in the text following the table, so it is redundant. Note that the similar Table 120F-3 does not have this column.

If the reference column is omitted, the "management access" column can be widened to prevent breaking its title, as in Table 120F-3.
SuggestedRemedy
delete the "reference" column and adjust the width of remaining columns.
Response

| ACCEPT. |  |  |  |
| :--- | :---: | :---: | :---: |
| CI 120F SC 120F.5.4.1 | P232 | L39 | \# 116 |
| Ran, Adee |  | Cisco |  |
| Comment Type | TR | Comment Status A |  |
| (bucket1) |  |  |  |

Item TC13 feature is "Transmitter precoder request" with no comment, and its status is M. However, the referenced 120F. 1 says "Precoding may be enabled and disabled using the precoder request mechanism specified in 135F.3.2.1." (P218 L28), and this mechanism is explicitly optional. So requesting through this mechanism can't be mandatory.

It may be preferable to add the transmitter precoder request as a major (optional) feature, as done in annex 135F (802.3cd).

SuggestedRemedy
Change TC13 status from "M" to "O". Consider moving it to 120F.5.3.

## Response <br> Response Status W

ACCEPT IN PRINCIPLE.
Change TC13 status from "M" to "O".

| Cl 120F | SC 120F.5.4.1 | P232 | L 40 | \# 117 |
| :--- | ---: | ---: | ---: | ---: |
| Ran, Adee |  | Cisco |  |  |
| Comment Type | TR | Comment Status A |  | TX EQ control (bucket1) |

Item TC14 is optional and points to 120F.3.1.2, which points to 120F.3.1.4, which is pointed to by item TC15 (mandatory). These two items are one and the same.

The transmitter control interface is mandatory; only its usage is described with the word "may", but it is not an optional feature. So TC15 is the correct one.

## SuggestedRemedy

## Remove item TC14

Response Response Status w

ACCEPT.

| Cl 120G SC 120G. 1 | P235 | L36 | \# 221 |
| :--- | :---: | :---: | :---: |
| Wu, Mau-Lin |  | MediaTek Inc. |  |
| Comment Type E | Comment Status A | OIF reference (bucket1) |  |

The sentence below refers to CEI-112G-VSR-PAM4 defined in OIF-CEI-05.0 [B55a].
"The C2M interface is defined using a specification and test methodology that is similar to that used for CEI-112G-VSR-PAM4 defined in OIF-CEI-05.0 [B55a].
However, OIF-CEl-05.0 doesn't exist yet.

## SuggestedRemedy

Propose to remove this sentence
Response
Response Status C
ACCEPT IN PRINCIPLE.
With respect to CEI-112G-VSR-PAM4, past OIF liaisons request that IEEE "acknowledge the OIF in any derivative work". For reference, a URL to the latest liaison letter is provided here:
https://www.ieee802.org/3/ck/private/OIF_liaison_letter_IEEE802.3_08Apr21_CEI_Projects. pdf
Add an editor's note in 120G. 1 indicating that the referenced CEI document is expected and that the reference is to be removed at 802.3ck publication time if the CEI document is not yet published.
In Annex A, change the editor's note to indicate only that the document is expected to be published by OIF and that the bibliography entry is to be removed if the reference in 120G. 1 is removed.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| $C l$ 120G $S C$ 120G.1 | P235 | $L 38$ | \# 234 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers | Nvidia |  |  |

Comment Type TR Comment Status R
precoding
Up to now, the optical PMD channels have not needed a very strong DFE, and the C2M loss ( 10 dB for C2M CAUI-4, 10.2 for 200GAUI-4 C2M, 16 for 400GAUI-4) is low enough loss ( 10 dB for C 2 M CAUl-4, 10.2 for 200GAUN-4 C2M, 16 for $400 \mathrm{GAUl}-4$ ) is low enough
that CR and KR PMDs don't need a very strong DFE when used as C2M. Therefore, we never have precoding on C2M at 50G/lane - simple. At 100G/lane, links such as active copper cables will benefit from a very strong DFE in the receiver in the cable end that's receiving from a higher loss in the cable. 802.3 enables such active cables via the C2M specs; up until now there was nothing more to say, so they don't get a mention in 802.3 Adding precoding after the signal has been serialised is best avoided, so it should be added in the host, so for the first time, there is something that 802.3 should do specifically about active cables.

## SuggestedRemedy

Allow optional precoding abilities in 100G/lane C2M transmitters and receivers in the host. Add MDIO registers to advertise these abilities and to enable them

## Response

Response Status U
REJECT.
Precoding if used is added and removed by the PMA at each end of a physical link as necessary. Similarly, an active cable can add precoding at the transmitter at one end and remove the precoding at the other end.
Precoding must be enabled (or disabled) on both $T x$ and $R x$ in the same direction; this is coordinated using training for CR/KR or by station management for C2C. Applying precoding internally within an active cable is still possible.

There is no consensus to implement the proposed.

| CI 120G SC 120G.3.1 | P237 | L13 | \# 18 |  |
| :--- | ---: | ---: | ---: | ---: |
| Ran, Adee |  | Cisco |  | AC CM noise |
| Comment Type | T | Comment Status R |  | AC |

Host output "AC common-mode output voltage (max, RMS)" is specified in Table 120G-1 as 17.5 mV .

This value is tighter than what is allowed for CR transmitter measured at the same point ( 30 mV ) and also tighter than the specification for KR/C2C.

Analysis of the effect of 17.5 mV vs. 30 mV has not been provided. Devices with higher AC CM output have been demonstrated to operate with real receivers at acceptable BER on a variety of channels.

Unless evidence is provided that 30 mV is unacceptable with real receivers, the limit should be aligned with the CR specification

Applies similarly to Module output characteristics in Table 120G-3.

## SuggestedRemedy

Change the value for AC common-mode output voltage (max, RMS) from 17.5 to 30 , in Table 120G-1 and Table 120G-3
Response
Response Status C
REJECT.
Per straw poll \#10, there is no consensus to make the proposed change.
[Editor's note: Line number changed from blank to 13.]
Straw poll \#9 (pick one)
For module output and host output, I support changing the AC CM voltage (max) from 17.5
o 30 mV .
A: Yes
B: No
: Need more information
D: Abstain
A: 11 B: $10 \mathrm{C}: 7 \mathrm{D}: 2$
Straw poll \#10 (pick one, decision)
To close comment 118, for module output and host output, I support changing the AC CM voltage (max) from 17.5 to 30 mV
A: Yes
B: No
A: $12 \mathrm{~B}: 16$

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| CI 120G | SC 120G.3.1 | P237 | L17 |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali | Ghiasi Quantum/Inphi | \# 39 |  |

Comment Type TR
Comment Status R TP1 EH/VEC

VEC limit of 12 dB and VEO limit of 10 mV results in well constructed host to fail, this was not the case prior to adding timing window of $+/-50 \mathrm{mUl}$.

## SuggestedRemedy

The agreement was not to shift the burden for host or module when we defined new values for VEC and VEO based on timing window $\mathrm{ts}=+/-50 \mathrm{mUI}$. Unfortuntatly the VEC and VEO limits result in host that passed now will fail.
Propose new limits for VEO $=8 \mathrm{mV}$ and VEC=13.5 dB and see ghiasi_3ck_01_0421
Response
Response Status U
REJECT.
Slide 3 to 9 of the following presentation were reviewed by the task force
https://www.ieee802.org/3/ck/public/adhoc/apr21_21/ghiasi_3ck_adhoc_01a_042121.pdf
There is no consensus to change the VEC (max) or EH (min) values.

| Cl 120G SC 120G.3.1.1 | P237 | L36 | \# 181 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers |  | Nvidia |  |
| Comment Type | E | Comment Status R | TP1 RLCD |

In other specs such as CEI-56G-VSR-PAM4 and CEI-56G-VSR-PAM4, the output
differential to common-mode return loss is 3 dB better than the input common-mode to differential mode return loss at low frequency, for a good reason, but in this annex they are the same.
SuggestedRemedy
Unless we find a reason not to, offset the specs in the usual way.
Response Response Status C
REJECT.
The comment does not provide sufficient justification for the proposed changes nor does the suggested remedy provide sufficient detail to implement.

| CI 120G SC 120G.3.1.2 | P238 | L41 | \# 185 |
| :--- | ---: | ---: | ---: |
| Dudek, Mike |  |  |  |
| Comment Type | TR | Comment Status A |  |
| CP1 ERL Tfx |  |  |  |

Investigations of the effect of the Time-gated propagation delay on practical HCB's has
Investigations of the effect of the Time-gated propagation delay on practical HCB's has
shown that the input RF connector is affecting the ERL unless the 200 ps is increased to approx 300 ps. 300ps is still adequately short to not affect the measurement of the device under test. i.e. The value used for Tfx does not sufficiently mitigate the effects of reflections from the test connector. See dudek_3ck_adhoc_01a_041421

## SuggestedRemedy

Change the value from 0.2 ns to 0.3 ns also on page 242 line 41
Response

Response Status $\mathbf{C}$
ACCEPT.

| Cl 120G SC 120G.3.1.2 | P238 | L41 | \# 174 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers |  | Nvidia |  |
| Comment Type | TR | Comment Status A | TP1 ERL Tfx |

Comment Type TR Comment Status A TP1 ERL Tfx
This fixed time value of time-gated propagation delay Tfx is unworkable because the HCB is defined by its loss not its transit time. While HCBs for connectors with few lanes such as SFP+ may be constructed from PCB, those for connectors with many lanes such as QSFPDD are challenged by fanout and therefore may use a cabled construction with the same loss and a much greater delay than a PCB. The discontinuity at cable-PCB interface should be windowed out just like the coax connector, but would reasonably be much more than $0.2 / 2 \mathrm{~ns}$ (or $\sim 20 \mathrm{~mm}$ ?) from the coax connector. The HCB transit time is known well enough, just as its loss is, so we can use that in the windowing. Notice that in 163 and 120F, "The value of Tfx is twice the delay from TP5v to TP5", so it's known there.

## SuggestedRemedy

Change 0.2 ns to twice 0.8 times the delay between the test fixture test connector and the near side of the test fixture host-facing connector on the HCB. Make a similar change in 162.9.3.5 (HCB for CR). Although there may be less pressure to use a cabled technique for MCBs, for consistency, make similar changes in 120G.3.2.3 and 162.11.3 (MCB).
Response
Response Status U
ACCEPT IN PRINCIPLE.
Resolve using the responses to comments \#184 and \#185. SORT ORDER: Clause, Subclause, page, line

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| CI 120G SC 120G.3.1.5 | P239 | L10 |
| :--- | :---: | :---: |
| Wu, Mau-Lin | MediaTek Inc. | \# 222 |

Comment Type TR Comment Status A
(bucket1)

Vertical eye opening is not used as a specification in 120G, vertical eye closure is used instead. Therefore, the following sentence is not appropriate.
"Eye height and Vertical eye opening are measured according to the method described in 102G.5.2."
SuggestedRemedy
Change "vertical eye opening" to "vertical eye closure".
Response Response Status W ACCEPT.

| Cl 120G SC 120G.3.2 | P240 | L8 | \# 187 |
| :--- | ---: | ---: | ---: |
| Dudek, Mike |  |  |  |
| Marvell |  |  |  |
| Comment Type TR | Comment Status A |  | TP3 DPPV |

The 900 mV output amplitude allowed for the module is larger than necessary for a short channel and makes it more difficult for the host receiver to avoid being overloaded.
SuggestedRemedy
Provide two rows for Differential peak-to-peak output voltage (max) one for "long mode" and one for "short mode". Leave the "long mode" at 900 mV . Make the "short mode" 600 mV
Response
Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#206.
CI 120G SC 120G.3.2 $\quad$ P240

Healey, Adam
Broadcom Inc
Comment Type
Comment Status A
The maximum differential peak-to-peak output voltage for the "short" module output mode should be reduced. A lower output amplitude for "short" mode would reduce the input dynamic range that the host receiver needs to support. This was part of the original proposal for multiple module output modes. However, the feature has not yet been included in the standard.
SuggestedRemedy
Change the maximum differential peak-to-peak output voltage to 600 mV for the "short" module output mode.
Response
Response Status
ACCEPT.

| Cl 120G SC 120G.3.2 | P240 | L9 | \# 171 |  |
| :--- | ---: | :---: | ---: | :--- |
| Dawe, Piers |  | Nvidia |  |  |
| Comment Type | TR | Comment Status R |  | TP3 EH |

For a reasonably clean module (or test equipment in a host stressed eye test), the driver swing has to be aggressively reduced to deliver only 15 mV at near end, short mode. 120E has 70 mV , and the previous draft had 24 mV . Yet a host designer knows whether the host wants the short or long setting, and can usefully optimise for e.g. different crosstalk or noise or BER if given a reasonable signal strength. There is room to increase this weak signal without overloading the receiver.
SuggestedRemedy
Increase the eye height, short mode, from 15 mV to 18 mV
Response
Response Status U
REJECT.
The resolution of comments \#187 and \#206 result in the differential peak-to-peak output voltage (max) value reduced from 900 mV to 600 mV for the short mode. There was no consensus to make the proposed change for this comment.

| $C l$ 120G | $S C$ 120G.3.2 | $P 240$ | $L 10$ | $\# 34$ |
| :--- | :---: | :---: | :---: | :---: |

Ghiasi, Ali Ghiasi Quantum/Inphi
Comment Type TR Comment Status R TP4 EH

Given that now we have AUI-S/L far end eye would be AUI-S min eye opening
SuggestedRemedy
The eye opening with 50 mUl rectangular window for $\mathrm{AUI}-\mathrm{L}$ is $\mathrm{VEO}=11 \mathrm{mV}$, see ghiasi_3ck_01_0121
Response
Response Status U
REJECT.
Slide 9 of the following presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/adhoc/apr21_21/ghiasi_3ck_adhoc_01a_042121.pdf

There was no consensus to make the proposed changes.
[Editor's note: Changed page/line from 164/13 to 240/10.]

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| CI 120G | SC 120G.3.2.2 | P241 | L13 |
| :--- | ---: | ---: | ---: |
| Dudek, Mike | Marvell |  | 188 |

Comment Type T
Comment Status A
TP3 XTALK


Table 120G-5 PCB length are for the reference MCB but based on construction the MCB loss may vary
SuggestedRemedy
Add note to the table that above PCB length assumes an MCB loss of 2.4 dB , please also list the PCB losses in dB instead of every reader trying to calculate
$80 \mathrm{~mm}=3.1 \mathrm{~dB}$
$160 \mathrm{~mm}=6.6 \mathrm{~dB}$
$244.7 \mathrm{~mm}=9.6 \mathrm{~dB}$
To account for any difference in MTF loss from 6.6 dB it would be beter to list the dB value for the trace+MTF and list the PCB lenghts as reference, in that case then
80 mm becomes $=3.1+6.6=9.7 \mathrm{~dB}$
160 mm becomes $=6.6+6.6 \mathrm{~dB}=13.2 \mathrm{~dB}$
$244.7 \mathrm{~mm} 9.6+6.6 \mathrm{~dB}=16.2 \mathrm{~dB}$
Looking at Ghiasi 3ck 010421 there are several issues with above limits:

1. Max trace loss need to be reduced from 244.7 mm to 239.7 mm so the max loss is 16 dB 2. Current 160 mm max range for short results in excess VEC propose to reduce 132.6 $\mathrm{mm}(5.2 \mathrm{~dB})$
The proposed optimized new limits become:
Short 6.6-11.8 dB (inlcude 6.6 dB MTF loss)
Long 9.7-16 dB (include 6.6 dB MTF loss)
Response
Response Status C
REJECT.
Editor's note: Changed subclause from 120G.3.2.2 to 120G.3.2.2.1.]
The following related presentation was reviewed by the task force at a previous ad hoc meeting:
https://www.ieee802.org/3/ck/public/adhoc/apr21 21/ghiasi 3ck adhoc 01a 042121.pdf The location of the measurement host PCB is not shown Figure $120 \mathrm{G}-8$, but should be part of the measurement receiver between the MCB and the reference receiver.
There was no consensus to include the loss numbers in the table nor to change the PCB ength for long mode.
Change short-far-end PCB length to 133 mm .
In Figure 120G-7, change "reference receiver" to "additional host PCB and reference eceiver".
Implement with editorial license.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| CI 120G SC 120G.3.3.3 | P244 | L45 | \# 28 |
| :--- | ---: | ---: | ---: |
| Mellitz, Richard |  | Samtec |  |
| Comment Type | TR | Comment Status R |  |

Reports of high VEC measurements were reported in calvin_3ck_02_1020 suggest 50 nUI
of $S_{j}$ is a strong factor. The value of $\mathrm{S}_{\mathrm{j}}$ seems to be inherited from older specification.
Hence there does not seem to be a tie between Tx jitter measured and Rx jitter injected.

## SuggestedRemedy

Based on extrapolation from J3u in 162 and 163 add to table 120G-6
Jitter (max)
Jrms = 0.23 UI refer to 120F.3.1.3
$\mathrm{J} 4 \mathrm{u}=0.129 \mathrm{UI}$ refer to 120F.3.1.3
Even-odd jitter, pk-pk $=0.023$ UI refer to 120F.3.1.3
Response Response Status U
REJECT.
[Editor's note: Change subclause, page, and line from 120G.3.3/243/24 to 120G.3.3.3/244/45.]
The commenter intended to refer to Table 120G-8 "Host stressed input parameters".
Including these jitter parameters to Table 120G-8 could be interpreted as being the
intended end result of the calibration rather than a starting point per the methodology that references these parameters.
The comment does not provide sufficient evidence for the suggested changes.


It would be better to put the crosstalk parameters in the stressed input parameters tables rather than scattered through the text.
SuggestedRemedy
Move the peak-to-peak voltage and transition time numbers from the text of 120G.3.3.3.1 and 120G.3.4.1.1 to Table 120G-8 and 120G-11

## Response

Response Status C
ACCEPT IN PRINCIPLE
Implement the suggested remedy with editorial license.

| Cl 120G | SC 120G.3.3.3.1 | P245 | L33 | \# 13 |
| :---: | :---: | :---: | :---: | :---: |
| Brown, M |  | Huawei |  |  |
| Comment Type TR Comment Status |  |  |  |  |

In previous drafts we aligned KR, CR, and C2C such that they share the same jitter tolerance table, Table 162-15 and added a new frequency point at 0.4 MHz . The same table should be used for C2M.

## SuggestedRemedy

Delete Table 120G-9.
At page 245 line 1, change the sentence to: "Sinusoidal jitter is applied with frequency and peak-to-peak amplitude according to each case in Table 162-15.
At page 248 line3, change the sentence to: "The amount of applied peak-to-peak
sinusoidal jitter used for the module stressed input test is given in Table 162-15.
In Table 120G-8 and Table 120G-11, change "Table 120G-9" to "Table 162-15".
Response Response Status C
ACCEPT IN PRINCIPLE.
[Editor's note: Changed subclause from 120G.3.3.3 to 120G.3.3.3.1.]
Implement suggested remedy with editorial license.

| Cl 120G | SC 120G.3.3.3.1 | P244 | L53 | \# 119 |
| :--- | :---: | :---: | :---: | :---: |
| Ran, Adee |  | Cisco |  |  |
| Comment Type | TR | Comment Status R | TP4 additive noise |  |

In the host input stressed eye calibration procedure, "The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern".

This signal does not necessarily represent a real module output, in which the EH and VEC can also be affected by additive noise (which is quite different from jitter in its effect on a receiver). Stressing the host with a high level of bounded uncorrelated jitter (which is not fully specified, and may create different stress for different DUTs) does not test its ability to operate with a noisy module.

Adjusting the VEC using additive noise, as done in the CR/KR/C2C tolerance tests, should at least be allowed instead of using "bounded uncorrelated jitter"; it may be preferable in some setups. For the time being, it is suggested as an alternative.
SuggestedRemedy
Add a wideband noise source to the diagram in Figure 120G-9, between the pattern generator and the HCB.

Add a description of the noise source to the text, with reference to 93C. 1 (where noise source specification is defined) and setting f_NSD1 to 1 GHz , as in 163.9.3.4.

Add that calibrating the noise source level is an alternative method to adding BUJ for calibrating the EH and VEC.

Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.

## Response <br> Response Status U

REJECT.
Comment \#123 proposes a similar change to the module stressed input configuration.
Additive amplitude noise is not the same as BUJ and so it is not an inter-changeable alternative.
The suggested remedy is not sufficiently complete to implement.

| CI 120G | SC 120G.3.3.3.1 | P245 | L25 | \# 43 |
| :--- | :---: | :---: | :---: | ---: | :--- |
| Ghiasi, Ali |  | Ghiasi Quantum/Inphi |  |  |
| Comment Type T | Comment Status A |  | TP4 SJ |  |

Receiver jitter tolerance test point $B$ to $F$ test frequencies are $\sim 2.5 x$ but test point $A$ and $B$ are a decade apart

## SuggestedRemedy

Please add additional test frequency between $A$ and $B$ at 133 KHz with amplitude of 1.5 U
Response Response Status C ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#13.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| CI 120G | SC 120G.3.3.3.1 | P245 | L42 |
| :--- | :---: | :---: | :---: |
| Ran, Adee | Cisco | \# 121 |  |

Comment Type
TR
Comment Status R
TP4 SIT CM noise

The host stressed eye does not include any common-mode noise, even though a module output is allowed to have some common-mode AC content.

In a real system, the common-mode AC content of the module can be converted to differential noise at the host's receiver, via the S21DC of the host input channel, which is not specified at all. This will not be detected in the host test without common-mode content, and may not be addressed in host channel design - but it can cause compliant hosts to fail with real modules.

The common mode noise stress should be a sinusoid at any frequency up to the Nyquist frequency, and should be calibrated at TP4 to have the RMS value allowed for the module output in Table 120G-3.

## SuggestedRemedy

In another comment I am suggesting to add a wideband noise source to the diagram in Figure 120G-9, between the pattern generator and the HCB.

If the other comment is accepted, an addition for this comment would be to make the noise source also have a common mode component. otherwise, add a common mode noise source in the same location instead.

Add the necessary text for calibrating the common mode output at TP4.
Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.
Response
Response Status U
REJECT.
Resolve in conjunction with comment \#124.
The suggested remedy does not provide sufficient detail to implement. A detailed proposal justifying the nature of the stress signal and details how to generate and apply it are required.

Further work on this subject and a consensus proposal are encouraged.

| Cl 120G SC 120G.3.3.3.1 | P 245 | L 49 | \# 30 |
| :--- | ---: | ---: | ---: |
| Mellitz, Richard | Samtec |  | host input jitter |

There is more than a few $d B$ VEC difference between simulations using the COM computation script using 0.025 UI of Add and measurements using 50 mUI of Sj for a 16 dB channel. The measured VEC with 50 mUl of Sj approaches 15.7 dB ,
The actual jitter injected during the a receiver compliance test may introduce a degree of instrument and test set up jitter uncertainty or amplification at the receiver test point.
SuggestedRemedy
Change p245 line 49
Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum JRMS and maximum J 4 u , and complies with the even-odd jitter specification, in Table 120F-1.
To
Random jitter and bounded uncorrelated jitter are added such that the input to the host approximates the output jitter profile given by maximum JRMS and maximum J4u, and complies with the even-odd jitter specification, in Table 120G-6
Other solutions are possible like lowering injected Sj to 20 mUI .
Response Response Status
REJECT.
The intent of this comment is to update the text relating to the parameters proposed in comment \#28.
Resolve using the response to comment \#28.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| Cl 120G SC 120G.3.3.3.1 | P246 | $L 13$ |
| :--- | :---: | :---: |
| Healey, Adam | Broadcom Inc. | \# 208 |

Comment Type
TR
Comment Status A
TP4 SIT eye opening

The stressed input signal calibration procedure states that "random jitter and the pattern generator output levels are adjusted (without exceeding the differential peak-to-peak input voltage tolerance specification as shown in Table 120G-7) to result in the eye height for all three eyes given in Table 120G-8 with the setting of the CTLE that minimizes the vertical eye closure." The term "output levels" is ambiguous. It could be interpreted to be "pattern generator output amplitude" or "individual PAM-4 signal levels". This needs to be clarified
SuggestedRemedy
Change:
Random jitter and the pattern generator output levels are adjusted (without exceeding the differential peak-to-peak input voltage tolerance specification as shown in Table 120G-7) to result in the eye height for all three eyes given in Table 120G-8 with the setting of the CTLE that minimizes the vertical eye closure."
To:
"Random jitter and the pattern generator differential peak-to-peak output voltage are
adjusted so that the height of the smallest eye matches the value in Table 120G-8. The differential peak-to-peak input voltage tolerance given in Table 120G-7 is not exceeded."

Make a similar change to 120G.3.4.1.1 (page 249, line 10).
Response Response Status C

ACCEPT IN PRINCIPLE.
Implement the suggested remedy with editorial license.
CI 120G SC 120G.3.4.1 $\quad$ P247

Ghiasi, Ali Ghiasi Quantum/Inphi
Comment Type TR Comment Status D TP4 SIT EH/VEC
Table 120G-10 needs to be updated now that measurements are with 50 mUI window
SuggestedRemedy
See ghiasi_3ck_01_0121 and reduce eye height window from 15 mV to 9.5 mV See ghiasi_3ck_01_0121 and reduce eye height window from 7.5 dB to $14+/-0.5 \mathrm{~dB}$
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter

| Cl 120G | SC 120G.3.4.1 | P247 | L17 |
| :--- | :--- | :---: | :---: |
| Ghiasi, Ali | Ghiasi Quantum/Inphi | \# 42 |  |

Comment Type TR Comment Status R TP4a SIT EH/VEC
VEC limit of 12 dB and VEO limit of 10 mV results in well constructed host to fail, this was not the case prior to adding timing window of $+/-50 \mathrm{mU}$

SuggestedRemedy
The agreement was not to shift the burden for host or module when we defined new values or VEC and VEO based on timing window ts=+/-50 mUI. Unfortuntatly the VEC and VEO imits result in host that passed now will fail.
Propose new limits for $\mathrm{VEO}=8 \mathrm{mV}$ and $\mathrm{VEC}=13.25$ to 13.75 dB and see ghiasi_3ck_01_0421
Response
Response Status U
REJECT.
Editor's note: Changed page from 233 to 247 and subclause from 120G.3.1.5 to 120G.3.4.1]

Comment \#39 proposed complementary changes to host output EH and VEC. However, the proposal in comment \#39 was not adopted so no changes to the module input EH and VEC should be made

See comment \#39.

| Cl 120G SC 120G.3.4.1 | P247 | L43 | \# 29 |
| :--- | ---: | ---: | ---: |
| Mellitz, Richard | Samtec |  |  |
| Comment Type | TR | Comment Status R | module input jtter |

Reports of high VEC measurements were reported in calvin 3ck 021020 suggest 50 nUI of Sj is a strong factor. The value of Sj seems to be inherited from older specification.
Hence there does not seem to be a tie between Tx jitter measured and Rx jitter injected.
SuggestedRemedy
Based on extrapolation from J3u in 162 and 163 add to table 120G-10
Jitter (max)
$\mathrm{Jrms}=0.23$ UI refer to 120F.3.1.3
$\mathrm{J} 4 \mathrm{u}=0.129 \mathrm{Ul}$ refer to 120F.3.1.3
Even-odd jitter, pk-pk $=0.023$ UI refer to 120F.3.1.3
Response
Response Status U

REJECT.
[Editor's note: Changed subclause from 120G.3.2 to 120G.3.4.1 and line from 21 to 43]
The commenter intended to refer to Table 120G-11 "Module stressed input parameters ncluding these jitter parameters to Table 120G-1 could be interpreted as being the intended end result of the calibration rather than a starting point per the methodology that references these parameters. SORT ORDER: Clause, Subclause, page, line

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı


Comment Type TR Comment Status A CRU description (bucket1)
Defining a corner frequency for a clock recovery unit (CRU) can be ambiguous due to possible actual implementations of CRU implementations

## SuggestedRemedy

Change the definition of a CRU unit with a definition of the effect expected from the CRU.
The effect expected is a high frequency filter applied on the jitter of the measured signal. A reference for the wording can be found in 93.8 "The effect of a single-pole high-pass filter with a 3 dB frequency of XMHz is applied to the jitter"
Response
Response Status w

ACCEPT IN PRINCIPLE.
Change: "A reference CRU with a corner frequency of 4 MHz and slope of $20 \mathrm{~dB} /$ decade is used to calibrate the stressed signal using a PRBS13Q pattern."
To: "A reference CRU acting as a high-pass jitter filter with a 3 dB corner frequency of 4 MHz and slope of $20 \mathrm{~dB} /$ decade is used to calibrate the stressed signal using a PRBS13Q pattern."
Editor's note: CC: 162, 120G]

| CI 120G | SC 120G.3.4.1.1 | P248 | L1 | \# 123 |
| :--- | ---: | ---: | ---: | ---: |
| Ran, Adee |  | Cisco |  |  |
| Comment Type | TR | Comment Status R |  | TP2 additive noise |

In the module input stressed eye calibration procedure, "The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern, followed by frequency-dependent attenuation".

This signal does not necessarily represent a real host output, in which the EH and VEC can also be affected by additive noise (which is quite different from jitter in its effect on a receiver). Stressing the module with a high level of bounded uncorrelated jitter (which is not fully specified, and may create different stress for different DUTs) does not test its ability to operate with a noisy host.

Note that in a host transmitter it is often easier to control clock jitter than to reduce additive noise coupling from multiple sources in an ASIC.

Adjusting the VEC using additive noise, as done in the CR/KR/C2C tolerance tests, should at least be allowed instead of using "bounded uncorrelated jitter"; it may be preferable in some setups. For the time being, it is suggested as an alternative.

## SuggestedRemedy

Add a wideband noise source to the diagram in Figure 120G-10, between the pattern generator and the frequency-dependent attenuator.

Add a description of the noise source to the text, with reference to 93C. 1 (where noise source specification is defined) and setting f_NSD1 to 1 GHz , as in 163.9.3.4.

Add that calibrating the noise source level is an alternative method to adding BUJ for calibrating the EH and VEC.

Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.

## Response <br> Response Status U

REJECT.
Resolve using the response to comment \#119

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| CI 120G | SC 120G.3.4.1.1 | P248 | L1 |
| :--- | :---: | :---: | :---: |
| Ran, Adee | Cisco | \# 124 |  |

Comment Type
TR
Comment Status R
TP2 SIT CM noise

The module stressed eye does not include any common-mode noise, even though a host output is allowed to have some common-mode AC content.

In a real system, the common-mode AC content of the host can degrade the module's (electrical) receiver performance, via the module's allowed termination mismatch or by circuit sensitivity. This will not be detected in the module test without common-mode content, and may not be addressed in design - but it can cause compliant modules to fail with real hosts.

For uncorrelated common mode noise, a sinusoidal source should be used. However, for the host output it is likely that common-mode content is generated by conversion from a differential signal and is therefore correlated to it. In this test, it is suggested that $\mathrm{p} / \mathrm{n}$ skew is the preferred way to create the allowed common-mode RMS level.

## SuggestedRemedy

In another comment I am suggesting to add a wideband noise source to the diagram in
Figure 120G-10, between the pattern generator and the frequency-dependent attenuator.
For adding correlated common-mode noise, a skew between the p and n components of the frequency-dependent attenuator should be added and calibrated to create the allowed common-mode RMS level. Alternatively, a sinusoidal common-mode signal can be added at any frequency up to the Nyquist frequency.

Add the necessary text for calibrating the common mode output at TP1a.
Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.

## Response <br> Response Status U

REJECT.
Resolve using the response to comment \#121.

| Cl 120G SC 120G.3.4.1.1 | P248 | L12 | \# 31 |  |
| :--- | ---: | ---: | ---: | ---: |
| Mellitz, Richard | Samtec |  |  |  |
| Comment Type | TR | Comment Status R |  | module input jtter |

There is more than a few dB VEC difference between simulations using the COM
computation script using 0.025 UI of Add and measurements using 50 mUl of Sj for a 16
dB channel. The measured VEC with 50 mUl of Sj approaches 15.7 dB .
The actual jitter injected during the a receiver compliance test may introduce a degree of instrument and test set up jitter uncertainty or amplification at the receiver test point.
SuggestedRemedy
Change p245 line 49
Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum JRMS and maximum J4u, and complies with the even-odd jitter specification, in Table 120F-1.
To
Random jitter and bounded uncorrelated jitter are added such that the input to the host approximates the output jitter profile given by maximum JRMS and maximum J4u, and complies with the even-odd jitter specification, in Table 120G-10.
Other solutions are possible like lowering injected Sj to 20 mUI .
Response Response Status U
REJECT.
The intent of this comment is to update the text relating to the parameters proposed in comment \#29.
Resolve using the response to comment \#29.

| CI 120G | SC 120G.3.4.1.1 | P248 |
| :--- | :---: | :---: |
| Hidaka, Yasuo | Credo Semiconductor, Inc. |  |

Comment Type T Comment Status A ERL TP
It says "The ERL of the test system as measured at TP1 meets the specification given in
120G.3.1.2."
120G.3.1.2 measures the host output ERL at TP1a rather than TP1
Hence, the ERL of the test system is measured at TP1a, not at TP1.

## SuggestedRemedy

## Change

"The ERL of the test system as measured at TP1 meets the specification given in 120G.3.1.2."
to
"The return loss of the test system at TP1 meets the ERL specification given in 120G.3.1.2 when measured at TP1a."

## Response Response Status c

ACCEPT IN PRINCIPLE.
Also, in Figure 120G-10 and figure 120G-9, the connections of the HCB and module under test to the MCB are incorrect.

Change
'The ERL of the test system as measured at TP1 meets the specification given in 120G.3.1.2."
To
"The test system meets the ERL specification given in 120G.3.1.2 when measured at TP1a."

In Figure 120G-9 connect the dashed line from the HCB TP1a path to the MCB TP1 path and connect the module under test input path to the MCB TP4 path.
In Figure 120G-10 connect the dashed line from the MCB TP4 path to the HCB TP4a path and connect the host under test input path to the HCB TP1 a path.
Implement with editorial license.

| CI 120G SC 120G.3.4.1.1 | P248 | L44 | \# 125 |  |
| :--- | ---: | ---: | ---: | ---: |
| Ran, Adee |  | Cisco |  |  |
| Comment Type | TR | Comment Status A |  | module input SIT |

"For the high loss case, pre-emphasis capability is likely to be required in the pattern generator to meet the TP1a eye height and vertical eye closure specifications."

It is not specified what kind of pre-emphasis the pattern generator should include. In presentations to the task force, there were some assumptions about a CR host transmitter (3 precursors and 1 postcursor); it is reasonable to assume similar capabilities for a C2M host output.

Also, it should be explicitly permissible to use pre-emphasis for both high-loss and low-loss cases.

## SuggestedRemedy

Delete "For the high-loss case,"
Add after this sentence: "The pattern generator is expected to be able to apply preemphasis equivalent to the Transmit equalizer functional model specified in 162.9.3.1. Preemphasis equivalent to the Transmit equalizer functional model specified
emphasis may be set separately for the high-loss and low-loss cases".
Response
Response Status C
ACCEPT IN PRINCIPLE.
The intent of the statement is meant as a helpful warning that it may need preemphasis (or as permission to use preemphasis) rather than to specify that preemphasis shall be required and if so how.

There was no consensus to add the additional sentences.
However, the statement should apply to both long and short loss cases.

## Change:

For the high loss case, pre-emphasis capability is likely to be required in the pattern generator to meet the TP1a eye height and vertical eye closure specifications. To:
Pre-emphasis capability is likely to be required in the pattern generator to meet the TP1a eye height and vertical eye closure specifications.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| Cl 120G SC 120G.3.4.1.1 | P249 | L8 |
| :--- | :---: | :---: |
| Wu, Mau-Lin | MediaTek Inc. | \# 224 |

Comment Type TR
Comment Status R
module input SIT

The frequency-dependent attenuation added from output of the pattern generator to TP1a
is 18.2 dB , which is 16 dB channl loss with 2.2 dB for host transmitter package loss
However, 2.2 dB is too small a value for host transmitter package loss with 31 mm package trace length.
SuggestedRemedy
By leveraging what adopted in OIF CEI-112G-VSR-PAM4, propose to adopt the 19.5 dB value to replace 18.2 dB , where 3.5 dB representing host transmitter package loss is reasonable.
Response
REJECT. Response Status U

The comment does not provide sufficient evidence to make the proposed change.
Further work and a consensus proposal on this topic is encouraged.

| CI 120G | SC 120G.3.4.1.1 | P249 | L10 |
| :--- | :---: | :---: | :---: |
| Ran, Adee | Cisco | \# 126 |  |

Here it is specified that "Random jitter and the pattern generator output levels are adjusted (...) to result in the eye height for all three eyes given in Table 120G-11"

But:
The random jitter level has already been adjusted in a prior step (P248 L15) "such that the output of the pattern generator approximates the output jitter profile given by maximum JRMS and maximum J4u".

Random jitter cannot satisfy both conditions. Adding higher jitter than J4u/JRMS specifications is an overstress (since host output should not have such higher jitter). Unlike low EH, high jitter cannot be compensated by simple Rx circuitry.

Eye height should be adjustable by pattern generator output level (after VEC has been obtained by other means; this is the subject of another comment) but not using random jitter.
SuggestedRemedy
Delete "Random jitter and".
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Clause, Subclause, page, line

| Cl 120G SC 120G.5.2 | P252 | L12 | \# 179 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers |  | Nvidia |  |
| Comment Type | TR | Comment Status R | RR CTLE |

By allowing stronger gDC with stronger gDC2, we can have up to 12 dB of peaking for
gCD2 $=-1$ but up to 16 dB for gDC2 $=-3-$ yet we don't expect the maximum channel loss to vary like that.

## SuggestedRemedy

For TP1a, change the second -12 to -11 , and -13 to -10 (so the strongest "CTLE peaking" is 13 ).
Response
Response Status
REJECT.
The comment does not provide sufficient justification for the proposed change. It is not clear that the current specifications are harmful nor is there evidence that the proposed changes won't be harmful.

| Cl 120G | SC 120G.5.2 | P252 | L16 |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali |  | Ghiasi Quantum/Inphi | \# 44 |
| Comment Type | TR | Comment Status A |  |
| CR CTLE |  |  |  |

Comment Type Comment Status A RR CTLE
gDC max value may result in very large VEC $>20 \mathrm{~dB}$ when module are tuned in the middle of range if plugged into min loss host.

## SuggestedRemedy

Suggest reducing gDC from -2 to -1 and see ghiasi_3ck_01_0421
Response
Response Status C
ACCEPT IN PRINCIPLE.
Slide 9 of the following presentation was reviewed by the task force https://www.ieee802.org/3/ck/public/adhoc/apr21_21/ghiasi_3ck_adhoc_01a_042121.pdf

In Table 120G-12, change TP4 near-end g_DC maximum value from -2 to -1 dB

Page 25 of 50 2021-05-26 2:51:22 PM

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| Cl 120G SC 120G.5.2 | P252 | L16 | \# 183 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers | Nvidia |  |  |

Comment Type
TR
Comment Status R
RR CTLE

The limits for TP4 gDC, gDC2 should not be the same for short and long output modes.

## SuggestedRemedy

Create separate limits for TP4 short and long output modes.
Response Response Status U

REJECT.
The comment does not provide sufficient justification to support any changes and the suggested remedy does not provide sufficient detail to implement.

| Cl 120G SC 120G.5.2 | P252 | L25 | \# 178 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers | Nvidia |  |  |
| Comment Type | TR | Comment Status R | RR CTLE | As a lot of the channel for TP4 far-end is known exactly, one would expect that a known subset of gDC, gDC2 combinations would be the only candidates to try. As for TP1a, I believe the strongest gDC and gDC2 should add to a constant.

SuggestedRemedy
For Continuous time filter, DC gain for TP4 far-end (gDC), change to a set of limits that depend on gDC2 in the same style as for TP1a, with the strongest gDC and gDC2 adding to a constant. The allowed values should be a subset of those for TP1a
Response
Response Status U
REJECT.
The comment does not provide sufficient justification to support any changes and the suggested remedy does not provide sufficient detail to implement.

| CI 120G SC 120G.5.2 | P252 | L32 | \# 127 |  |
| :--- | :---: | :---: | :---: | :---: |
| Ran, Adee |  | Cisco |  |  |
| Comment Type | T | Comment Status R | RR CTLE |  |

The reference receiver parameters $\mathrm{fz}, \mathrm{fp} 1, \mathrm{fp} 2$, and gDC create CTLE transfer functions that are not necessarily passive (up to 0 dB across the spectrum) for all combinations.

This is different from the reference receiver used in the previous C2M specification (Annex 120E). Although 120E uses different equation and parameters, the resulting CTLE combinations always have combinations of the parameters Z 1 and G that create 0 dB gain at the peaking frequency.
(The reference receiver CTLE in 120E is essentially similar to the one used in the COM method in all CR/KR specifications, in that the peaking is created by varying the zero while keeping the poles constant, with the zero being equal to fp1 for zero peaking; 120E has an addition of a flat gain G to create 0 dB maximum gain; this gain has no effect on COM, but does affect the eye height)

There was no indication or claim that the CTLE in this annex has better performance or better matches real designs than a CTLE similar to Annex 120E (with different peaking frequency). In fact, with the addition of a DFE to the reference receiver, a CTLE similar to the one in Annex 120F (C2C) may be more adequate, as the equalization at Nyquist frequency can utilize the DFE.

It is suggested to modify the reference receiver transfer functions to be similar to those of 120E. This requires a minor change in the definition of the CTLE in Annex 93A (COM).

## SuggestedRemedy

Bring 93A.1.4.3 (Receiver equalizer) into the draft, and change Equation 93A-22 to include an additional factor $G$. Add a description of $G$ below the equation
"where G is a gain factor, whose value depends of the variable norm_ctle as follows:

- If norm_ctle is $1, G$ is set based on $g \_D C, f \_z, g_{-} D C 2, f \_L F, f \_p 1$, and fp2, such that the maximum of $\mathrm{H} \_\operatorname{ctf}(\mathrm{f})$ across $f$ is equal to 1 .
- If norm_ctle is 0 or is not provided by the clause that invokes this method, $G$ is set to 1."

In Table 120G-12, change the values of $f \_z$ and $f \_p 1$ to $f \_b / 2.5$, change the value of $f \_p 2$ to f_b, and add the parameter norm_ctle with value 1.

A presentation with the effect of the proposed change will be provided

REJECT.
[Editor's note: Straw poll information was added 2021/5/25.]
The following related presentation was reviewed by the task force at a previous ad hoc meeting:

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı
https://www.ieee802.org/3/ck/public/adhoc/apr21_21/ran_3ck_adhoc_01_042121.pdf
A straw poll relating to this proposal is reproduced here:
Straw Poll \#1 (April 21 ad hoc meeting)
For the reference CTLE of Annex 120G (choose one):
A. I would support the proposed change if it does not degrade VEC/EH
compared to the current parameters.
B. I would support the proposed change if it improves VEC/EH compared to
the current parameters, and change the max VEC / min EH accordingly.
C. I am interested in the proposed change but some modifications are required.
D. I would not support the proposed change (even with modifications).
$E$. I need more information.
F. I don't have an opinion

Results: A: 3, B: 3, C: 3 , D: 12, E: 10 , F: 8
The comment does not provide sufficient evidence to make the proposed changes. All of the simulations and related specifications thus far have been based upon the current CTLE pole-zero and gain parameters. Any changes to these parameters would require all related specifications to be revisited.

| Cl 120G SC 120G.5.2 | P253 | L23 | \# 180 |
| :--- | :---: | :---: | ---: |
| Dawe, Piers <br> Comment Type$\quad$ TR | Comment Status R |  |  |
| CH/VEC method |  |  |  |

This draft has a primitive rectangular eye mask ( $\mathrm{H}=$ e either EHmin or EA/VECmax), although it is described as a histogram. It's an inefficient/inaccurate way of measuring a signal quality vertically and provides weak and uncertain protection against too much jitter. This is worse with the higher VEC limit in the latest draft that allows worse and more varied signals, and is a particular concern for very short host channels (see Mike Dudek's work) that can have faster edges than higher loss ones.

## SuggestedRemedy

Change from a 4 -cornered mask with corners at $\mathrm{t}=\mathrm{ts}+/-0.05, \mathrm{~V}=\mathrm{k}+/-\mathrm{H} / 2$ to a 10-cornered mask with corners at $t=t s+/-0.05, \mathrm{ts}+/-1 / 16, \mathrm{ts}+/-3 / 32, \mathrm{~V}=\mathrm{k}+/-\mathrm{H} / 2, \mathrm{k}+/-\mathrm{H}^{*} 0.4, \mathrm{k} . \mathrm{k}$ is VCmid, VCupp or VClow.
In case it's not clear, H is either EHmin or Eye Amplitude * 10^(-VECmax/20). This simple scalable method can remain as the EH and VEC limits are revised. Scopes have been measuring with 10 -sided masks for many years, it's not more difficult than a rectangular mask.

## Response

Response Status U
REJECT.
The currently methodology was chosen over an eye mask method like that being proposed in this comment.
See slide 3 of the following presentation was reviewed by the task force:
https://www.ieee802.org/3/ck/public/21_01/brown_3ck_04_0121.pdf
The comment does not provide sufficient justification to support the proposed changes.

| Cl 120G | SC 120G.5.2 | P253 | L27 |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali | Ghiasi Quantum/Inphi | \# 47 |  |

Comment Type
TR
Comment Status R
EH/VEC method
The new C2M test procedure no longer require eye opening measurement with introduction of timing window $t x=+/-50 \mathrm{mUl}$, given the amount f change it will be very confusing for the reader to follow the procedure!

## SuggestedRemedy

Please include a figure and full procedure in CL120G instead of referencing 120E
Response
Response Status U
REJECT.
The methodology in this subclause leverages the methodology already documented in 802.3-2018 Annex 120E. There are only a small number of clear exceptions. Replicating the entire methodology is not warranted. Also, it is helpful to refer to existing test methodology familiar to test implementers. The relationship between TCmid (in Figure $120 \mathrm{E}-13$ ) and $t \leq$ can be easily inferred from the exception \{the CDF of the signal voltage is accumulated over the time interval ts $\pm 0.05 \mathrm{UI}$ instead of "within 0.025 UI of time is accum
Tcmid"\}.

| Cl 135 | $S C$ | 135.1.4 | $P 109$ | $L 15$ |
| :--- | ---: | :---: | ---: | :--- |
| Ran, Adee |  | Cisco | $\# 103$ |  |
| Comment Type | E | Comment Status A |  | (bucket1) |

In Figure 135-2, in "PMA (4:n)" the letter "n" is not italicized (it is italic everywhere else).
Also, in "PMA ( $n: p)$ ", " $n$ " is italic but " $p$ " is not (but $p$ is italic in the legend).
Also applies to Figure 120A-8 in 120A. 5 where $p$ and $n$ are used but not italicized.
SuggestedRemedy
Change the format of the " n " and " p " to italic, across both figures.
Response Response Status C
ACCEPT.

| CI 135 | SC 135.1.4 | P109 | L27 |
| :--- | :---: | :---: | :---: |
| Ran, Adee | Cisco |  | 104 |

Comment Type $\mathbf{E}$
Comment Status A
(bucket1)

The term "PHY" does not appear in the new Figure 135-2, so it is not required in the legend.

## SuggestedRemedy

Delete "PHY = PHYSICAL LAYER DEVICE".
Response
Response Status C
ACCEPT

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeI

| CI 135 | SC 135.7.3 | P113 | L6 |
| :--- | :---: | :---: | :---: |
| Ran, Adee | Cisco | \# 105 |  |

Comment Type TR Comment Status A (bucket1)
PICS item NLA in 802.3cd has only the options 2, 4, or N/A for 100G. This project adds 100GAUI-1 for which the value should be 1 .

SuggestedRemedy
Bring in item NLA and add 1 as an optional value.
Response
Response Status W

ACCEPT.

| Cl 136 | SC 136.8.11 | P115 | L29 | \# 24 |
| :--- | :--- | :--- | :--- | :--- |

Marris, Arthur Cadence Design Systems

Comment Type TR Comment Status R control function (bucket1)
Need to point out that the Clause 136 control function is not just for 50G lane PMDs

## SuggestedRemedy

Add the following extra paragraph to the end of 136.8.11:
The PMD control function specified in this clause is not only used by $50 \mathrm{~Gb} / \mathrm{s}$ per lane
PMDs, but also by other PMDs, such as the $100 \mathrm{~Gb} /$ s per lane PMDs specified in Clause 162."

Response Response Status W

## REJECT

By precedent, many subclauses for one PMD are reused or recycled by clauses for other concurrent or later PMDs without any reference to those other clauses. The control function defined in 802.3 cd -2018 Clause 136 (CR) does not point out that it is also used by Clause 137 (KR). Clause 162 and Clause 163 do not technically use Clause 136 control function but rather define a new control function with the Clause 136 control function as a starting point and modified with exceptions.


| CI 136 | SC 136.8.11.7.2 | P117 | L37 | \# 128 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Law, David |  | HPE |  |  |
| Comment Type | T | Comment Status A |  | (bucket1) |

The action 'start holdoff_timer' in the QUIET state should read 'start holdoff_timer', that is the underscore between start and holdoff_timer should be a space. See timer conventions the underscore between start and holdoff_timer should
in 14.2.3.2 and 'start holdoff_timer' in TIMEOUT state.
SuggestedRemedy
Change 'start_holdoff_timer' to read 'start holdoff_timer'.
Response Response Status C

ACCEPT.

| Cl 136 | SC 136.8.11.7.3 | P116 | $L 14$ | \# 107 |
| :--- | :---: | :---: | :---: | :---: |
| Ran, Adee |  | Cisco |  |  |
| Comment Type | TR | Comment Status A |  | (bucket1) |

Comment Type TR Comment Status A
(bucket1)
In the base document ( 802.3 cd ), 136.8.11.7.3 defines holdoff_timer as being started only when entering the TIMEOUT state.

In this project we added a holdoff_timer also when entering QUIET.
SuggestedRemedy
Bring in 136.8.11.7.3 and insert "or the QUIET state" after "the TIMEOUT state".
Response Response Status W ACCEPT.

| Cl 136 | SC 136.9 | P118 | L1 |
| :--- | ---: | :---: | :---: |
| Ran, Adee |  | Cisco | \# 108 |
| Comment Type | ER | Comment Status A |  |
| (bucket1) |  |  |  |

Comment Type ER Comment Status A (buck
The table to be modified is in 136.14.4.1 "PMD functional specifications", so the current subclause numbering is incorrect.
SuggestedRemedy
Change the 1st-level subclause number from 9 to 14, including the editorial instruction. Response

```
                                    Response Status W
```

ACCEPT IN PRINCIPLE.
Change subclause number 136.9 to 136.14 and update the editorial instruction appropriately. SORT ORDER: Clause, Subclause, page, line

Page 28 of 50 2021-05-26 2:51:22 PM

| Cl 152 | SC 152.6.2a | P119 | L29 | \# 109 |
| :--- | ---: | :---: | ---: | :--- |
| Ran, Adee |  | Cisco |  |  |
| Comment Type | E | Comment Status A |  | (bucket1) |

$$
\text { in } 802.3 \text { the word "sublayer" is conventionally used with no hyphen. }
$$

SuggestedRemedy
change "sub-layer" to "sublayer".
Response
Response Status C
ACCEPT.

| CI 161 | SC 161.5.2.6 | $P 122$ | $L 52$ |
| :--- | :---: | :---: | :---: |
| Zimmerman, George | CME Consulting/ADI, APL Gp, Cisco, CommScope, |  |  |
| Comment Type TR | Comment Status A | (bucket1) |  |

"The alignment markers shall be mapped to am_txmapped<1284:0> in a manner that yields the same result as the following process." Where the process begins and ends isn't really clear in the text since the text just runs in paragraphs of descriptive text intermingled with the text and multiple sets of either pseudocode or alphabetic steps. I THINK it ends at
P 123 line 38, but that was only after first thinking it ended at other places a few times.
This section is technically quite important and needs to be crystal clear, hence my comment is technical, as it is currently not clear to those outside the group.

Descriptive, non-process text should be set out, and the process itself should be either all in steps or all in pseudocode, and set out by its own section. (in my remedy I have used the existing text and put it all in text).
Being a little confused by the text, take caution, as I may have gotten it wrong in my proposed remedy.

## SuggestedRemedy

Change "same result as the following process" to "same result as the process in 161.5.2.6.1." Insert new section "161.5.2.6.1 Alignment Marker Mapping Process" following line 54, with content from page 123 lines 1 through 10, and add step e) using text from page 123 lines 18 through 21, and step f) using the text at lines 23 ("The variable am_txmapped...) through line 33. Add step g) with text at page 123 lines 34 through 38.

Move descriptive (and non-process requirement) text at page 123 lines 12-17 and page 123 lines 39 -page 124 line 46 (end of the existing section) ahead of the new section with just the process.

```
Response
Response Status
W
```

ACCEPT IN PRINCIPLE.
[Editor's note: Proposed response updated on 2021/5/5.]
After some offline discussion and further review, the commenter indicated that the description is clear as is.

However, it was noticed that the wrong variable is being referenced in the text. The variable name should be tx_scrambled_am rather than am_txmapped. In addition, it would be clearer if we referred to a set of processes in the clause instead of a single process.

Change:"The alignment markers shall be mapped to am_txmapped<1284:0> in a manner that yields the same result as the following process."
To: "The alignment markers shall be mapped to tx_scrambled_am<1284:0> in a manner that yields the same result as the processes described in the remainder of this subclause."

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı


Incorrect list of PCS lanes for FEC lane 1: 0,5,9,13, and 17
SuggestedRemedy
Change 0 to 1.
Response Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#73.

| CI 161 | SC 161.5.2.6 | P123 | L41 |
| :--- | :---: | :---: | :---: |
| Wienckowski, Natalie | General Motors |  | \# 73 |

Wienckowski, Natalie General Motors
Comment Type T Comment Status A (bucket2)

I believe there is a typo as it doesn't make sense to transmit PCS lane 0 on both FEC lanes 0 and 1. The second " 0 " should be "1" on FEC lane 1. This change also makes it match with Figure 161-3.

## SuggestedRemedy

Change: the alignment marker payloads corresponding to PCS lanes $0,5,9,13$, and 17 are transmitted on FEC lane 1,
To: the alignment marker payloads corresponding to PCS lanes 1,5, 9, 13, and 17 are transmitted on FEC lane 1,
Response Response Status C
ACCEPT IN PRINCIPLE.
A large portion of the alignment marker payloads are repeated as described in the variable mapping in subclause 161.5.2.6, but not all; for example the BIP fields are not repeated across the lanes. So the statement in Draft 2.0 is not correct as currently written.
Make the following changes to simplify the text and remove the incorrect statement.
Change:
"The result of the alignment marker mapping function is a deterministic mapping between alignment marker payloads and FEC lanes. The alignment marker payloads corresponding to PCS lanes $0,4,8,12$, and 16 are transmitted on FEC lane 0 , the alignment marker payloads corresponding to PCS lanes $0,5,9,13$, and 17 are transmitted on FEC lane 1, and so on (see Figure 161-3)."
To:
"The result of the alignment marker mapping function is a deterministic mapping between alignment marker payloads and FEC lanes (see Figure 161-3)."
"has been FEC encoded, two FEC codewords... each FEC lane... Once the data has been Reed-Solomon encoded and interleaved... FEC lanes... highest FEC lane." - use
Reed-Solomon encoded and interleaved... FEC, to Reed.... highest FEC lane." - use
consistent nomenclature. You go from mEC, remember Gus Solomon by name, it suggests there may be 2 different things youre talking about here.
I didn't name it in my remedy, but the editor may wish to review instances of FEC where RS-FEC is meant to be clear - the same thing shows up in 161.5.3.1, 161.5.3.2, and 161.5.3.3. (note RS-FEC is an abbreviation in 802.3-2018 for Reed-Solomon Forward Error Correction)
SuggestedRemedy
Suggest replace instances on lines 8 through 22 of "FEC" with "RS-FEC", and "ReedSolomon encoded" on line 21 with "RS-FEC encoded".
Additionally suggest editor review usage of "FEC" for possible replacement with RS-FEC elsewhere in clause 161 (I note this doesn't look globally feasible)
Response
Response Status C

ACCEPT.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| $C l 161$ | SC 161.5.3.3 | P127 | L 31 |
| :--- | :---: | :---: | :---: |

Comment Type T Comment Status A (bucket1)
"The probability that the decoder fails to indicate a codeword with $t+1$ errors as uncorrected "The
is
not expected to exceed 10-16." This statement is not technically correct without reference to an underlying raw symbol error rate. The probability of a failed decode can be anything if the raw symbol error rate is left unpinned. Since this subclause stands alone and could be reused with different PHYs in different scenarios, it isn't appropriate to pin the raw SER. Additionally, the descriptive sentence is unnecessary
SuggestedRemedy
Delete the last two sentences of the 2nd paragraph of 161.5.3.3 ("The probability...").

## Response

## Response Status $\mathbf{C}$

ACCEPT IN PRINCIPLE.
The symbol error rate of the system dictates the rate at which a codeword with $t+1$ or more errors occur. The last two sentences constrain the behavior of the decoder when a codeword with $t+1$ or more errors is seen.

## Change:

The probability that the decoder fails to indicate a codeword with $t+1$ errors as uncorrected is not expected to exceed $10-16$. This limit is also expected to apply for $t+2$ errors, $t+3$ errors, and so on.
To:
The probability that the decoder fails to indicate a codeword as uncorrected, given $t+1$ or more errors, is not expected to exceed 10-16.

| CI 162 | $S C 162.1$ | P140 | $L 7$ |
| :--- | :---: | :---: | :---: |
| Zhang, Bo |  | \# 238 |  |

Zhang, Bo Inphi
Comment Type E
Comment Status R
wording (bucket1) When -CRx interfaces are first introduced in the overview section of clause 162. It's not clear the definition is properly referenced.

## SuggestedRemedy

Suggest provide linkage of the definition of -CRx with -CRx interfaces when they are first introduced.
Response Response Status C

## REJECT.

It is not clear what the comment is concerned with. The nomenclature used here is consistent with other PMD clauses.

| Cl 162 | SC 162.1 | P140 | $L 13$ |
| :--- | :---: | :---: | :---: |
| Kochuparambil, Beth | Cisco | \# 154 |  |
| Comment Type E | Comment Status A |  | wording (bucket1) |

Annex 162D is the only description that restates the PMD. CR1, CR2, and CR4 seem to already be implied.

SuggestedRemedy
Remove "100GBASE-CR1, 200GBASE-CR2, and 400GBASE-CR4" which would leave "Annex 162D describes host and cable assembly types."
Response
Response Status C
ACCEPT.

| Cl $\mathbf{1 6 2} \quad$ SC 162.1 | P140 | L26 | \# 99 |  |
| :--- | :---: | :---: | :---: | :--- |
| Kabra, Lokesh |  | Synopsys Inc |  |  |
| Comment Type E | Comment Status A |  | (bucket1) |  |

Typo-error for Clause number corresponding to RS/CGMII functions
SuggestedRemedy
Correct Clause number to "81" instead of "80" in row 1 and row 2 of Table 162-1
Response Response Status C

ACCEPT.

| Cl 162 | SC 162.1 | C 140 |
| :--- | :---: | :---: |
| Kochuparambil, Beth | Cisco | L31 |
| Comment Type E | Comment Status D |  |

I may just be confused, but seems odd that both RS-FEC and RS-FEC-Int are required, but the Inverse RS-FEC is optional, however required to convert between the other 2 required interfaces.

## SuggestedRemedy

Make Inverse RS-FEC required
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| Cl 162 SC 162.1 | P141 | L23 | \# 176 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers |  | Nvidia |  |
| Comment Type | E | Comment Status R | PMD tables (bucket1) |

Tables 162-2 and 162-3 are essentially the same, and it benefits the reader to see that.
SuggestedRemedy
Combine into one table with columns for clause/annex no., description for 200G,
description for 400G, and required/optional status. Similarly for tables 163-2 and 3.
Response
Response Status C
REJECT.
Combining the two tables results in a less readable format since for most sublayers there is a unique row for each rate. Only RS and AN rows are common to both. The suggested remedy does not improve the quality of the draft.
[Editor's note: CC: 162, 163]


The PMD does not reside ON the MDI.
SuggestedRemedy
Change "on" to "for"
Resulting text would read "The PMD converts these streams of symbols into appropriate signals for the MDI."
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

| Cl 162 | SC $\mathbf{1 6 2 . 7}$ | P146 |
| :--- | :---: | :---: |
| Dudek, Mike | Marvell |  |
| Comment Type | E | Comment Status A |
| Draft should be consistent format for the PMD control and status registers. |  |  |

SuggestedRemedy
Delete the "to" to match table 162-5.
Response Response Status C


Current text: "The terminal count of max_wait_timer as specified in 136.8.11.7.3 is 12s."
Given a value is specified within the clause/statement makes the phrase "specified in 136[. . .]" incorrect.
SuggestedRemedy
Change "specified" to "defined" or "described"
This is a semi-pervasive issue.
Response Response Status
REJECT.
Clause 162 is specifying a value that is different from the value specified in Clause 136.

| Cl 162 | SC 162.9.3 | P154 | L21 | \# 167 | Cl 162 | SC 162.9.3 | P154 | L21 | \# | 166 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dawe, P |  | Nvidia |  |  | Dawe, |  | Nvidia |  |  |  |
| Comme | pe E | Comment Status A |  |  | Comment | ppe TR | Comment Status R |  |  | CR port type |

## Clumsy " x vf" way of defining linear fit pulse peak (min)

Comment Type E Comment Status A

## SuggestedRemedy

Use "Linear fit pulse peak ratio" as in 163 and 163A.3.2.1. Note the unit in the table changes to $\mathrm{V} / \mathrm{V}$.
Response
Response Status $\mathbf{C}$

ACCEPT IN PRINCIPLE.
Implement the suggested remedy with editorial license.
The draft loss budget wastes over 3 dB in nearly every case
The recommended maximum insertion loss allocation for the host traces plus BGA
footprint and host connector footprint, of 6.875 dB , compares very poorly with C2M's host
insertion loss up to 11.9 dB , making passive copper expensive and unattractive for a
switch, while a full range of NICs can be made within only 3.75 dB . Server-switch links will
get made with an asymmetric loss budget, so it would be better for the standard to
regularise what will happen anyway. By the way, many server-switch links will be
asymmetric anyway (different form factors at server and switch ends), and that's already allowed in this draft
This change would also benefit CR switch-switch links because the shortest ports would get credit for their low loss.

## SuggestedRemedy

As we have done for C2M, create two kinds of CR ports. Host loss allocations of 3.75 dB
and 10 dB . Short can connect to short or long with same cable as today; long to long is not supported. Add entries in Clause 73 Auto-Negotiation to advertise short and long to the other end.
In Table 162-10, provide separate limits for Linear fit pulse peak (min)
In Table 162-14, provide separate rows for Test channel insertion loss: for testing the short
host input the values for Test 2 are $10-6.875=3.125 \mathrm{~dB}$ higher ( 26.75 dB and 27.75 dB ),
while for the long host input the values for Test 2 are 6.875-3.75 = 3.125 dB lower ( 20.5 dB
and 21.5 dB ). No change needed for Test 1
In 162A.4, provide two equations for each of IL_PCBmax and for ILHostMax and show them in Fig 162A-1 and 2. In 162A.5, provide two Value columns in Table 162A-1. Adjust figures 162A-3 and 4.

For discussion: should a "long" cable, 19.75+2* $(6.875-3.75)=19.75+6.25=26 \mathrm{~dB}$ max (maybe 3 m ) be defined? A CR link could have no more than one of the three host, cable, and host being "long".

We could choose other names than "short" and "long" for the ports, possibly "short" and "medium" (as a C2M host can be "longer"), or A and B, somewhat like USB.

In 162.11.7.1.1, zp, representing the extra loss a host has above an MCB, could be made asymmetric but I believe that would not bring an improvement in accuracy.
There could be a third kind of CR port with 6.875 dB but this would not be useful for serverswitch links, would be useful for only a subset of switch-switch links, for which passive copper is a subset anyway, so it doesn't seem worthwhile.

## Response <br> Response Status U

REJECT.
The following presentation was reviewed by the task force:
https://www.ieee802.org/3/ck/public/adhoc/apr28_21/dawe_3ck_adhoc_01_042821.pdf

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

The suggested remedy would require two or three different CR port types.
The assymetric-port approach was discussed early in this project.
Straw Poll \#1 from the July 2018 Task Force meeting indicated strongest support for the current specification.
https://www.ieee802.org/3/ck/public/18_07/minutes_3ck_0718_approved.pdf
Based on discussion and straw poll 6 and 7, there is interest in exploring this proposal further. However, the proposal is not sufficiently complete at this time. A complete proposal and consensus is required

Straw poll \#6 (direction, chicago rule)
Straw poll \#7 (direction, pick one)
I would support a new pair of CR port types with reduced host insertion loss limit on one end (e.g., NIC) and increased host loss limit on the other end (e.g., switch) similar to slide 7 of dawe 3ck adhoc 01042821.

## Strawpoll \#6

A: Yes 27
B: No 13
C: Need more information 29
D: Abstain 7
Straw poll \#7
A: Yes 22
B: No 11
C: Need more information 11
C: Need mor

| Cl 162 SC 162.9.3.1 | P155 | L31 | \# 194 |
| :--- | ---: | ---: | ---: |
| Dudek, Mike | Marvell |  |  |

Comment Type T Comment Status A (bucket1)
There are now five preset conditions
SuggestedRemedy
Change "three" to "five"
Response
ACCEPT IN PRINCIPLE.
Resolve using the response to comment 136.

| Cl 162 | SC | 162.9.3.1 | P155 | L 31 |
| :--- | :---: | :---: | :---: | :---: |

The number of initial conditions was increased from three to five.
SuggestedRemedy
Change "three initial conditions" to "five initial conditions".
Response
Response Status C
ACCEPT.

| CI 162 | SC 162.9.3.1.1 | P155 |
| :--- | :---: | :---: |
| Kochuparambil, Beth | Cisco | L47 |
| Comment Type E | Comment Status A |  |
| (bucket1) |  |  |

M should be an integer not less
May be easier for the reader to avoid the double negative.

## SuggestedRemedy

Change "not less than"
to "greater than or equal to"
Response
Response Status
ACCEPT.
[Editor's note: Change page from 154 to 155.]

| CI 162 SC | 162.9.3.1.1 | P155 | L44 |
| :--- | :---: | :---: | :---: |

Comment Type TR Comment Status A CRU description (bucket1)
Defining a corner frequency for a clock recovery unit (CRU) can be ambiguous due to possible actual implementations of CRU implementations

SuggestedRemedy
Change the definition of a CRU unit with a definition of the effect expected from the CRU.
The effect expected is a high frequency filter applied on the jitter of the measured signal. A reference for the wording can be found in 93.8 "The effect of a single-pole high-pass filter with a 3 dB frequency of XMHz is applied to the jitter"
Response
Response Status W
ACCEPT IN PRINCIPLE.
Resolve using the response to comment 129.
[Editor's note: This appears to be a duplicate of comment 129.]

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| Cl 162 | SC 162.9.3.1.1 | P155 |
| :--- | :---: | :---: |
| Ben Artsi, Liav | Marvell Technology | \# 129 |

Comment Type TR Comment Status A CRU description (bucket1)
Defining a corner frequency for a clock recovery unit (CRU) can be ambiguous due to possible actual implementations of CRU implementations

## SuggestedRemedy

Change the definition of a CRU unit with a definition of the effect expected from the CRU.
The effect expected is a high frequency filter applied on the jitter of the measured signal. A reference for the wording can be found in 93.8 "The effect of a single-pole high-pass filter with a 3 dB frequency of XMHz is applied to the jitter"
Response
Response Status w
ACCEPT IN PRINCIPLE.
Change "A reference CRU with a corner frequency of 4 MHz and slope of $20 \mathrm{~dB} /$ decade is used to calibrate the stressed signal using a PRBS13Q pattern." to "A reference CRU acting as a high-pass jitter filter with a high-pass 3 dB corner frequency of 4 MHz and slope of $20 \mathrm{~dB} /$ decade is used to calibrate the stressed signal using a PRBS13Q pattern."
[Editor's note: CC: 162, 120G]

| Cl 162 | SC 162.9.3.1.3 | Cisco | L6 |
| :--- | :---: | :---: | :---: |
| Kochuparambil, Beth |  |  |  |

Initial is capitalized mid sentence, however is lower case in Table 162-11's title.
SuggestedRemedy
Make "Initial" lower case
Response
Response Status
ACCEPT.

| CI 162 | SC 162.9.3.4 | P158 | L34 |
| :--- | :---: | :---: | :---: |

Comment Type
TR
Comment Status A
PRBS9Q
A detail definition of twelve edges in PRBS9Q is recommended to improve reproducibility of even-odd jitter measurement.

This is re-submission of my comment \#110 to draft D1.4.

## SuggestedRemedy

Add a new table "PRBS9Q pattern symbols used for even-odd jitter measurements" similar to Table 120D-4, but replacing the values as follows:


Add an exception to use the new table instead of Table 120D-4, when PRBS9Q is used as the test pattern for even-odd jitter measurement.

## Response

Response Status C
ACCEPT IN PRINCIPLE.
Comment \#236 proposes an alternate set of transition locations
The following presentations were reviewed by the task force:
https://www.ieee802.org/3/ck/public/21_05/li_3ck_01b_0521.pd
https://www.ieee802.org/3/ck/public/21_05/zivny_3ck_01b_0521.pdf
After running straw poll \#1, there were no objections to adopting the suggested remedy in comment \#236 including li_3ck_01b_0521.
With editorial license implement the suggested remedy of comment \#236 and presentation i_3ck_01b_0521.
Straw poll \#1 (direction)
support addressing comments \#133 and \#236 using
A. The suggested remedy for comment \#133 (Yasuo Hidaka)
B. The suggested remedy for comment \#236 (Mike Li).
C. Need more information.

A: 9 B: 10 C: 9
Pick one.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| CI 162 | SC 162.9.3.4 | P158 | L34 |
| :--- | :---: | :---: | :---: |
| Li, Mike | Intel | \# 236 |  |

Comment Type TR
Comment Status A
PRBS9Q

PRBS9Q pattern definition is incomplete, and PRBS9Q symbol transition definition for EOJ measurement is missing.

SuggestedRemedy
1.) change "PRBS9Q is defined in a similar way to

PRBS13Q (see 120.5.11.2.1) except that the polynomial in Table 68-6 is used instead of the polynomial
in Equation 94-3." to "PRBS9Q is defined in 162.9.3.4.1, a similar way to
PRBS13Q (see 120.5.11.2.1), except that the polynomial in Table 68-6 is used instead of the polynomial
in Equation 94-3."; 2.) Add a new sentence of "The symbol transition definition for jitter measurement and even-odd jitter calculation with PRBS9Q is provided in 162.9.3.4.1; 3.) Create a new section 162.9.3.4.1 entiled "EOJ measuement with PRBS9Q", with contents from slides 5, 6 of li_3ck_01_0521

## Response Response Status C

ACCEPT IN PRINCIPLE.
Comment \#133 proposes an alternate set of transition locations.
Resolve using the response to comment \#133.

| Cl 162 | SC 162.9.3.4 | P158 | L34 | \# 141 |
| :---: | :---: | :---: | :---: | :---: |
| Hidaka, |  | Credo Semiconductor, Inc. |  |  |
| Comme | pe TR | atus A |  |  |

Comment Type TR Comment Status A
PRBS9Q
A detail definition of PRBS9Q with the entire sequence is recommended to avoid implementation errors.

This is re-submission of my comment \#109 to draft D1.4

## SuggestedRemedy

Define PRBS9Q as a new clause in clause 120.5.11.2 using clause 120.5.11.2.1 as a template.

In the new clause, modify the second paragraph of the template (120.5.11.2.1) as follows:
When the PRBS9Q test pattern enabled, it replaces the signal on the output lane(s) for which it is enabled. The PRBS9Q test pattern is a repeating 511 -symbol sequence formed by Gray coding pairs of bits from two repetitions of the PRBS9 pattern into PAM4 symbols as described in 120.5.7. The PRBS pattern generator produces the same result as the implementation shown in Figure $\mathrm{XX}-\mathrm{X}$, which implements the generator polynomial shown in Equation ( $Y Y-Y$ ). Since the PRBS9 pattern is an odd number of bits in length, bits which are mapped as the first bit of a PAM4 symbol during one repetition of the PRBS9 sequence are mapped as the second bit of a PAM4 symbol during the next repetition of the PRBS9 sequence, and bits which are mapped as the second bit of a PAM4 symbol are mapped as the first bit of the following symbol in the next repetition of the PRBS9 sequence. For example, if the PRBS9 generator used to create the PRBS9Q sequence is initialized to a seed value of 111111111 (with the leftmost bit in S0 and the rightmost in S8), the PRBS9Q sequence is the following Gray coded PAM4 symbols, transmitted left to right:
0012322303231310010331213302202231320111030230213332303130303000
003020031203332002123313231011003321022213103113222031333131300 003020031203332002123313231011003321022213103113222031333131300 0110321331221013023320320201020131200322132021002322002330 0022122011202030031102321012312202130333101201321112010201010000 3010130102311113013221021203033011133122320310321223102110202000 1302033021032223303201211311312302232330021132121300321122111100 033111231121200023121031233233303100202301123213133012123012222.

Draw Figure XX-X "PRBS9 pattern generator" similar to Figure 94-6 but according to polynomial $1+x^{\wedge} 5+x^{\wedge} 9$.

Define Equation $(Y Y-Y)$ as $G(x)=1+x^{\wedge} 5+x^{\wedge} 9$ or make a reference to the polynomial in Table 68-6.

Make a reference to the new clause from 162.9.3.4

## Response <br> Response Status C

ACCEPT IN PRINCIPLE
Implement the suggested remedy with editorial license.
Create an equation for the polynomial but include text referring back to Clause 68.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| Cl 162 | SC 162.9.3.4 | P158 | L38 |
| :--- | :---: | :---: | :---: |
| Ben Artsi, Liav | Marvell Technology | \# 130 |  |

Comment Type TR Comment Status R CRU description (bucket1)
Defining a corner frequency for a clock recovery unit (CRU) can be ambiguous due to possible actual implementations of CRU implementations

## SuggestedRemedy

Change the definition of a CRU unit with a definition of the effect expected from the CRU.
The effect expected is a high frequency filter applied on the jitter of the measured signal. A reference for the wording can be found in 93.8 "The effect of a single-pole high-pass filter with a 3 dB frequency of XMHz is applied to the jitter"
Response
Response Status U
REJECT.
The detailed description of the CRU is provided in 120D.3.1.8.2. This exception merely suggests changing the value of that corner frequency. So no further detailed description is required here.

| Cl 162 | SC 162.9.3.4 | P158 | L 39 |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali | Ghiasi Quantum/lnphi | \# 32 |  |

Comment Type TR Comment Status R EOJ CRU BW
"Meeting even-odd jitter requriement with only one CRU bandwidth is sufficient" is not clear

## SuggestedRemedy

What is the intention of only one CRU bandwidth, please make it clear.

## Response

Response Status U

## REJECT

The suggested remedy does not provide sufficient detail to implement.
There was some agreement that further clarification would be helpful. However, complete proposal is required.


Investigations of the effect of the Time-gated propagation delay on practical HCB's has shown that the input RF connector is affecting the ERL unless the 200 ps is increased to approx 300ps. 300ps is still adequately short to not affect the measurement of the device under test. i.e. The value used for Tfx does not sufficiently mitigate the effects of reflections from the test connector. See dudek 3ck adhoc 01a 041421

SuggestedRemedy
Change the value from 0.2 ns to 0.3 ns. Also on page 167 line 44.
Response
Response Status C

ACCEPT.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| CI 162 | SC 162.9.3.6 | P159 | L18 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers | Nvidia | \# 169 |  |

Comment Type
TR
Comment Status A
RLCC description

1. This paragraph claims that the minimum common-mode to common-mode return loss is specified to reduce reflections of signals that were generated originally as differential and end up as differential. This is not the case: it is included to contain a gross build-up of CM voltage on the line caused by repeated reflections, that is otherwise unbounded.
If it had been intended to address mixed-mode issues it would be a tighter spec, but that's not viable for front-panel connectors. Other specs such as Rx Differential to common-mode return loss and Tx Common-mode to differential mode return loss (both 12 dB at Nyquist, total 24) and Differential to common-mode cable assembly conversion loss (10 dB each way) are there to address the mixed-mode issues, and this spec at only 2 dB won't make much difference to them.
2. This is a standard, not an attempt at a textbook. We don't give any justifications for most other specs; there is no reason that this one should be different.

## SuggestedRemedy

Delete the paragraph
Response
Response Status C

ACCEPT IN PRINCIPLE.
Resolve using the response to comment 148.
[Editor's note: Changed page/line from 157/30 to 159/18.]

| CI 162 | SC 162.9.3.6 | P159 | $L 18$ |
| :--- | :---: | :---: | :---: |
| Kochuparambil, Beth | Cisco |  | \# 148 |

Comment Type E
Comment Status A
RLCC description
Description may or may not be helpful for those reading the standard. I do, however, note that previous clauses (examples are 92.10.6 and 110.10.6) do NOT describe why we limit CM return loss, but instead just define the limit. Perhaps this description of the re-
reflections concept is helpful to readers, it was somewhat confusing until reading it multiple times.

## SuggestedRemedy

Remove the first paragraph of this section. "Common-mode signals can be returned [. . .] To reduce this effect, a minimum common-mode to common-mode return loss is specified." Response

Response Status C
ACCEPT.

| Cl 162 | SC 162.9.4.1 | P161 | L4 |
| :---: | :---: | :---: | :---: |
| Hidaka |  | Credo S | cor, |

Comment Type T
Comment Status A
$R X$ signalling rate (CC)
The signalling-rate tolerance of transmitter was changed from 100ppm to 50ppm according to comment \#42 on D1.3. However, the signaling-rate tolerance of receiver remained 100ppm. It is not clear whether it was an overlooked error or it remained 100ppm on purpose for compatibility with prior implementations with up to +/- 100ppm.

## SuggestedRemedy

Add the following statement:
Note that the tolerance of signaling rate of transmitter is +/-50ppm. The tolerance of signaling rate of receiver is +/- 100ppm for compatibility with prior transmitter implementations with up to +/- 100ppm tolerance.

## Response

Response Status $\mathbf{C}$
ACCEPT IN PRINCIPLE.
The signaling rate range for a transmitter is $+/-50 \mathrm{ppm}$ only for specific circumstances
(e.g., the PMD transmitter is colocated with the PCS), otherwise it is 100 ppm . This allows for AUI transmitter specifications in the base standard and amendments (e.g., 100GAUI-4) However, an informative note may be helpful to the reader of this draft.
Add the following informative note:
"Note—Although the PMD transmitter is specified with a signaling rate range of $+/-50 \mathrm{ppm}$ when in the same package as the PCS sublayer, the signaling rate range may be $+/-100$ ppm, when derived from an intermediate interface (e.g., 100GAUI-4)."
With editorial license, apply a similar note in Clause 163.
[Editor's note: CC: 162, 163.]

| Cl 162 | SC 162.9.4.1 | P161 | L4 |
| :--- | ---: | ---: | ---: |

Status D
nominal UI
Specification of the nominal unit interval is unnecessary and redundant (since it can easily be derived from the nominal signaling rate). It is not specified for KR, C2C, or C2M. For consistency with sister Clauses/Annexes, this specification should be removed.

## SuggestedRemedy

Delete the sentence "This translates to a nominal unit interval of 18.82353 ps."
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter. SORT ORDER: Clause, Subclause, page, line

Page 38 of 50
2021-05-26 2:51:22 PM

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| $C l 162$ | $S C$ | 162.9.4.3 | $P 161$ |
| :--- | :---: | :---: | :---: |

Comment Type
TR
Comment Status R
RIT channel

Table 162-14 references table 110-8 and figure 110-3b, but unlike CL 110 for the case of low loss channel Test 1 frequency dependent attenuator is zero because the loss of cable assembly=test chanel loss

## SuggestedRemedy

If the low loss channel also include frequency dependent attenuator then please increase loss by 4.75 dB , if the intention was to not include frequncy dependent attenuator then a note would be helpful
Response
Response Status
C
REJECT.
The frequency-dependent attenuator is excluded from the test channel used for Test 1 in order to create the minimum loss channel with a compliant cable
Cl 162 SC 162.9.4.3.3 P162 L26
Hidaka, Yasuo Credo Semiconductor, Inc.

Comment Type T Comment Status A
In 120E.3.1.5, transition time is measured with 33 GHz BT4 filter.
SuggestedRemedy
Change "T_r is measured using the method in 120E.3.1.5 with the transmit equalizer turned off
(i.e., coefficients set to the preset 1 values, see 162.9.3.1.3)."
to
" $T \_r$ is measured using the method in 120E.3.1.5 with the transmit equalizer turned off (i.e., coefficients set to the preset 1 values, see 162.9.3.1.3) with an exception that the waveform is observed through a fourth-order Bessel-Thomson low-pass response with a 3 dB bandwidth of 40 GHz .."

## Response

Response Status C
ACCEPT IN PRINCIPLE.
Implement the suggested response with editorial license.
[Editor's note: changed subclause from 162.9.4.3 to 162.9.4.3.3.]

| Cl 162 SC 162.9.4.3.2 | P162 | L4 | Marvell | 195 |
| :--- | ---: | ---: | ---: | :--- |
| Dudek, Mike |  | T Comment Status A |  | RIT channel |
| Comment Type |  |  |  |  |

An extra exception is needed for the test channel loss.
SuggestedRemedy
Change to "The test channel is the same as the one defined in 110.8.4.2.2, except that the cable assembly meets the requirements of 162.11, the test channel loss meets the requirements of table 162-14 and the cable assembly test fixture meets the requirements of 162B.1.2."
Response
Response Status C
C
ACCEPT.

| Cl 162 SC 162.9.4.3.3 | P162 | L18 | Marvell |  |
| :--- | ---: | ---: | ---: | ---: |
| Dudek, Mike |  | T |  |  |
| Comment Type Status A |  | (bucket2) |  |  | There are no mofications to COM paramters in Table 162-14

SuggestedRemedy
Delete this bullet. (Note that if this is done then step fon page 162 line 20 will become step e).
Response Response Status C
ACCEPT IN PRINCIPLE.
[Editor's note: This response was updated on 2021/5/18.]
Delete item "b)" and renumber the list items appropriately.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| Cl 162 | SC 162.9.4.3.3 | P162 | L 36 |
| :--- | ---: | ---: | ---: |

> SNDR should be measured as appropriate for this clause not as for C2C at 25G.

SuggestedRemedy
Change "SNDR is measured at the Tx test reference using the procedure in 120D.3.1.6, with the exception that the linear fit in120D.3.1.3 is performed with a pulse length (Np) of 15 UI." to "SNDR is measured at the Tx test reference using the procedure in 162.9.3.3"
Response
Response Status C

ACCEPT IN PRINCIPLE.
The following presentation, supporting comment \#228, was reviewed by the task force: https://www.ieee802.org/3/ck/public/21_05/wu_3ck_01a_0521.pdf

The reference to $162 \cdot 9.3 .3$ as proposed in the suggested remedy would effectively change the Np value to 200 .

Comment \#228 proposes that the Np value should be 29.
With editorial license, implement the suggested remedy and set the value of Np to 29.

| Cl 162 | SC 162.9.4.3.3 | P162 | $L 36$ |
| :--- | :---: | :---: | :---: |
| Wu, Mau-Lin |  | MediaTek Inc. | \# 228 |
| Comment Type | TR | Comment Status A | RIT SNDR |

For the calculation of SNDR measured at the Tx test reference, the linear fit in 120D.3.1.3 is performed with a pulse length ( $N \_p$ ) of 15 UI . The pulse length ( $N \_p$ ) shall be long enough to cover all 'linear response', such as reflection due to package length. In this case, the calculated SNDR includes nonlinearity only, instead of the far-away 'linear' reflection.
The 15 UI spec here is the same as 50GBASE-CR, which is not reasonable for 100GBASECR1. We shall need a larger value of $N \_p$ here.
In 'li_3ck_01_1020', the authors proposed to consider TX + RX EQ capability to decide N_p value. In that contribution, N_p = 29 was proposed for Clause 163. I found no clues why we have different N_p value for Clause 162, since their TX + RX EQ capability are similar.
SuggestedRemedy
By considering the pulse length to at least cover reflection due to package trace length, whose maximum value is 31 mm . By considering the dielectrics constant, D_k, as in the range of $3.5 \sim 4.0$, the location of reflection due to 31 mm trace length is around $22 \sim 24$ taps after main cursor. Therefore, adopt $\mathrm{N} \_\mathrm{p}=29$ as Clause 163 seems reasonable Proposed to N p value from 15 to 29.

## Response

Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#197.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| Cl $162 \quad$ SC 162.9.4.3.3 | P163 | L6 |
| :--- | :---: | :---: |
| Healey, Adam | Broadcom Inc. | \# 209 |

Comment Type
TR
Comment Status A
RIT jitter (CC)

For values of J3u/Jrms where the condition stated in NOTE 1 is satisfied, The Q3 value should be derived from $10^{\wedge}(-3)$ and not $10^{\wedge}(-3) / 2$. The A_DD and sigma_RJ derived for the given value of Q3 will correspond to a dual-Dirac distribution with a smaller value of J3u than what is measured from the pattern generator. The calibrated interference amplitude (based on COM) will in turn be somewhat higher resulting in a level of overstress. This issue has been pointed out in
[https://www.ieee802.org/3/ck/public/adhoc/apr14_21/hidaka_3ck_adhoc_01_041421.pdf](https://www.ieee802.org/3/ck/public/adhoc/apr14_21/hidaka_3ck_adhoc_01_041421.pdf).

## SuggestedRemedy

Change the value of Q3 to 3.0902. Change NOTE 1 to begin "Q3 is an approximated solution of $Q(Q 3)=10^{\wedge}(-3)$, where...". Make a similar change to 163.9.3.4 (page 192, line 14). In 120F.3.2.3 (page 224, line 2), note that Q4 (an approximated solution of $Q(Q 4)=$ $10^{\wedge}(-4)$ ) is 3.719 as an exception to the use of Equation (120D-10) and Equation (120D-11).

## Response <br> Response Status C

ACCEPT IN PRINCIPLE.
The following presentations were reviewed by the task force:
https://www.ieee802.org/3/ck/public/adhoc/apr14_21/hidaka_3ck_adhoc_01_041421.pdf. https://www.ieee802.org/3/ck/public/21_05/li_3ck_02c_0521.pdf
[Editor's note: CC: 162, 163, 120F]
Implement the suggested remedy with editorial license with the exception to change the variable names Q3 to Q3d and Q4 to Q4d.

It was noted that some explanation of this approach might be helpful. Further work is encouraged in this regard.

Straw Poll \#4 (Chicago rules)
Straw Poll \#5 (Pick one)
For calculation COM parameters A_DD and sigma_RJ I would support adopting the method as follows:
A: per suggested remedy in comment \#209 (Adam Healey)
B: per suggested remedy in comments \#134 and \#135 and hidaka_3ck_adhoc_01_041421 (Yasuo Hidaka)
C: hybrid approach proposed in li_3ck_02c_0521 (Mike Li et al)
D: Need more information
E : No changes.
\#4: A: $25 \mathrm{~B}: 19 \mathrm{C}: 15 \mathrm{D}: 11 \mathrm{E}: 3$
\#4: A: 25 B: $19 \mathrm{C}: 15 \mathrm{D}: 11 \mathrm{E}:$
\#5: A: $15 \mathrm{~B}: 12 \mathrm{C}: 3 \mathrm{D}: 7 \mathrm{E}: 1$

| CI 162 SC 162.9 .4 .3 .4 | P163 | L23 | \# 207 |
| :--- | :---: | :---: | :---: |
| Healey, Adam |  | Broadcom Inc. |  |
| Comment Type | TR | Comment Status A | RIT noise |

The spectrum of the broadband noise that is added at the pattern generator output is
undefined. Since noise injected at the pattern generator output is filtered by the channel,
"broadband" noise will be low-pass filtered at the input to the receiver under test. This is a
different stress from the "broadband" noise (with bounded spectral density) injected at the receiver for the Clause 163 interference tolernace test. It could also be argued that the lowpass filtered noise is less "realistic" and test results may not represent receiver peformance under normal operating conditions.

## SuggestedRemedy

Bound the spectrum of the broadband noise in a manner similar to what is done in 93C.1.
The spectrum should be bounded to be more high-pass in nature so that band-pass noise is presented to the receiver (similar to Clause 163 stress).

```
Response
Response Status \(\mathbf{C}\)
```

ACCEPT IN PRINCIPLE.
The following presentation was reviewed by the task force:
https://www.ieee802.org/3/ck/public/21_05/healey_3ck_02a_0521.pdf
With editorial license, implement the changes proposed on slides 8 and 9 of the referenced presentation with the following corrections for slide 8:
$\mathrm{f} 1=8 \mathrm{GHz}, \mathrm{f} 2=5 \mathrm{GHz}$.

| $C l 162$ | $S C$ | 162.9.4.4.2 | $P 164$ |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali | Ghiasi Quantum/Inphi | L25 |  |

Ghiasi, Ali Ghiasi Quantum/Inphi
Comment Type ER
Comment Status R
jitter tolerance

Receiver jitter tolerance test point $B$ to $F$ test frequencies are $\sim 2.5 x$ but test point $A$ and $B$ are a decade apart

SuggestedRemedy
Please add additional test frequency between A and B at 133 KHz with amplitude of 1.5 U
Response Response Status U
REJECT.
The comment does not provide sufficient justification to support the suggested remedy
[Editor's note: Changed page from 234 to 164.]

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeI

| $C l 162$ | $S C$ | 162.9.4.6 | P164 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers | Nvidia | $L 46$ | \# 172 |
|  |  |  |  |

Comment Type E
Comment Status R
return loss

In C2M-like specs the Rx Differential to common-mode return loss and Tx Common-mode to differential mode return loss differ by 3 dB at low frequency, for a good reason, but in this clause they are the same. Also, the Differential to common-mode cable assembly conversion loss is more lenient than these specs.

## SuggestedRemedy

Review the relation between these three limits and adjust if necessary
Response Response Status C

## REJECT.

The suggested remedy does not provide sufficient detail to implement.

| Cl 162 | $S C$ | 162.9.4.6 | P164 |
| :--- | :---: | :---: | :---: |

Comment Type Eomment Status A (bucket1)

Most such RL equations are graphed out to help the user see what is meant.

## SuggestedRemedy

Please illustrate this receiver differential to common-mode return loss too. This would be best done in in Figure 162-4, presently "Transmitter common mode to differential return loss" so that the reader can compare the two.
Response Response Status C

ACCEPT IN PRINCIPLE.
Implement the suggested response with editorial license.

| Cl 162 SC 162.9.4.6 | P165 | L2 |
| :--- | ---: | ---: |
| Brown, Matt | Huawei |  |

Comment Type Eomment Status A (bucket1) For Equation (162-9) specifying a limit for receiver differential to common-mode return loss there is no graph illustrating the limit.

## SuggestedRemedy

Add figure with graph for Equation (162-9).
Response Response Status
ACCEPT IN PRINCIPLE.
Resolve using the response to comment 168.

| CI 162 SC 162.9.4.6 | P165 | L2 | \# 173 |
| :--- | ---: | ---: | ---: |
| Dawe, Piers |  | Nvidia |  |
| Comment Type E | Comment Status A | (bucket1) |  |

Italic >=
SuggestedRemedy
Non-italic >= Also 162-10, 162-11, 162-11, possibly others.
Response
Response Status c
ACCEPT.

| CI 162 SC 162.9.4.6 | P165 | L9 | Marvell |
| :--- | ---: | ---: | ---: |
| Dudek, Mike |  |  |  |
| Comment Type E | Comment Status A | (bucket1) |  |

It would be helpful to have a graph showing this equation.
SuggestedRemedy
Either add a separate graph or reference figure 162-4 and change the figure title to Transmitter common mode to differential return loss and Receiver differential to common mode return loss.
Response

```
Response Status C
```

ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#168.

| Cl 162 | $S C 162.11$ | P165 | L 43 |
| :--- | :---: | :---: | :---: |

Comment Type TR Comment Status R AC coupling Given that we have increased Baudrate it is logical to increase 3 dB cutoff by factor 2

SuggestedRemedy
Please increase 3 dB cutoff from 50 KHz to 100 KHz given that this standard is operating at $2 x$ Baudrate of 802.3 cd . It is well understood that if one needs to support 50G PAM4 hen DC block corner frequency will be 50 KHz , but keeping 50 KHz for 100G PAM4 it just will force 200 G gets force to 50 KHz assuming one generation support
Response Response Status C
REJECT.
The AC-coupling specification is used throughout 802.3ck and applied to predictive models as well as implemented in 802.3cd cable assemblies. The comment does not provide sufficient justification to support proposed change
[Editor's note: CC: 162, 163] SORT ORDER: Clause, Subclause, page, line

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot comme

| Cl 162 S | 62.11.3 | P167 | L25 | \# 200 | Cl 162 |  | 62. | P168 | L 37 | \# | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dudek, Mike |  | Marvell |  |  | Brown, |  |  | Huawei |  |  |  |
| Comment Type | E | Comment Status A |  | (bucket1) | Comme |  | E | Comment Status A |  | CL-IL differ | rence (bucket1) |

SuggestedRemedy
fix it.
Response Response Status C

ACCEPT.

| Cl 162 | SC 162.11.3 | P167 |
| :--- | :---: | :---: |
| Kochuparambil, Beth | Cisco | L49 149 |

Comment Type E
Comment Status A
CA COM Tfx (bucket1)

The location of the Tfx not is not consistant with other clauses (namely 162.9.4.5 \& 162.9.3.5)

SuggestedRemedy
Move this note to line 28 (after the description of where to find the parameters)
Response

```
                    Response Status C
```


## ACCEPT IN PRINCIPLE.

Each of the referenced notes are intended to be an informative note against each table and thus should be placed immediately after each table. The note in 162.11.3 is in the intended location and is consistent with notes for Table 120G-2 and Table 120G-6. The note in 162.9.4.5 is in the wrong location.

Change the location of the note in 162.9.4.5 for to be after Table 162-12.

| Cl $162 \quad S C$ | 162.11.4 | P168 | L31 | \# 59 |
| :--- | ---: | ---: | ---: | ---: |
| Brown, Matt |  | Huawei |  |  |
| Comment Type | E | Comment Status A |  | (bucket1) |

Change Figure title to be consistent with text.
SuggestedRemedy
Change title to "Cable assembly differential to common-mode return loss"
Response
Response Status $\mathbf{C}$
ACCEPT.

In a previous draft, a new parameter was added to constrain the CR channel differential to common-mode conversion loss. The term used to identify this parameter is: "difference between the cable assembly differential to common-mode conversion loss and the cable assembly insertion loss". The purpose of this parameter might not be immediately clear to a new reader of this standard and would benefit from a brief explanation.

## SuggestedRemedy

Add an explanation of the purpose of this parameter. Perhaps: "This parameter constrains the amount of common-mode noise present at the transmitter that is converted to differential noise at the receiver relative to the signal level at the receiver.
Response Response Status $\mathbf{C}$
ACCEPT IN PRINCIPLE.
At P168 L35 (at beginning of subclause), add sentence "The cable assembly differential to common-mode conversion loss is specified relative to the insertion loss."
[Editor's note: This comment response was updated 2021/5/17.]

| Cl 162 S | 62.11.5 | P168 | L41 | \# 201 |
| :---: | :---: | :---: | :---: | :---: |
| Dudek, Mike |  | Marvell |  |  |
| Comment Type | TR | Comment Status R |  | CL-IL difference |

The differential to common mode conversion loss specification is very relaxed particularly at higher frequencies. As an example at 25 GHz this specification is only approx 6 dB more than the insertion loss. There is no specifiction for the common mode to common mode return loss of the Rx so all this common mode energy can be reflected back to the cable where through common mode to differential conversion it then becomes a differential signal interferer. Assuming this common mode to differential mode has approximately the same value as the differential to common mode conversion of approx 12.5 dB this unwanted interferer is only 18.5 dB below the wanted signal and will severely degrade the BER.

## SuggestedRemedy

Add 10 dB to this equation
Response
Response Status
REJECT.
The basis for a 10 dB tightening of the limit is not obvious in the stated comment and the correlation to the degradation of the BER is not provided.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeI

| CI 162 SC 162.11.5 | P169 | L20 | \# 67 |  |
| :--- | ---: | ---: | ---: | ---: |
| Brown, Matt |  | Huawei |  |  |
| Comment Type | E | Comment Status A |  | (bucket1) |

Change Figure 162-7 title to be consistent with text.
SuggestedRemedy
Change title to "Cable assembly differential to common-mode conversion loss"
Response Response Status C
ACCEPT IN PRINCIPLE.
[Editor's note: this comment was updated on 2021/5/18.]
The commenter intended to point to Figure 162-6 at page 168 line 31.
However, it is also noted that the title of Figure 162-7 is incorrect in two ways. First "cable assembly" should be move to the head of the figure title and the parameter name must be updated.

For figure 162-6, implement the suggested remedy.
For Figure 162-7, change the title to "Cable assembly differential to common-mode conversion loss to insertion loss difference"

| Cl 162 | SC 162.11.6 | P169 | L27 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers | Nvidia |  | \# 177 |

Relaxing the already very loose CM RL spec from 2 dB to 1.8 dB at all frequencies isn't justified. This spec becomes useless at the frequency when the MCB loss is 0.9 dB !

## SuggestedRemedy

Restore it to 2 dB or use a frequency-dependent mask e.g. $1.8+0.01 \mathrm{f}$
Response Response Status U
REJECT.
The basis for the change to the cable assmbly CM-to-CM RL spec from 2 dB to 1.8 dB was given in the following presentation.
https://www.ieee802.org/3/ck/public/21_01/champion_3ck_01a_0121.pdf
The commenter has not provided sufficient justification for the suggested remedy.

| CI 162 SC 162.11.7 | P169 | L39 | \# 202 |
| :--- | ---: | ---: | ---: |
| Dudek, Mike |  | Marvell |  |
| Comment Type E | Comment Status A | (bucket1) |  |

93A. 1 is in this amendment. It should be a hot link
SuggestedRemedy
fix it.
Response
Response Status C

ACCEPT.

| CI 162 | SC 162.11.7 | P169 |
| :--- | :---: | :---: |
| Kochuparambil, Beth | Cisco | \#44 |
| Comment Type E | Comment Status A |  |
| CA COM tests (CC) |  |  |

We've lost a bit of the description of doing COM with 2 package test cases. Someone reading this section in isolation may be confused.
93.9.1 States "The Channel Operating Margin (COM) is computed using the procedure in 93A. 1 with the Test 1 and Test 2 values in Table 93-8. Test 1 and Test 2 differ in the value of the device package model transmission line length $z p$.
SuggestedRemedy
Use editorial licence to modify paragraph to say something like,
COM shall be computed twice, Test 1 and Test 2, which differ in the value of the device package model transmission line length zp."
Similarly, modify the COM table from "Rx Test 2" and "TX Test 2" to "Test 2, RX" and "Test 2, TX"

Replicate in COM description and tables for 163 \& 120 F
Response
Response Status C

ACCEPT.
[Editor's note: CC: 120F, 162, 163]

| CI 162 | $S C 162.11 .7$ | $P 170$ | $L 18$ |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali | Ghiasi Quantum/Inphi | \# 50 |  |

Comment Type ER Comment Status A
(bucket1)
Unit for Zc should be ohms not Farad

## SuggestedRemedy

Change to ohms

## Response

Response Status
ACCEPT.
[Editor's note: Changed subclause from 162.11.7.1 to 162.11.7.]

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Clause, Subclause, page, line

Page 44 of 50 2021-05-26 2:51:23 PM

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeI

| CI $\mathbf{1 6 2}$ SC 162.11.7 | P170 | L41 | \# 57 |
| :--- | ---: | ---: | ---: |
| Brown, Matt | Huawei |  |  |
| Comment Type T | Comment Status A | CA COM TX FIR |  |

In Table 162-18 COM parameters for cable assembly, the step size for $\mathrm{c}(1)$ is 0.02 while in Table 163-10 (KR) and Table 120F-7 (C2C) the step size is 0.05 . There is no reason for these values to be different.
SuggestedRemedy
Change the $C$ (1) step size in Table 162-18 to 0.05 or alternately change $C(1)$ step size in 163-10 and Table 120F-7 to 0.02.

## Response

Response Status C
ACCEPT IN PRINCIPLE.
Change the step size in Table 163-10 and Table 120F-7 to 0.02.
[Editor's note: Changed subclause from 162.11.7.1 to 162.11.7.]
[Editor's note: CC: 162, 163, 120F]

| $C l$ | 162 | $S C$ | 162.11.7 |
| :--- | :---: | :---: | :---: |
| Dawe, Piers | P171 | L31 | \# 235 |


| Dawe, Piers | Nvidia |
| :--- | :---: | :---: | :---: |
| Comment Type TR Comment Status R |  |

The spec allows a channel to have its COM calculated with 9 taps in the range 13 to 24 clipped at $+/-0.05$ - which means that the channel's pulse response could be a little worse than $+/-0.05$ for all these 9 taps. That's a very bad cable! and not likely to get made. We don't need to provide all the receiver power and complexity to cope with it.
SuggestedRemedy
Use another DFE root-sum-of-squares limit for positions 13-24. Similarly in 163, but as 163 specifies the complete channel while 162 uses clean synthetic host traces, the limit might differ.
Response
Response Status U
REJECT.
The suggested remedy does not provide sufficient evidence that this is an issue and that the proposed change would not cause new issues.

| Cl 162 | SC 162.11.7.1 | P171 | L 42 | \# 203 |
| :---: | :---: | :---: | :---: | :---: |
| Dudek, Mike |  | Marvell |  |  |
| Comme | T | Comment Status A |  | CA COM PCB |

There is ambiuity as to whether the transmitter and receiver PCB signal paths include the capacitors or not. Here the description implies that they don't but on page 172 (e.g. equation 162-14) they do.

## SuggestedRemedy

Change "The transmitter and receiver PCB signal paths are calculated using the method defined in 93A.1.2.3. The scattering parameters for a PCB transmission line are defined by Equation (93A-13), Equation (93A-14) and the parameter values given in Table 162-19."to " The scattering parameters for a PCB transmission line are calculated using the method defined in 93A.1.2.3 using Equation (93A-13), Equation (93A-14) and the parameter values given in Table 162-19."
Response Response Status C
ACCEPT IN PRINCIPLE.
Implement the suggested remedy with editorial license.


Table 162-20 should be updated with MDI supporting 112G

## SuggestedRemedy

Please replace SFP+ with SFP112
SFP-DD with SFP-DD112
QSFP+ with QSFP112
Response
Response Status
REJECT.
Resolve using the response to comment \#45.
[Editor's note: CC: 162, 162C]

| Cl 162 SC 162.14.3 | P176 | L31 | \# 86 |
| :--- | :---: | :---: | :---: |
| Huber, Tom |  | Nokia |  |
| Comment Type T | Comment Status A |  |  |
| (bucket1) |  |  |  |

Status for implementing the 100G FECs should be CR1 rather than CR2
SuggestedRemedy
Change CR2 to CR1
Response

Response Status C
ACCEPT.
C
(bucket1)

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| CI $162 \quad$ SC 162.14.4.3 |
| :--- |
| Wu, Mau-Lin |
| MediaTek Inc. |
| Comment Type ER $\quad$ Comment Status A |
| The 'Feature' of 'TC5' is not correct. |
| SuggestedRemedy |
| Change "Differential mode to common-mode output return loss" to "Common-mode to |
| differential output return loss" for the 'Feature' of 'TC5'. |



IL_MTFref(26.56 GHz) does not match the 6.60 dB specified in 162 B .1 (page 266 line 20).
SuggestedRemedy
Update Equation 162B-5; change coefficient out front from 0.9505 to 0.942 to get correct 6.60 dB value at 26.56 GHz

Response Response Status C
ACCEPT.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı


## Comment Type TR Comment Status $\mathbf{R}$ <br> MDI nomenclature (bucket1)

Table 162C-1 should be updated with MDI supporting 112G
SuggestedRemedy
Please replace SFP+ with SFP112
SFP-DD with SFP-DD112
QSFP+ with QSFP112
Response Response Status W
REJECT.
MDI names align with 1.3 normative references in 802.3ck and the base standard.
Cl 162C SC 162C.2.4 P283 L41

Zhang, Bo Inphi
Comment Type T Comment Status A MDI nomenclature (bucket1)
QSFP+ is meant for $4 \times 10 \mathrm{G} 40 \mathrm{G}$ pluggable connector transceivers. I believe this section is meant for QSFP families such as QSFP28, QSFP56, QSFP-DD etc.

## SuggestedRemedy

Suggest replace QSFP+ with QSFP families. Also please provide similar references to the 'QSFP+' such as those in section 1.3 normative references footnotes.

## Response

Response Status $\mathbf{C}$

## ACCEPT IN PRINCIPLE.

QSFP+ reference is already a normative reference in base standard subclause 1.3 as requested in the suggested remedy. However, the reference text should be updated to point to the relevant QSFP+ specification.
Change: "connectors meeting the requirements of (QSFP+)"
To: "connectors meeting the requirements of SFF-8665"
Also, for SFP+ on page 281, line 6 .
Change: "meeting the requirements of (SFP+)"
To: "meeting the requirements of SFF-8432"
Resolve using the response to comment \#45.
Comment Type
ER
Comment Status A
(bucket1)

There are six MDI connector "receptacles" destinguished uniquely by name, referring to them by "type" is unecessary.
SuggestedRemedy
P289; Line 14 delete "types of" in the sentence "There are six types of MDI connectors "receptacles" specified for hosts."
P289; Line 32 change sentence to "This enables multiple cable assembly types with
different combinations of the plug connectors at each end.
P290; Line 4 in Table 162D-2 delete "type" two places "Receptacle/Plug type"
P290; Line 32 in Table 162D-3 delete "type" two places "Receptacle/Plug type"
P291; Line 20 in Table 162D-4 delete "type" two places "Receptacle/Plug type"
Response
Response Status W
ACCEPT.

| Cl 163 SC 163.1 | P181 | L9 |  |
| :--- | :---: | :---: | :---: |
| Wu, Mau-Lin |  | MediaTek Inc. | \# 220 |
| Comment Type E | Comment Status A |  |  |
| (bucket1) |  |  |  |

There are no descriptions for Annex 163B in the paragraph.
SuggestedRemedy
Add the following sentence at the end of the 1st paragraph of 163.1 Overview.
"Annex 163B provides informative information of an example test fixture meeting the requirements for TPOv"

## Response

Response Status C
ACCEPT IN PRINCIPLE.
With editorial license implement the following
Remove the last sentence of the first paragraph
Insert a second paragraph as follows:
"There are two associated Annexes. Annex 163A provides measurement methods and test points for backplane and chip-to-chip interfaces. Annex 163B provides information on an example test fixture."
[Editor's note: CC: 163, 120F]

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı


Numerical values in standards are exact, so there should be no trailing zeros after the decimal point. This is the common practice in 802.3 (see
https://www.ieee802.org/3/WG_tools/editorial/requirements/words.html\#numbers).
SuggestedRemedy
Change "1.0" to "1".

Response Response Status C
ACCEPT.
[Editor's note: CC: 163, 162]

| CI 163 SC 163.9.2 | P187 <br> Marvell | L45 | \# 189 |
| :--- | ---: | ---: | ---: |
| Dudek, Mike |  |  |  |
| Comment Type | TR | Comment Status R | TX dERL (CC) |

The allowed value of dERL of -3 dB allows complinat transmitters with substantially worse reflections than the reference transmitter used in COM. I expect to have a presentation showing this.

## SuggestedRemedy

Change dERLmin to -1dB also for C2C in Table 120F-1
Response
Response Status U REJECT.

The following presentations were reviewed by the task force: https://www.ieee802.org/3/ck/public/21_05/dudek_3ck_01_0521.pdf https://www.ieee802.org/3/ck/public/21_05/wu_3ck_02_0521.pdf

Based on the results of straw polls \#2 and \#3 there is no consensus to change the value of dERL (min).
[Editor's note: CC: 163, 120F]
Straw poll \#2 pick one
Straw poll \#3 chicago rules
For KR and C2C TX dERL (min) value, I support the following:
A: no change, -3 dB
B: change to -1 dB
: need more information
A: 22 B: 11 C: 9
A: 27 B: $14 \mathrm{C}: 26$

Page 48 of 50 2021-05-26 2:51:23 PM

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı


There are 2 different "Test 1 and Test 2" in the interferance tolerance test. In the interferance tolerance test description and in step $h$ for COM.

## SuggestedRemedy

Change the interferance tolerance test cases to "Setup 1" and "Setup 2" in both the proceedure and the table.

Do similar for 120F
Response Response Status C

## REJECT.

The wording is consistent with previous clauses. The difference in context is clear in the ext by reference to the two different tables.
[Editor's node: CC: 163, 120F]

Equation (163-2) and (163-3) are not accurate, because the dual-dirac jitter distribution estimated by these equations does not match well with the original distribution even if the original distribution is pure dual-dirac distribution as presented at ad hoc meeting (see hidaka_3ck_adhoc_01_041421). For instance, J3u of the estimated dual-dirac jitter distribution is always significantly smaller than the measured J3u. I propose to change these equations.

Since the proposed equations never break, we do not need Note 2.
I propose similar changes to clause 162.9.4.3.3.

## SuggestedRemedy

Replace Equation (163-2) and (163-3) with the following set of equations:
$D 3 d=\left(Q 3 d^{\wedge} 2+1\right)^{*}\left(J \_R M S^{\wedge} 2\right)-(J 3 u / 2)^{\wedge} 2$
If $D 3 d>=0$,
A_DD $=(\mathrm{J} 3 \mathrm{u} / 2+$ Q3d * $\operatorname{sqrt}(\mathrm{D} 3 \mathrm{~d})) /($ Q3d^2 +1$)$
sigma_RJ = (J3u / 2 - A_DD) / Q3d
If D3d $<0$,
Qx = sqrt((J3u / $\left.\left.2 / J \_R M S\right)^{\wedge} 2-1\right)$
A_DD $=(J 3 u / 2) /\left(Q x^{\wedge} 2+1\right)$
sigma_RJ = sqrt((J_RMS^2) - (A_DD^2))
where
Q3d $=3.0902$
Change Note 1 as follows:
Note 1 -- Q3d is an approximated solution of $Q(Q 3 d)=1 \times 10^{\wedge}(-3)$, where the $Q$ function is defined in Equation (95-1).

Remove Note 2.
Apply the same changes to Equation (162-7), Equation (162-8), Note 1, and Note 2 in clause 162.9.4.3.3.

Change the references to Equation (162-7) and (162-8) in Note 2 of Table 162-15 in clause 162.9.4.4.2 with the updated equations.

## Response Response Status C

ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#209.

EE P802.3ck D2.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Working Group ballot commeı

| [Editor's note: CC: 120F, 163] |  |  |  |
| :--- | :---: | :---: | :---: |
| Cl $\mathbf{1 6 3}$ SC 163.10.1 | P195 | L21 | \# 205 |
| Healey, Adam | Broadcom Inc. |  |  |
| Comment Type TR | Comment Status A | COM bmax |  |

The bmax limit is very generous (0.2) for taps up to Nb. Channels considered by the Task
Force do not justify such a high limit. The limit should be tightened to reduce the chance
that unexpected channels will meet the minimum COM threshold but contain large
reflections that are difficult to handle.
SuggestedRemedy
Change the bmax limit for $\mathrm{n}=7$ to Nb to be 0.1. Make a similar change to Table 162-16.
Response
Response Status $\mathbf{C}$
ACCEPT IN PRINCIPLE.
The task force reviewed the following related presentation:
https://www.ieee802.org/3/ck/public/21_05/healey_3ck_01_0521.pdf
In Table 163-10, change the bb_max limit for $n=\overline{7}$ to $\overline{\mathrm{Nb}}$ to be 0.1 .
Make a similar change to Table 162-18.
[Editor's note: CC: 162, 163]

| Cl 163 | SC 163.10.7 | P198 | L31 |
| :--- | :---: | :---: | :---: |

Given that we have increased Baudrate it is logical to increase 3 dB cutoff by factor 2

## SuggestedRemedy

Please increase 3 dB cutoff from 50 KHz to 100 KHz given that this standard is operating
at $2 x$ Baudrate of 802.3 cd . It is well understood that if one needs to support 50G PAM4 then DC block corner frequency will be 50 KHz , but keeping 50 KHz for 100G PAM4 it just will force 200 G gets force to 50 KHz assuming one generation support

## Response

Response Status c
REJECT.
There is insufficient justification that the suggested remedy does not degrade performance. [Editor's note: CC: 162, 163]


Equation (163-1) is the wrong reference. It shall be "Equation (163B-1)".

## SuggestedRemedy

Change "Equation (163-1)" to "Equation (163B-1)" in the following sentence.
"The insertion loss of the example test fixture is approximated by Equation (163-1) which is illustrated in Figure 163B-1."
Response
ACCEPT. Response Status w

| Cl A SC A | P205 | L8 |
| :--- | :---: | :---: |
| Anslow, Pete | Independent |  |

Comment Type E Comment Status A OIF reference (bucket1)
"OIF-CEI-05, ..." should appear in the bibliography after "[B55] OIF-CEI-04.0, ..."
SuggestedRemedy
Change the numbering from [B22a] to [B55a]
Response
Response Status $\mathbf{C}$
ACCEPT IN PRINCIPLE.
Comment \#221 proposes to remove the only reference to OIF-CEI-05.0. If that reference is removed then remove this bibliography entry. If the reference is not removed, then implement the suggested remedy.

