302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 162A $S C$ 162A. 4	P287	$L 45$	\# 18
Wu, Mau-Lin	MediaTek Inc.		

Comment Type TR Commen
The recommended maximum IL for TX or RX PCB is 6.875 dB at 26.56 GHz which is defined in (162A-1). However, the equation of (162A-1) is not correct. By quick check of the equation, ILdd_PCBmax(26.56) $\sim=6.6 \mathrm{~dB}$, which is NOT 6.875 dB . According to the closed response of comment \#18 in
https://www.ieee802.org/3/ck/comments/draft1p3/8023ck_D1p3_final_closedcomments.pdf the equation of ($162 \mathrm{~A}-1$) shall be modified as
" $0.9809^{*}\left(0.471^{*} \mathrm{SQRT}(f)+0.1194^{*} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$ ". However, the equation of
" $0.9809^{*}\left(0.417^{*} \operatorname{SQRT}(f)+0.1194^{*} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$ " was adopted, instead, which is wrong.

SuggestedRemedy

Change (162A-1) from " $0.9809^{*}\left(0.417^{*} \mathrm{SQRT}(\mathrm{f})+0.1194^{\star} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)^{\prime \prime}$ to
" $0.9809^{*}\left(0.471^{*}\right.$ SQRT(f) $\left.+0.1194^{*} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)$ ". Redraw Figure 162A-1 accordingly if necessary.

Response

```
                Response Status C
```

ACCEPT IN PRINCIPLE.
Change (162A-1) from "0.9809*(0.417*SQRT(f)+0.1194*f+0.002*(f^2))"
to "0.9809* $\left(0.471^{*} \operatorname{SQRT}(\mathrm{f})+0.1194^{*} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)^{\prime}$ ".
Figure 162A-1 uses correct equation.

Cl 162A SC 162A.4		
Wu, Mau-Lin	P289 MediaTek Inc.	L1

Comment Type TR Comment Status A Host PCB ILdd

The recommended maximum IL from TP0 to TP2 is 10.975 dB at 26.56 GHz , which is defined in (162A-3). However, the equation of (162A-3) is not correct. By quick check of the equation, ILdd_HostMax(26.56) $\sim=10.54 \mathrm{~dB}$, which is NOT 10.975 dB . According to the closed response of comment \#19 in
https://www.ieee802.org/3/ck/comments/draft1p3/8023ck_D1p3_final_closedcomments.pdf
the equation of (162A-3) shall be modified as
"1.5658* $\left(0.471^{*}\right.$ SQRT $\left.(\mathrm{f})+0.1194^{\star} \mathrm{f}+0.002^{\star}\left(\mathrm{f}^{\wedge} 2\right)\right)$ " . However, the equation of
"1.5658* $\left(0.417^{\star} \operatorname{SQRT}(\mathrm{f})+0.1194^{\star} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)^{\prime \prime}$ was adopted, instead, which is wrong

SuggestedRemedy

Change (162A-3) from "1.5658* $\left(0.417^{*}\right.$ SQRT(f) $\left.+0.1194^{\star} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$ " to
"1.5658*(0.471^{*} SQRT(f) $\left.+0.1194^{*} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)$ ". Redraw Figure 162A-2 accordingly if necessary.

Response
 Response Status

ACCEPT IN PRINCIPLE.
Change (162A-3)
from "1.5658* (0.417*SQRT(f) $\left.+0.1194^{\star} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$)
to "1.5658* $\left(0.471^{*} \operatorname{SQRT}(\mathrm{f})+0.1194^{*} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)$ ".
Figure 162A-2 uses correct equation.

Cl 120F	SC 120F.3.2.4	P246	L51
Ran, Adee		Cisco	\# 36
Comment Type	TR	Comment Status R	
Corawn			

Comment Type TR

Comment Status R
withdrawn
Item e in the list describes transmitter parameters used for calculation of COM. The transmitter device and package model options in 163.9.3.5 seem to be relevant here too, but there is no discussion or reference.

SuggestedRemedy

Add an item to the lettered list, between items d and e, preferably pointing to item e in
163.9.3.5, or alternatively copy the same content.

Response
Response Status W
REJECT.
This comment was WITHDRAWN by the commenter
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l 162$	$S C 162.9 .3 .1 .1$	$P 172$	$L 8$	\# 50

Comment Type
Comment Status
$T X N p$
Following up on unsatisfied comment \#29 against D2.1:
The linear fit procedure is defined with $\mathrm{Np}=29$, so the pulse response length is 29 . Nv , the number of Uls that are considered for $v f$ calculation, cannot be higher than Np. In the multiple places that $N v$ is used, it needs an exception to use $\mathrm{Np}=200$. This does not make sense.

As an example, in 163A.3.2.1 we have "where p (i) and M are defined in 162.9.3.1.1 and $N v$ is 200 ". This does not make sense if $\mathrm{Np}=29$.

If 162.9.3.1.1 uses $\mathrm{Np}=200$, this will be the default value, and there will be one exception in the case of SNDR where it should be set to 29 . This would result in fewer exceptions
SuggestedRemedy

1. In 162.9.3.1.1, change Np from 29 to 200.
2. In 162.9.3.3 (Output SNDR), change "with the exceptions that a test system with
response as specified in 162.9.3 and the linear fit procedure in 162.9.3.1.1 are used" to
"with the exceptions that the test system response is specified in 162.9.3, and the linear fit procedure in 162.9.3.1.1 with $\mathrm{Np}=29$ is used"
3. In 162.9.3.1.2 (Steady-state voltage and linear fit pulse peak) change "The steady-state voltage $v _f$ is defined in 136.9.3.1.2, and is determined from the linear fit pulse calculated by the procedure in 162.9.3.1.1 with the exception that Np and Nv are equal to 200" to "The steady-state voltage v _f is calculated as defined in 136.9.3.1.2 with the exception that $\mathrm{Nv}=200$, and is determined from the linear fit pulse calculated by the procedure in 162.9.3.1.1"
4. In 163A.3.2.1 change "Nv is 200 " to " Nv is set by the clause that invokes this method". (it is currently invoked only by 163.9.2.4 (Difference steady state voltage) which states "with Nv = 200").

Response

Response Status
ACCEPT IN PRINCIPLE.
[Editor's note: CC: 163, 162, 163A]
Based on straw polls \#1, \#2, and \#3, there is consensus to use the value 200 for Np and Nv for the subclauses under discussion.

Implement the suggested remedy for 162.9.3.1.1, 162.9.3.3, and 163A.3.2.1 using the value 200 for Np

For 162.9.3.1.2, change the first paragraph to the following:
"The steady-state voltage vf is defined as the sum of the linear fit pulse $p(1)$ through $p(M \times N v)$ divided by M, measured with transmit equalizer set to preset 1 (no equalization). $N v$ is set equal to 200. The linear fit procedure for obtaining p and the values of M and Np are defined in 162.9.3.1.1."

Implement with editorial license.
traw poll \#1 (choose 1)
For CR TX SNDR, I support Np value of:
A: 29
B. 200

A: 6 B: 21
Straw poll \#2 (choose 1)
For KR TX SNDR, I support Np value of:
A: 29
B: 200
A: 5 B: 22
Straw poll \#3 (choose 1)
For CR TX steady state voltage and pulse peak, I support Nv value of:
A: 29
B: 200
A: 10 B: 17

Cl 163	$S C$ 163.10.1	$P 215$	$L 9$
Mellitz, Richardd	Samtec		\# 57

Comment Type TR Comment Status R Channel ERL (CC)
Table 162-7 has a note for ERL "Cable assemblies with a COM greater than 4 dB are not required to meet minimum ERL". The same should apply to Table 163-10 channels for the same reason it was include included in table 162-2

SuggestedRemedy

For the entry "minimum channel ERL" add a note: "Channels with a COM greater than 4 dB are not required to meet minimum ER."

Response
 Response Status C

REJECT.
Comment \#58 requests a similar change for the C2C channel characteristics
The comment likely was intending to refer to Table 162-17 rather than Table 162-7.
The footnote a in Table 162-17 was inherited from Clause 136 in 802.3cd-2018. The footnote in Table 136-16 was added in 802.3cd Draft 3.3 per Draft 3.2 comment \#r02-23. https://www.ieee802.org/3/cd/comments/8023cd_D32_comment_received_by_clause.pdf The comment does not provide sufficient evidence to make the proposed change.
There was no consensus to make the proposed change.
[CC: 163, 120F]
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 120f	SC 120f.4	$P \mathbf{2 4 9}$	$L \mathbf{1 5}$
Mellitz, Richardd	Samtec	\# 58	

Comment Type TR Comment Status R Channel ERL (CC)
Table 162-7 has a note for ERL "Cable assemblies with a COM greater than 4 dB are not required to meet minimum ERL". The same should apply to Table 120F-7 channels for the same reason it was include included in table 162-2

SuggestedRemedy

For the entry "minimum ERL" add a note: "Channels with a COM greater than 4 dB are not required to meet minimum ER"

Response Response Status C
REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
Resolve using the response to comment \#57.

Cl 93A	SC 93A	P237	L44
Mellitz, Richardd	Samtec		\# 59

HO AC CM voltage (CC)
Common mode measurements are not well enough defined to precisely specify CM voltage at TP0v, TP1a, TP4 and TP2. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz_3ck_adhoc_01_090821.

SuggestedRemedy

Add section "93A. 6 Common Mode measurements". See presentation
Response
Response Status C

ACCEPT IN PRINCIPLE.
The proposed solution was discussed in
https://www.ieee802.org/3/ck/public/adhoc/sept08_21/mellitz_3ck_adhoc_01_090821.pdf.
The task force reviewed the following presentation:
https://www.ieee802.org/3/ck/public/21_09/mellitz_3ck_01a_0921.pdf
There is no consensus to implement in D2.3 the decomposed common-mode parameter as proposed in mellitz_3ck_01a. However, there was concern that some improvement in measurements at TPOv for $\bar{K} R$ and C 2 C are necessary.

Change the AC common-mode voltage specification for KR and C2C to be the ratio of common-mode peak-to-peak at 1E-4 probability to the differential mode pmax value. The ratio limit is -16 dB . Add editor's note indicating the the value needs further consideration. Implement with editorial license.

Straw poll \#4 (direction)
I support replacing or supplementing the "composite" AC common-mode parameter with new separate parameters for correlated and uncorrelated portions for one or more interfaces.
A: Yes
. Need more information or more work needed
A: 10, B: $8, C: 11$
Straw poll \#5 (decision)
In Draft 2.3, I support replacing or supplementing the "composite" AC common-mode parameter with new separate parameters for correlated and uncorrelated portions for one or more interfaces.
A: Yes
B: No
A: $16 \mathrm{~B}: 18$
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 162 SC 162.9.3	P170	L46	\# 65
Mellitz, Richardd	Samtec		

Comment Type TR Comment Status R
Since the jitter at TP2 may be viewed though a channel with a loss of approximately 17 dB (package, host interconnect, HCB) there will likely be measurements error from the phase modulation of the voltage time quantization. The consequence is the measured jitter will be larger than in table 162-10

SuggestedRemedy

Increase J_RMS, J3u, Even-odd jitter, pk-pk to [\#,\#, \#] respectively. As consequence the jitter specified in the receiver interference tolerance (162.9.4.2) step d needs to change since it measured near the beginning of the channel. Change the reference on page 179 step d form table 162-10 to table 163-5
Response
Response Status C

REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.

Per Figure 162A-3 the insertion loss from TP0 to TP2 is 10.975 dB and there is an additional loss of around 4 dB due to the transmit function package for a total of around 15 dB . This is lower insertion loss than considered in the comment.

Increasing the specified jitter values is not a good solution since it could allow higher jitter when the measurement is accurate

The following related presentation was reviewed by the task force:
https://www.ieee802.org/3/ck/public/adhoc/sept22_21/calvin_3ck_adhoc_01_092221.pdf
During the presentation, the presenter recognized that the insertion loss assumptions were incorrect and subsequently withdrew his related comments \#85 and \#86.

The comment does not provide sufficient evidence to justify the proposed changes.

Healey, Adam Broadcom Inc

Comment Type T Comment Status A

insertion
In Table 163-6, N is set to 20 UI but this seems to be too small given the 5 dB insertion loss allowance for the test fixture given in 163.9.2.1.1. Using the transmission line parameters in Table 162-20, a transmission line with 5 dB loss at 26.6 GHz can have a propagation delay almost twice N (and therefore a round-trip delay almost four times N). The significance of the N value is that reflections with delay larger than N are not
considered in the ERL value. The N value should be extended so that all reflections added
by the longest test fixtures allowed by the standard are counted in the ERL value. There is no obvious downside to increasing this value.

SuggestedRemedy

Change the "length of the reflection signal" N to 200.
Response Response Status C

ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
Implement the suggested remedy.

| Cl 120G SC 120G.5.2 | P278 |
| :--- | :---: | :---: | :---: |
| Calvin, John
 Comment Type\quad TR | Comsight Technologies |

The $\operatorname{bbmax}(1)$ is limited to .4. Reference contribution "DFE-TP1a-
coefficient_limits_Calvin". In summary TP1a needs to support an 18.2dB channel, and the bbmax(1) hits the .4 limit at just 16.4 dB in both emperical test setups and in COM

SuggestedRemedy
Increase bbmax(1) to a maximum value of .55 or reduce the maximum channel for TP1a to 16.4 dB .

Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 162A	SC 162A.4	P288	L42
Calvin, John	Keysight Technologies	\# 85	

Calvin, John Keysight Technologies
Comment Type T
Comment Status D
Host PCB ILdd
The text of "Note that the recommended maximum differential-mode to differential-mode insertion loss from TP0 to TP2 or from TP3 to TP5 is 10.975 dB at 26.56 GHz ." represents the sum of the minimum mated test fixture insertion loss $(4.1 \mathrm{~dB})+$ the host channel loss (6.875) which adds up to 10.975 dB . In light of there not being an existance proof of a
4.1 dB matted test fixture, and that the nominal matted test fixture loss is 7 dB and a max of
8.4 dB . We should have a higher recomended value to reflect actuall test systems.

SuggestedRemedy

Revise the "maximum TP0-TP2 to a nominal value of 7 dB (typical MTF performance) + host channel loss $(6.875 \mathrm{~dB})=13.875 \mathrm{~dB}$.
Proposed Response
Response Status \mathbf{Z}

REJECT.
This comment was WITHDRAWN by the commenter.

CI 162	$S C$	162.9.3	P170
Calvin, John	Keysight Technologies	L47 86	

Comment Type T

Comment Status D

Table 162.10 suggests a TP2 Jrms value of 23 mUI and a J3u of 115 mUI . The best possible case channel between TP0 and TP2 is 10.975 dB which will support these Jitter numbers. The problem is nobody comes close to 10.975 dB and most systems operate typically at 15.27 dB which requires a higher value of J3u and Jrms.
SuggestedRemedy
The principal of conducting a precison jitter measurment at the end of a 10.975 or a 15.27 dB channel should be re-visted. The loss driven slew rate limitations of the signal at say 15.27 dB results in a higher AM to jitter conversion factor. This measurment should either be removed, or increased to J3u $<160 \mathrm{mUl}$ to allow for channel induced jitter amplification.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Cl 162	$S C$	162.9.3	P170
Dawe, Piers	Nvidia	L 32	\# 87

Comment Typ TR

Comment Status R
The draft CR loss budget wastes over 3 dB in nearly every case. The relative range of host losses, $6.875 / 2.3=3: 1$, is too small for switch layout yet not needed for NICs.
The recommendation for the host traces plus BGA footprint and host connector footprint,
6.875 dB , compares very poorly with C2M's host insertion loss up to 11.9 dB , making passive copper to this draft expensive and unattractive for a switch, yet a full range of NICs can be made with only 3.75 dB . Server-switch links are asymmetric in form factor (e.g. QSFP-DD to $2 \times$ QSFP) and will get made with an asymmetric loss budget, so it would be better for the standard to regularise what will happen anyway. C2M already has short and ong ports.
This change would also benefit CR switch-switch links because the shortest ports would get credit for their low loss
The symmetric budget is used for some designs under way and may be useful in future for LOM, so it is kept here, and the better way added.
SuggestedRemedy
As in dawe_3ck_01a_0721.pdf:
3 classes of CR ports, host loss allocations of $A 10, B 6.875, C 3.75 \mathrm{~dB}$. B is as D2.1.
A connects to C, B to B or C, C to A, B or C.
Use 2 bits in the training control field to advertise A, B or C to the other end.
In Table 162-10, add limits A and C for linear fit pulse peak ratio (min). Change text in 162.9.3.1.2 to refer to the table.

In Table 162-14, add columns for Test 2 (high loss), A and C, with test channel insertion loss: A: 6.875-3.75 = 3.125 dB lower (20.5 dB to 21.5 dB), and $\mathrm{C}: 9.5-6.875=2.625 \mathrm{~dB}$ higher (26.25 dB to 27.25 dB). No change needed for Test 1.
In 162A.4, add equations for IL_PCBmax and ILHostMax A and B and show them in Fig 162A-1 and 2. In 162A.5, add Value columns A, C in Table 162A-1 (ILChmin and
ILMaxHost differ). Adjust figures 162A-3 and 4.
Add MDIO registers to report local and remote host ability to station management, for inventory and diagnostics.
Response
Response Status U
REJECT.
This comment is a restatement of comment \#92 against D2.1, which was rejected by the task force. This new comment provides only minor changes to the suggested remedy. A related straw poll (\#10) indicated strong opposition to adopting this proposal therefore there was no consensus to make the proposed changes.
July 2021 Straw Poll \#10 is reproduced here for reference...
Strawpoll \#10 (direction)
I support P802.3ck specifying multiple CR host types such as in dawe_3ck_01_0721.
Y: $7 \mathrm{~N}: 24$ A: 8
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$			
162	$S C$	162.11	P184

Dawe, Piers
Comment Type T
Comment Status R
Cl 162 SC 162.11 .6
Dawe, Piers Nvidia
\qquad
CA RLCC

The poor max cable loss makes CR unattractive, while all NICs and some ports on any switch have host loss going to waste. Enabling longer cables on a minority of links is needed.
In the remedy, each host knows the other host's loss class through the training protocol and the cable's loss class from its I2C compliance code, so no extra management features needed in the spec for the long cable class.

SuggestedRemedy

2 classes of cable, which could be called "short" (19.75 dB , as today) and "long",
$19.75+2^{*}(6.875-3.75)=19.75+6.25-0.5=25.5 \mathrm{~dB} \max ($ achievable cable length 3 m)
Long cables connect port types C (see another comment) at both ends, short cables
connect a valid combination of A, B, C.
In 162.11.2, cable assembly insertion loss, change text to refer to Table 162-17
In 162.11.7.1.1, add $\mathrm{zp}=30.7 \mathrm{~mm}$ for the "short" cable
In Table 162A-1, add a column for the A-short-A scenario (ILCamax differs).
Illustrate in figures 162A-3 and 162A-4.
Response
Response Status \mathbf{C}
REJECT.
This comment is a restatement of D2.1 comment \#93 which was rejected as there were no changes to the host port types.
The suggested remedy is predicated on the adoption of Comment \#87, Comment \#87 was rejected.
No changes to the draft

As in previous comments: this common mode return loss spec RLcc becomes useless at the frequency when the MCB loss is $1.8 / 2 \mathrm{~dB}$, which is only 8.5 GHz . We need a common mode return loss spec to stop large common-mode voltages building up through multiple low-loss reflections. The revised proposed remedy for D2.1 comment 79 seems OK: 1.8 $\mathrm{dB} 0.5<=\mathrm{f}<=4 \mathrm{GHz}, 1.4+0.1^{\star \mathrm{f}} \mathrm{dB} 4<\mathrm{f}<=30 \mathrm{GHz}$. The 30 GHz fmax allows margin for real-world coax-PCB transitions (although the mated compliance boards are specified $>=3$ dB to 50 GHz); the cable itself should pass this comfortably because it is insulated from the test by the MCB loss.
SuggestedRemedy
Use a frequency-dependent mask $1.8 \mathrm{~dB} 0.5<=\mathrm{f}<=4 \mathrm{GHz}, 1.4+0.1^{*} \mathrm{f} \mathrm{dB} 4<\mathrm{f}<=30 \mathrm{GHz}$ f is in GHz . Similarly for Tx, Table 162-11, 162.9.3.6.
Response
Response Status \mathbf{U}
REJECT.
This comment is a restatement of D2.1 comment \#79.
The suggested remedy does not provide sufficient additional justification to support the change to the draft.

Per straw poll \#6, there was no consensus to make the proposed changes.
However, there was concern that the limits should be tightened. Further work and consensus is required.

Straw poll \#6 (decision)
I support adopting the changes in comment \#89 suggested remedy
Yes: 11
No: 19
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 162	$S C$	162.11.7	P191

$\begin{array}{lll}\text { Dawe, Piers } \\ \text { Nvidia } \\ \text { Comment Type } & \text { TR Comment Status R }\end{array}$
The normalized DFE coefficient minimum limit bbmin for taps 3 to 12 is -0.03 . It doesn't make sense that taps 13 to 40 could be worse, -0.05 . I know of only example channel with a tap like this. Remember, these are reference receiver limits not hard cable or channel limits anyway; a cable or channel can go beyond a tap limit if it makes up the COM another way, e.g. with acceptable crosstalk. In the case of Bch2_b2p5_7_t, reducing |bmaxg| from 0.05 to 0.03 increases COM by less than 0.1 dB , and the channel still passes comfortably. In this example, there were no taps that would be affected by reducing +ve bgmax from 0.05 to 0.03 ; one -ve tap was limited.

SuggestedRemedy

Change bgmax 0.05 to bbgmax 0.05, bbgmin -0.03 . Also in 163.
Response
Response Status w
REJECT.
This is a restatement of comment \#95 against D2.1 which was rejected by the task force due to insufficient supporting evidence. Some new information on the analysis of one channel is provided, but this is insufficient evidence to support the proposed changes. [Editor's note: CC: 162, 163]

Cl $\mathbf{1 6 2}$ SC 162.11.7	P191	L 38	\# 91
Dawe, Piers		Nvidia	
Comment Type	TR	Comment Status R	COM DFE RSS (CC)

The spec allows a cable to have its COM calculated with 9 taps in the range 13 to 24 clipped at $+/-0.05$ - which means that the channel's pulse response could be worse than +/0.05 for all these 9 taps. That's a very bad cable! and not likely to get made: there won't be that many reflections in the same area. (Remember, these are reference receiver limits not hard cable limits anyway; a cable can go beyond a tap limit if it makes up the COM another way, e.g. with acceptable crosstalk.)
We don't need to provide all the receiver power and complexity to cope with unreasonably bad cables.

SuggestedRemedy

Use another DFE root-sum-of-squares limit for positions 13-24. A limit of 0.045 works well with Bch2_b2p5_7_t. Similarly in 163.
Response Response Status W

REJECT.

This is a restatement of comment \#96 against D2.1 which was rejected by the task force due to incomplete remedy and insufficient analysis. This new comment provides some new, but unsubtantiated information
[Editor's note: CC: 162,163]
Cl $162 \quad$ SC 162.8.1 \quad P165
Dawe, Piers Nvidia

IL terminology (CC)
Comment Type E Comment Status R IL terminology "differential-mode to differential-mode insertion loss" is unnecessarily wordy, everyone understands just "insertion loss" to mean differential-mode to differential-mode if they knal above. it's a system or component that uses differential signalling, which is made plain above. Similarly for return loss. It would be disruptive and unnecessary to go through the many
clauses in the base document for this, although the terminology and notation for mixedclauses in the base document for this, although the terminology and notation for mixed mode and common-mode losses may be worth retrofitting

SuggestedRemedy

Change "differential-mode to differential-mode insertion loss" to "insertion loss", change "differential-mode to differential-mode return loss" to "return loss" throughout the document.
Response
Response Status C
REJECT.
The changes were made after task force discussion acceptance of D2.1 Comment \#13.
The resolution was to.
Implement the parameter names and variables names provided in slide 15 of the following presentation:
https://www.ieee802.org/3/ck/public/21_07/brown_3ck_01a_0721.pdf"
Resolution to comments against the new revision (802.3dc) has resulted in terminology different to what was recently adopted in 802.3 ck D2.2. To minimize churn in 802.3 ck , it would be best to defer this topic until after the next draft of 802.3 dc is published.
No changes to the draft.
[Editor's note: CC: many]

Cl 162	$S C$	162.9.3.4	P174	L 47
Dawe, Piers	Nvidia	\# 102		

Comment Type TR Comment Status R
Having alternative normative patterns to measure one thing when the choice makes a difference, adds cost because the test has to be done both ways (if one way passes and the other fails). Also, the spec limit was relaxed from 0.019 Ul to 0.025 to allow for PRBS13. We understand that the result would look better with PRBS9. There is no requirement to generate PRBS9.

SuggestedRemedy
Make PRBS13 normative, as usual. Use a different set of PRBS13Q pattern symbols used for jitter measurement vs. Table 120D-4 to reduce the pattern dependency issue.
Response

Response Status w

REJECT.
This is a restatement of comment \#109 against D2.1 which was rejected by the task force (insufficient remedy and lack of consensus to make the change). The comment does not provide new data or analysis to support it.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$	162	$S C$	162.9 .3 .4
Dawe, Piers	Nvidia	L49	\# 103

Comment Ty Nvidia

TX EOJ
We know that CRU corner frequency makes a difference to EOJ measurement. Allowing an unbounded " 4 MHz or anything you like that's lower" is very bad: how many attempts must the tester try before he can fail a bad part?

SuggestedRemedy

Pick a single definitive CRU corner, e.g. 1 MHz or 2 MHz . Add informative NOTE saying that we expect that if it passes with the usual 4 MHz , it would also pass with the lower corner frequency.
Response Response Status W
REJECT.
This is a restatement of comment \#109 against D2.1 which was rejected by the task force (insufficient remedy and lack of consensus to make the change). The comment does not provide new data or analysis to support it.

Cl 162	$S C$	162.9.4.3.3	P180	L 34
Dawe, Piers	Nvidia		\# 107	

Nawidia
Comment Type T Comment Status R \quad RITT cal

Help the reader understand what is going on

SuggestedRemedy

Please add the plot of Hhp to Figure 162-5, NSD(f) constraints
Response Response Status C

REJECT

The referenced equation is a simple first order high-pass filter with 6 GHz corner
frequency. Plotting this simple, well understood response is unnecessary. Adding to the
current plot would detract from the intent of the plot.
[Editor's note: Changed page from 179 to 180.]
Cl 93A $\quad S C$ 93A.1.6 \quad P235 \quad L15
Dawe, Piers Nvidia

Comment Type E Comment Status R
The equation for $b(n)$ is clumsy and hard to understand. When you study it enough, you can see that it is repetitive.

SuggestedRemedy
Make a substitution: $s(n)=h(0)(t s+n . T b)$
Then the equation becomes
$\{\operatorname{bbmin}(\mathrm{n}) \mathrm{s}(\mathrm{n}) / \mathrm{s}(0)<\operatorname{bbmin}(\mathrm{n})\}$
$\mathrm{b}(\mathrm{n})=\{\operatorname{bbmax}(\mathrm{n}) \mathrm{s}(\mathrm{n}) / \mathrm{s}(0)>\operatorname{bbmin}(\mathrm{n})\}$
$\{s(n) / s(0)$ otherwise
Similarly for Eq 93A-27.
Response
REJECT.
This is a restatement of D2.1 comment \#118 which was rejected by the task force due to
lack of consensus. The new comment provides a new equation form to consider. The
proposed solution does not improve upon the accuracy or clarity of the existing equation.

Cl 162B	SC 162B.1.3.4	P298	L30	\# 136
Dawe, Pi		Nvidia		
Comment Type TR Comment Status A				

SuggestedRemedy
As for the cable RLcc spec but 1 dB lower to 30 GHz , easing up to 50 GHz : $12-9 \mathrm{~dB} 0.0$ $<=\mathrm{f}<1,3 \mathrm{~dB} 0.5<=\mathrm{f}<=4 \mathrm{GHz}, 2.6+0.1^{*} \mathrm{f} \mathrm{dB} 4<\mathrm{f}<=30 \mathrm{GHz}, 9.5-1.3^{*} \mathrm{f} \mathrm{dB} 30<\mathrm{f}<=50$ GHz . f is in GHz .
Response
Response Status C
ACCEPT IN PRINCIPLE.
Per straw poll \#7 there is sufficient consensus to make the proposed changes in the suggested remedy.

Implement the suggested remedy with editorial license.
Straw poll \#7 (decision)
I support adopting the suggested remedy in comment \#136.
Yes: 12
No: 10
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$ 162B	$S C$ 162B.1.3.3	P297	$L 36$	\# 138

Dawe, Piers		Nvidia	
Comment Type	T	Comment Status A	MTF ILdc/LLdc

If common-mode to differential-mode insertion loss is what we want to control, that's ILdc. However, we want to control both ILdc and Ilcd, as we have both RLcd and RLdc specs in
120 G . There is an argument that they are the related, and specifying one is enough, but
I'm not sure it always holds.

SuggestedRemedy

Specify both ILcd and ILdc. It may be possible to specify one in one direction and the other in the other: Scd21 and Sdc12, or Sdc21 and Scd12, where 1 is an input (instrument connector that would be connected to a pattern generator) and 2 is an output. I haven't thought through which we need, or maybe we need all four. It is simpler to require all four.

Response

Response Status C

ACCEPT IN PRINCIPLE.

This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
As pointed out by the comment both IIcd and IIdc of the MTF must be similarly constrained
Since ILcd12 and ILdc21 are reciprocal and ILcd21 and ILdc12 reciprocal, the insertion
loss mode conversion can be constrained by measuring either Ilcd (or Ildc) in both
directions. The text as written was intended to require this but the wording could be
improved.
Also, the variable "llcd" should be "lldc" to correctly reflect the subclause title and text. Change: "measured at either test fixture test interface"
To "measured in both directions"
and
Change variable name "llcd" to "lldc".

Cl 162D	SC 162D.1.1	P317	L6
Dawe, Piers	Nvidia		\# 140

Comment Type E
Comment Status R
CA types
In table headers:
"supportable PMDs
Number"
SuggestedRemedy
Change to: Maximum number of PMDs (merge two cells vertically). Similarly in the following tables.
If changing to "maximum", change "supportable" to "maximum" in the text and table captions too, and in 162C.1.
Response Response Status
REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
The suggested change is not necessary.

Cl 162	SC 162.9.3.5	P176	L11	\# 149
Dawe, Piers	Nvidia			

Comment Type T Comment Status R
Tr
Transition time is defined by the referenced 93A. 5 which refers to 93A. 2 which refers to 86A.5.3.3 which says "for electrical signals, the waveform is observed through a 12 GHz low-pass filter response (such as a Bessel-Thomson response)", and it's dependent on state of emphasis.
SuggestedRemedy
Change "Transition time" to "Rise time". Explain that that is $20-80 \%$, unfiltered, as if at neutral emphasis. Coordinate with the maintenance project.
Response
Response Status C
REJECT.
The terminology is consistent with 93A. 5 in both $802.3 \mathrm{~cd}-2018$ and the latest 802.3 dc draft. Any related changes in the new revision (802.3dc) can be considered once they are incorporated in the next draft
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 162C	SC 162C.1	P306	L 10
Ghiasi, Ali		Ghiasi Quantum/Inphi	\# 157
Crement			

Comment Type TR Comment Status R
 MDI pins table

Per unsatisfied comment from D2.2
Table 162C-3 needs to be better organized
SuggestedRemedy
An improved and beter organized table will be submited as ghiasi_3ck_01_0921.pdf
Response Response Status U

REJECT.
The following related presentation was considered by the task force: https://www.ieee802.org/3/ck/public/21_09/ghiasi_3ck_01_0921.pdf

There is no consensus to make the proposed change.

Comment Type ER Comment Status A MDI reference Per unsatisfied comment from D2.2 QSFP-DD800 reference should be updated. The reference for QSFP-DD800 now obsolute

Cl 1	SC 1.3	P 32	L53	\# 162
Ghiasi, Ali		Ghiasi Quantum/Inphi		
Comment Type	TR	Comment Status A		

Per unsatisfied comment from D2.2 QSFP112 reference should be updated. The reference for QSFP112 missing

SuggestedRemedy
New reference: QSFP-DD/QSFP-DD800/QSFP112 Hardware Specifications are avilable from (http://www.qsfp-dd.com)

Response
 Response Status

ACCEPT IN PRINCIPLE

Change:

"QSFP-DD800 MSA QSFP-DD Specification for 800G operation, Rev 1.0, March 6, 2020 " To:
"QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification - Rev 6.01 May 20,2021"
Add the following footnote:
"QSFP-DD, QSFP-DD800, and QSFP112 specifications are available from QSFP-DD MSA (http://www.qsfp-dd.com)"

Given the reference change above change "QSFP+" to "QSFP112".
SuggestedRemedy
Implement with editorial license.

New reference: QSFP-DD/QSFP-DD800/QSFP112 Hardware Specifications are avilable from (http://www.qsfp-dd.com)
Response Response Status ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#162.

