302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l 00$	$S C O$	$P 0$	O
Brown, Matt	Huawei		1

Comment Type
Comment Status A
(bucket1)

Keep 802.3ck aligned with the new revision 802.3dc.
SuggestedRemedy
With editorial license, align 802.3ck with the lastest draft of the new revision 802.3dc.
Response Response Status C

ACCEPT.
Response Status \mathbf{C}

Cl 69	SC 69.2.6	P69	L23	\#
Brown, Matt		Huawei		
Comment Type	T	Comment Status A	EEE (bucket1)	

EEE is not supported by the Clause 163 PMD
Cl $80 \quad$ SC 80.1.5 $880 \quad L 45$
Brown, Matt Huawei

Comment Type T Comment Status A
(bucket1)
100GAUI-1 C2C/C2M are relevant to the new PMDs specified in 802.3db.
SuggestedRemedy
Align Table 80-5 with 802.3db including 100GBASE-VR1/SR1. In columns for 120F/120G add "O" for the VR1/SR1 PMDs.

Response Response Status C
ACCEPT IN PRINCIPLE
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft Implement the suggested remedy.

Cl 120G SC 120G.3.3	P267	L27	\# 5	
Brown, Matt	Huawei			
Comment Type	E	Comment Status A		(bucket1)

In Table 120G-7, footnote "a" is redundant since the referenced subclause 120G.3.3.5 specifies the BER requirement.
SuggestedRemedy

Delete footnote a.

Response
Response Status C
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within he scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
Implement the suggested remedy.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 120G	SC 120G.3.4	P271	L36
Brown, Matt	Huawei		\#

Brown, Matt
Comment Type Eomment Status A
(bucket1)
In Table 120G-9, footnote "a" is redundant since the referenced subclause 120G.3.4.3 specifies the BER requirement.

SuggestedRemedy
Delete footnote a.

Response
 Response Status C

ACCEPT IN PRINCIPLE
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft
Implement the suggested remedy.

In item g , the adjustment of jitter, voltage, and equalization to minimize VEC are iterative, but this is not clear in the description.

SuggestedRemedy

Update the description to reflect the interative nature. Update item g in 120G.3.4.3.2 in a similar way.
Response Response Status C
ACCEPT IN PRINCIPLE.
Change the second sentence to the following:
The pattern generator amplitude and random jitter are adjusted, while the pattern generator preemphasis and reference receiver settings are adjusted to minimize VEC, so that the eye height of the smallest eye matches the target value and VEC is within the limits in Table 120G-8."

Cl 120G SC 120G.3.4.3.2	P273	L54	\# 8 8	
Brown, Matt		Huawei		
Comment Type	T	Comment Status A		MI SI FDA

Comment Type T Comment Status A
MI SI FDA
In D2.2 a precise definition of the target insertion loss for the frequency dependent
attenuator was added. However, the frequency range over which to "match" the real channel is not specified.

SuggestedRemedy
Specify the frequency range over which the the frequency dependent attenuator must approximate the target insertion loss.
Perhaps 0.01 to 40 GHz
Response Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#110.

Cl 120G	SC 120G.3.4.5	P276	L5
Brown, Matt	Huawei		\# 9

| Brown, Matt | Huawei |
| :--- | ---: | ---: |
| Comment Type | T Comment Status R |

The term "ground offset voltage" is not defined.
SuggestedRemedy
Provide explanation for what is meant by "ground offset voltage".
Response Response Status C
REJECT.
There is no consensus to make any changes to the text.

Cl 120G	SC 120G.4.1	P276	L11
Brown, Matt	Huawei		\# 10

Comment Type E Comment Status D
The term "(informative)" would better be "(recommended)" and should align with 163.10.2 and 120F.4.2.
SuggestedRemedy
In the title of 120G.4.1 change "(informative)" to "(recommended)".
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l 163 A$	$S C$	$163 A .3 .1 .3$	$P 322$
Brown, Matt	Huawei	L24	\# 11

Brown, Matt Huawei
Comment Type E
Comment Type E
Comment Status A
This is sequence of steps in method to determine transition time

SuggestedRemedy

Convert the method to a lettered list.
Response Response Status C

ACCEPT.

CI 00 SC O	PO	LO	\# 13
Brown, Matt	Huawei		
Comment Type	E	Comment Status A	
(bucket1)			

In D2.2, the mixed-mode insertion loss parameter and variable names were updated to make them common throughout the draft and presumably to align with the mixed-mode return loss parameter and variable names as updated in D2.1. However, the adopted parameters names for insertion loss which include differential-mode do not match those for return loss.
SuggestedRemedy
Thoughout the draft.
Change "differential to common-mode return loss" to "differential-mode to common-mode return loss"
Change "common-mode to differential return loss" to "common-mode to differential-mode return loss"
Response Response Status C

ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
Implement suggested remedy with editorial license.

Cl 120G SC 120G.3.4.3.2	P274	L9
Lusted, Kent		
Comment Type		

Comment Type ER Comment Status A
MI SI FDA
There is an editor's note to be removed in the next draft, pending changes to the $Z \mathrm{p}$ value and the frequency range

SuggestedRemedy
Resolve the value of $z _p$ and adjust the frequency range as necessary
Response
Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#110.

CI 120G SC 120G.5.2	P278	L24
Lusted, Kent	Intel Corporation	\# 16

Comment Type ER Comment Status A
(bucket1)
There is an editor's note to be removed in the next draft, pending changes to thef_b value.

SuggestedRemedy

Reaffirm the correct f b value and remove the editor's note
Response

Response Status

ACCEPT IN PRINCIPLE
There were no comments submitted that expressed concern with the value of f_b. Remove the editor's note.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 162A $S C$ 162A. 4	P287	$L 45$	$\# 18$
Wu, Mau-Lin	MediaTek Inc.		

Comment Type TR Comment Status A
Host PCB ILdd
The recommended maximum IL for TX or RX PCB is 6.875 dB at 26.56 GHz , which is defined in (162A-1). However, the equation of (162A-1) is not correct. By quick check of the equation, ILdd PCBmax(26.56) $\sim=6.6 \mathrm{~dB}$, which is NOT 6.875 dB . According to the closed response of comment \#18 in
https://www.ieee802.org/3/ck/comments/draft1p3/8023ck_D1p3_final_closedcomments.pdf, the equation of ($162 \mathrm{~A}-1$) shall be modified as
" $0.9809^{*}\left(0.471^{*} \mathrm{SQRT}(f)+0.1194^{*} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$ ". However, the equation of
" $0.9809^{*}\left(0.417^{*} \operatorname{SQRT}(f)+0.1194^{*} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$ " was adopted, instead, which is wrong.

SuggestedRemedy

Change (162A-1) from "0.9809* (0.417*SQRT(f) $\left.+0.1194^{*} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$ " to
" $0.9809^{*}\left(0.471^{*}\right.$ SQRT(f) $\left.+0.1194^{*} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)$ ". Redraw Figure 162A-1 accordingly if necessary.

Response

```
                Response Status C
```

ACCEPT IN PRINCIPLE.
Change (162A-1) from "0.9809*(0.417*SQRT(f)+0.1194*f+0.002*(f^2))"
to " $0.9809^{*}\left(0.471^{*} \operatorname{SQRT}(\mathrm{f})+0.1194^{*} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)^{\prime}$.
Figure 162A-1 uses correct equation.

Cl 162A $S C$ 162A. 4	P289	L1
Wu, Mau-Lin	MediaTek Inc.	

Comment Type TR Comment Status A Host PCB ILdd
The recommended maximum IL from TP0 to TP2 is 10.975 dB at 26.56 GHz , which is defined in (162A-3). However, the equation of (162A-3) is not correct. By quick check of the equation, ILdd_HostMax(26.56) $\sim=10.54 \mathrm{~dB}$, which is NOT 10.975 dB . According to the closed response of comment \#19 in
https://www.ieee802.org/3/ck/comments/draft1p3/8023ck_D1p3_final_closedcomments.pdf the equation of (162A-3) shall be modified as
"1.5658* $\left(0.471^{*}\right.$ SQRT $\left.(f)+0.1194^{*} f+0.002^{*}(\uparrow \wedge 2)\right)$ " However, the equation of
"1.5658*(0.417*SQRT(f)+0.1194*f+0.002*(f^2))" was adopted, instead, which is wrong.

SuggestedRemedy

Change (162A-3) from "1.5658* $\left(0.417^{*}\right.$ SQRT(f) $\left.+0.1194^{\star} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$ " to
"1.5658*(0.471^{*} SQRT(f) $\left.+0.1194^{*} \mathrm{f}+0.002^{*}\left(\mathrm{f}^{\wedge} 2\right)\right)$ ". Redraw Figure 162A-2 accordingly if necessary.
Response Response Status C
ACCEPT IN PRINCIPLE.
Change (162A-3)
from "1.5658* (0.417*SQRT(f) $\left.+0.1194^{\star} f+0.002^{*}\left(f^{\wedge} 2\right)\right)$)
to "1.5658*(0.471*SQRT(f)+0.1194*f+0.002*(f^2))".
Figure 162A-2 uses correct equation.

| Cl 163A SC 163A.4 | P323 | $L 53$ |
| :--- | :---: | :---: | ---: |
| Wu, Mau-Lin | | |
| MediaTek Inc. | | |
| Comment Type T | Comment Status A | \# 20 |
| (bucket1) | | |

The sentence of "An example test fixture and its reference values are provided in 163B.3." here is not correct, due to the example test fixture shown in 163 B .3 is for TPOv, instead of here is

SuggestedRemedy
Remove the sentence of "An example test fixture and its reference values are provided in 163B.3."
Response Response Status C
ACCEPT.

Cl 163	$S C$	163.10.1	P215	L13

MediaTek Inc
Comment Type TR Comment Status A
(bucket1)
The 'value' of 'Common-mode to differential-mode insertion loss, IL dc' shall be 'Equation (163-8)', instead of 'Equation (163-7)'.

SuggestedRemedy

Change the 'value' of 'Common-mode to differential-mode insertion loss, IL_dc' from "Equation (163-7)" to "Equation (163-8)".
Response
Response Status w
ACCEPT.

CI 162	SC 162.9.4.3	P178	L 47
Wu, Mau-Lin	MediaTek Inc.	\# 22	

Comment Type TR Comment Status A (bucket1)
The sentence refers to '162.9.4.3.3 item f^{\prime} for SNR_TX calibration. However, there are no item f in 162.9.4.3.3. It shall be 'item e' in 162.9.4.3.3 for SNR_TX calbiration.

SuggestedRemedy

Change 'item f' to 'item e'.
Response
Response Status
ACCEPT.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$	162	$S C$
162.9.3.1.1	P172	L8
Wu, Mau-Lin	MediaTek Inc.	\# 23

For the linear fit procedure a
instead of N_P = 29. N_P = 29 was used for SNR TX calibration in RITT test instead.
Related rationale had been disclosed in previous contribution,
wu_3ck_adhoc_01b_071421.pdf.

SuggestedRemedy

Change ' $\mathrm{N} _\mathrm{p}=29$ ' to ' $\mathrm{N} _\mathrm{p}=200$ '.
Response Response Status w
ACCEPT IN PRINCIPLE.
The resolution to comment \#50 changes N_p to 200
Resolve using the response to comment \#50.

Cl 161 SC 161.5.2.6	P139	L52	\# 24
Nicholl, Shawn		Xilinx	
Comment Type	TR	Comment Status A	language (bucket1)

Nicholl, Shawn Xilinx
Comment Type TR Comment Status A
language (bucket1)
In response to P802.3ck/D2.0 Comment \#162, P802.3ck/D2.1 revised the text to following:
The alignment markers shall be mapped to $t x$ scrambled am<1284:0> in a manner that yields the same result as the process described in the remainder of this subclause

The new language is inconsistent with existing Clause 119, which bears much similarity to portions of Clause 161.
SuggestedRemedy
Propose to return to the text of P802.3ck/D2.0
The alignment markers shall be mapped to am_txmapped<1284:0> in a manner that yields the same result as the following process.
Response Response Status
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within he scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
On page 139 line 52 change
"tx_scrambled_am<1284:0>
To:
am_txmapped<1284:0>"
On page 139 line 48 insert a new subclause heading
161.5.2.6.1 Alignment marker mapping"

On page 140 split the paragraph starting at line 48 to insert a new subclause heading:
"One group of aligned and reordered alignment markers are mapped every 20×1638466
bit blocks. This group of aligned and reordered alignment markers is called the "alignment marker group" and is labeled am txmapped<1284:0>
161.5.2.6.2 Alignment marker insertion

An alignment marker group shall be inserted so it appears in the output stream every 81 920×257-bit blocks."
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 162	SC 162.9.3.1.2	P173	L3	\# 25
Ran, Adee		Cisco		
Comment Type	TR	Comment Status A		TX Vf (bucket2)

Comment Type TR Comment Status A TX Vf (bucket2)

The definition of the steady-state voltage is currently a pointer to 136.9.3.1.2 with essentially three exceptions: the fitted pulse is calculated by another procedure (162.9.3.1.2), and Np and Nv are different. 136.9.3.1.2 itself is a simple definition of a sum of $N v$ values; there is no need for a reference to this definition, when all other things are exceptions.

What the reader is not told is that the required specification is with equalization turned off this is written in 136.9.3.1.2 but as part of a normative requirement for the limits, which does not hold here (the values are different). One could interpret it as if it is required for all equalization settings (as implied by the text in 162.9.3.1.2), which is clearly not what we intend.
SuggestedRemedy
Change the first paragraph of 162.9.3.1.2 to the following:
The steady-state voltage $v _f$ is defined as the sum of the linear fit pulse $p(1)$ through $p(M \times N v)$ divided by M, measured with transmit equalizer set to preset 1 (no equalization) Nv is set equal to Np . The linear fit procedure for obtaining p and the values of M and Np are defined in 162.9.3.1.1.
Response Response Status W
ACCEPT IN PRINCIPLE
The resolution to closed comment \#50 provides updated text that resolves this comment. Resolve using the response to comment \#50.

$C l \mathbf{1 6 2}$	$S C 162.11 .3$	$P 186$	$L 43$
Ran, Adee	Cisco	\# 26	

Ran, Adee
Comment Type TR
(B) (bucket1) facing connection.

SuggestedRemedy
Change "host-facing" to "cable-facing".
Response
Response Status W

ACCEPT.

Cl 163	$S C$	163.9.3.5	P213	L12
Ran, Adee		Cisco		
Comment Type	E	Comment Status A		transition time (CC) (bucket1)

Comment Type E Comment Status A
"with transmitter equalization off by setting coefficients to preset 1 values (see
162.9.3.1.3)." is awkward: equalization not "off by", it is "turned off by", not "off by".

SuggestedRemedy
Change "transmitter equalization off " to "transmitter equalization turned off".
Response

Response Status C

ACCEPT IN PRINCIPLE.
For consistency with other clauses refer to "transmit equalization" rather than "transmitter equalization".
Change "transmitter equalization off" to "transmit equalization turned off".

Cl 93A	$S C$ 93A. 1	P229	L39
Ran, Adee		Cisco	\# 34
Comment Type	E	Comment Status A	
(bucket1)			

In the existing c(-2) row, "2nd" is written with superscript, but in the new c(-3) "3rd" is not.
Also, the tables specifying the values (120F-8, 162-19) use superscript.
SuggestedRemedy
Format "rd" in superscript.
Response Response Status C
ACCEPT.

Cl 120F	SC 120F.3.2.4	P246	L51	\# 36
Ran, Adee		Cisco		
Comment Type	TR	Comment Status D		withdrawn

Comment Type TR Comment Status D withdrawn
Item e in the list describes transmitter parameters used for calculation of COM. The transmitter device and package model options in 163.9.3.5 seem to be relevant here too, but there is no discussion or reference.
SuggestedRemedy
Add an item to the lettered list, between items d and e, preferably pointing to item e in 163.9.3.5, or alternatively copy the same content.

Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 120G	SC 120G.3.1	P261	L3
Ran, Adee		Cisco	\# 37
Comment Type	TR	Comment Status A	

Comment Type TR Comment Status A HO output swing (CC)
Following up on unsatisfied comment \#37 against D2.1:
As demonstrated in https://www.ieee802.org/3/ck/public/21 07/ran 3ck 04b 0721.pdf, the differential peak to peak specification measured with PRBS13Q is broken, especially for host output, because the result is strongly dependent on the host channel and equalization applied.

Since the proposal to define/measure this parameter with other patterns was not accepted, this comment proposes a new specification, based on PRBS13Q, to verify that the output swing is not too high. Namely, v_f using the linear fit procedure, similar to 162.9.3.1.2, with the exception that the transmitter equalization is not specified (it is whatever the host sets it to).
v_f represents the asymptote of the (linear) step response of the transmitter, including any equalization applied. It can be used to predict the effect of arbitrarily long runs which are not present in PRBS13Q itself.

The suggested limit corresponds to Vdiffptp of 900 mV which was the assumed value for the host in all earlier C2M specifications. This limit may be somewhat too high but changing it is a different topic.

SuggestedRemedy
Add a row to Table 120G-1 with Parameter: Steady-state voltage v_f (max), Reference: 120G.5.4, Value: 450, Units: mV.

Add subclause 120G.5.4 with the following text:
120G.5.4 Steady-state voltage
The steady-state voltage $v f$ is defined as the sum of the linear fit pulse $p(1)$ through $p(M \times N v)$ divided by M with the specific equalization used by the transmitter. Nv is set equal to Np . The linear fit procedure for obtaining p and the values of M and Np are defined in 162.9.3.1.1.

Response
Response Status \mathbf{C}
ACCEPT IN PRINCIPLE.
Comment \#38 suggests conditionally setting the limit to 300 mV .
The following related presentation was reviewed at a prior ad hoc meeting
https://www.ieee802.org/3/ck/public/adhoc/sept22_21/kochuparambil_3ck_adhoc_01_0922
21.pdf

According to straw polls 11 to 14 there is consensus to add the steady state voltage method and not adjust the differential peak to peak voltage to account for pattern dependency.

According to straw poll 15 and 16 there is consensus to set the steady state voltage limit to 375 mV .

According to straw poll 17 there is consensus to set the differential peak to peak output voltage to 750 mV .

Implement the suggested remedy, except set the steady-state voltage limit to 375 mV .
Also, change the differenitial peak to peak voltage limit to 750 mV
Implement with editorial license.

Note: Differential peak-to-peak output voltage (DPPV)
Note: Straw poll \#11 and \#12 relate to the measurement and specification method.
Straw poll \#11 (chicago)
Straw poll \#12 (pick one)
support the following to address host output and module output DPPV:
A: no change to draft
B: add steady-state voltage specification per comment \#37, but leave DPPV as is
C: adjust the DPPV maximum value per comments \#96 and \#150 to account for pattern
dependency
\#11: A: 9 B: 10 C: 10
\#12: A: 7 B: 6 C: 8
Straw poll \#13 (direction)
support the following to address host output and module output DPPV:
A: add steady-state voltage specification per comment \#37, but leave DPPV as is
B: adjust the DPPV maximum value per comments \#96 and \#150 to account for pattern dependency
A: $17 \mathrm{~B}: 7$
Straw poll \#14 (decision)
I support adding steady-state voltage specification per comment \#37, but leave DPPV as is.
Y: 20
N: 9
Straw poll \#15 (chicago)
Straw poll \#16 (choose one)
support setting the steady state voltage limit to
A: 375 mV
B: 400 mV
C: 420 mV
\#15: A: 20 B: 14 C: 6
\#16: A: 15 B: 8 C: 4
Straw poll \#17 (decision)
I support setting the DPPV as follows:
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

A: set to 750 mV
B : leave as is
A:16 B: 7

$C l$ 120G	$S C$ 120G.3.1	P261	L3
Ran, Adee	Cisco	\# 38	

Comment Type TR Comment Status A HO output swing (CC)
The host output differential peak-to-peak voltage is defined at TP1a so it is close to what a module input will have. The limit of 870 mV is too high for modern module host-side receivers which may used low-voltage CMOS processes. The reference CTLE is fully linear but real CTLEs may become nonlinear with such large signals and it may messs with its adaptation and CDR functionality and create much worse BER than what the reference receiver predicts.

Note that the module output "short" setting, which assumes a low-loss host channel (such that the receiver is close to the measurement point TP4), has a differential peak to peak limit of 600 mV .

SuggestedRemedy

Change the value of Differential peak-to-peak output voltage (max) with transmitter enabled from 870 to 600 mV .

In addition, if the steady-state voltage specification is added (subject of another comment), set the limit of that specification to 300 mV .
Response Response Status
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#37.
120G.3.2

Ran, Adee	Cisco	Comment Status D
Comment Type	E	MO/MI RLdc/RLcd

In Table 120G-3, RLdc for module output refers to 120G.3.1.1 which is titled "Host output common-mode to differential return loss" and its text is specific to the host

Similarly, in Table 120G-9, RLcd for module input refers to 120G.3.3.3 which is titled "Host input differential to common-mode return loss" and its text is specific to the host.

If we use the same specifications for both host and module, they should be defined accordingly.
SuggestedRemedy
In 120G.3.1.1, change the title to "Output common-mode to differential return loss", and in the text and caption of Figure 120G-5 change "host" to "host and module" or delete it.

Apply the corresponding changes in 120G.3.3.3.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Cl 120G	SC 120G.3.2.3	P 266	L5	\# 41
Ran, Adee		Cisco		
Comment Type	TR	Comment Status A		L Tfx wording (CC) (bucket1)

When measuring module ERL, the test fixture (aka MCB) does not have a host-facing connection.
SuggestedRemedy
Change "host-facing" to "cable-facing".
Response

```
                                    Response Status W
```

ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#81.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 120G	SC 120G.3.3	P267	L27
Ran, Adee	Cisco	\# 42	

Comment Type E
Comment Status A
(bucket1)

The normative requirement of meeting the BER specification 120G.1.1 is stated in the host stressed input test subclause, 120G.3.3.5. There is no need for a footnote in Table 120G-7 that points to the same.

Similarly in Table 120G-9 (module stressed input).

SuggestedRemedy

Delete footnote a from both tables.
Response Response Status C

ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
Implement the suggested remedy.

CI 120G	SC 120G.3.3.2	P 267	L36	\# 43
Ran, Adee	Cisco			

Comment Type ER Comment Status A
Subclause title is incorrect.
SuggestedRemedy
Change "Module" to "Host".

Response

Response Status
ACCEPT.
W

Cl 120G	SC 120G.3.3.5.2	P 270	L11	\# 45
Ran, Adee	Cisco			
Comment Type	T	Comment Status A	HI SI method	

"If the PRBS13Q pattern is used with a common clock, there is at least 31 UI delay
between the PRBS13Q patterns on one lane and any other lane"
This sentence seems out of place after the calibration of the crosstalk signal transition time. Also it's unclear why 31 UI are required with a PRBS13Q.

Looking back at the corresponding text in 83E where this requirement was inherited from, it refers to PRBS31, and appears in reference to the effect of the crosstalk signals on the stress signal, not to the calibration of the crosstalk signal.

It seems that this text should refer to PRBS31Q after the crosstalk calibration is complete, to ensure that the different crosstalk sources are not in-phase (and appear uncorrelated).

This comment also applies to 120G.3.4.3.2 (module stressed input)
SuggestedRemedy
Move the quoted sentence to the end of the paragraph (item e) and change "PRBS13Q" to "PRBS31Q".

Implement similarly in 120G.3.4.3.2.

Response

Response Status C
ACCEPT IN PRINCIPLE
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
The way this procedure step is written PRBS13Q is a candidate pattern for the crosstalk
signals, while allowing replacement with other patterns, including PRBS31Q, once calibration using PRBS13Q is complete. The minimum pattern offset of 31 might be also be intended to provide some time separation between PAM4 symbols taking ISI into account. However, a similar consideration for PRBS31Q is warranted. Delete:
"If the PRBS13Q pattern is used with a common clock, there is at least 31 UI delay
"If the PRBS13Q pattern is used with a common clock, there is at
Insert the following sentence at the end of item e:
"If the PRBS13Q or PRBS31Q pattern is used with a common clock, there is at least 31 UI delay between the PRBS13Q or PRBS31Q patterns on one lane and any other lane."
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

"The pattern may be changed to PRBS31Q (see 120.5.11.2.2), scrambled idle (see 82.2.11 and 119.2.4.9), or another valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal for amplitude calibration."

The "may" in this sentence means that the pattern may also _not_ be changed, so PRBS13Q can be used as the crosstalk pattern for EH/VEC calibration. But PRBS13Q is not a representative signal and the crosstalk it creates may be different from the other signals (which have wider spectrum). This gives room for undesired variability in test conditions.

Looking back at the corresponding text in 83E, it has "The pattern is changed", not optionally "may be changed".

This comment also applies to 120G.3.4.3.2 (module stressed input).
SuggestedRemedy
In the quoted sentence, change "may be" to "is", and change "for amplitude calibration" to
"for amplitude and stressed signal calibration".
Implement similarly in 120G.3.4.3.2.

Response
 Response Status C

ACCEPT IN PRINCIPLE
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
Since the crosstalk response passes very little low frequency (e.g., less than 1 GHz) signal, PRBS13Q should be sufficient as the pattern for a crosstalk signal and thus is a relevant candidate pattern.
Resolve using the response to comment \#45 and \#121.

Cl 120G SC 120G.4.1	P276	L13	\# 47
Ran, Adee		Cisco	
Comment Type	E	Comment Status A	

Comment Type E Comment Status A
channel IL (bucket1)
The insertion loss cannot be compared to ("equal to or less than") an equation. The equation defines a limit; however, it is not measurable, so it can only be a recommendation. SuggestedRemedy

Change "is expected to be equal to or less than" to "is recommended to be within the limits defined by".

Response
 Response Status C

ACCEPT IN PRINCIPLE
The word "expected" was chosen intentionally to convey that the interface specifications were created with the assumption of a channel meeting this insertion loss criteria. However, the wording should be updated to reflect that the equation is in the form an inequality. Wording use elsewhere, e.g., 162.11.4, can be used.
Change "is expected to be equal to or less than" to "is expected to meet".
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 120G SC 120G.4.1	P276	L14	\# 48
Ran, Adee		Cisco	
Comment Type \quad T	Comment Status A		channel IL

"For correct operation, the actual differential-mode to differential-mode insertion loss could be higher or lower than that given by Equation (120G-3) due to the channel ILD, return loss, and crosstalk"

This sentence is meaningless as written, and not helpful for readers, whatever the intended meaning is.

Looking at 83E, there was no such statement; the insertion loss that was provided in Equation (83E-1) was described as "typical application" with no attempt to make it even a recommendation. 120E changed it to a recommendation but did not add the quoted statement either.

This seems like a statement from the days when channels were specified by insertion loss limits, and that was a poor specification. We have no ground for making Equation 120G-3 anything other than a recommendation; and as such it does not need any disclaimers.

SuggestedRemedy

Delete the quoted sentence.

Response Response Status C

ACCEPT IN PRINCIPLE.
The merit and purpose of the sentence was discussed by the task force. Per straw poll \#8 the preference was to delete the referenced sentenced.

Implement the suggested remedy.
Straw poll \#8 (decision)
I support closing comment \#48 using the provided suggested remedy.
Yes: 14
Yes. 11

Cl 45	SC 45.2.7.13.1	P64	L54	\# 49
Ran, Adee	Cisco			

Comment Type E Comment Status A (bucket1)
Bit 6 is defined in this subclause, and is not mentioned in the referenced subclause 45.2.7.12.3.

SuggestedRemedy
Change "bits 7.49.6 through 7.49.0" to "bits 7.49.5 through 7.49.0".
Response
Response Status \mathbf{C}
ACCEPT.

$C l 162$	$S C$ 162.9.3.1.1	P172	L8
Ran, Adee	Cisco	\# 50	

TX Np
Comment Type TR Comment Status A
Following up on unsatisfied comment \#29 against D2.1:
The linear fit procedure is defined with $\mathrm{Np}=29$, so the pulse response length is 29 . Nv , the number of Uls that are considered for v_f calculation, cannot be higher than Np. In the multiple places that $N v$ is used, it needs an exception to use $N p=200$. This does not make sense.

As an example, in 163A.3.2.1 we have "where p (i) and M are defined in 162.9.3.1.1 and Nv is $200 "$. This does not make sense if $\mathrm{Np}=29$.

If 162.9.3.1.1 uses $\mathrm{Np}=200$, this will be the default value, and there will be one exception in the case of SNDR where it should be set to 29 . This would result in fewer exceptions.
SuggestedRemedy

1. In 162.9.3.1.1, change Np from 29 to 200
2. In 162.9.3.3 (Output SNDR), change "with the exceptions that a test system with response as specified in 162.9.3 and the linear fit procedure in 162.9.3.1.1 are used" to "with the exceptions that the test system response is specified in 162.9.3, and the linear fit procedure in 162.9.3.1.1 with $\mathrm{Np}=29$ is used".
3. In 162.9.3.1.2 (Steady-state voltage and linear fit pulse peak) change "The steady-state voltage $v _f$ is defined in 136.9.3.1.2, and is determined from the linear fit pulse calculated by the procedure in 162.9.3.1.1 with the exception that Np and Nv are equal to 200" to "The steady-state voltage v_f is calculated as defined in 136.9.3.1.2 with the exception that $N v=200$, and is determined from the linear fit pulse calculated by the procedure in 162.9.3.1.1".
4. In 163A.3.2.1 change " Nv is 200 " to " Nv is set by the clause that invokes this method". (it is currently invoked only by 163.9.2.4 (Difference steady state voltage) which states "with Nv = 200").
Response
Response Status
ACCEPT IN PRINCIPLE.
[Editor's note: CC: 163, 162, 163A]
Based on straw polls \#1, \#2, and \#3, there is consensus to use the value 200 for Np and Nv for the subclauses under discussion.

Implement the suggested remedy for 162.9.3.1.1, 162.9.3.3, and 163A.3.2.1 using the value 200 for Np .

For 162.9.3.1.2, change the first paragraph to the following:
"The steady-state voltage vf is defined as the sum of the linear fit pulse $p(1)$ through $p(\mathrm{M} \times \mathrm{Nv})$ divided by M , measured with transmit equalizer set to preset 1 (no equalization). Nv is set equal to 200. The linear fit procedure for obtaining p and the values of M and Np are defined in 162.9.3.1.1."
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Implement with editorial license.
Straw poll \#1 (choose 1)
For CR TX SNDR, I support Np value of:
A: 29
B: 200
A: 6 B: 21
Straw poll \#2 (choose 1)
For KR TX SNDR, I support Np value of:
A: 29
B: 200
A: 5 B: 22
Straw poll \#3 (choose 1)
For CR TX steady state voltage and pulse peak, I support Nv value of:
A: 29
B: 200
A: 10 B: 17

Cl 163A	$S C$	163A.3.1.1	P321

Comment Type T Comment Stas
The reference pulse response peak, $v^{\wedge}($ ref)_\{peak\} must be the max value of $h(t)$, if $h(t)$ has multiple peaks.
SuggestedRemedy
Change "the peak value" to "the maximum value" on line 15 and line 29 in page 321.

Response ACCEPT.	Response Status C		
CI 163A SC 163A.3.1.1	P321	L36	\# 52
Hidaka, Yasuo	Credo Semiconductor		

Comment Type T Comment Status A
(bucket1)
Comment \#23 on D2.1 was not correctly implemented. It should be the longest
"transmitter" package trace length.
Apply the same change on line 52 in page 322.
SuggestedRemedy
Change "the longest package trace length" to "the longest transmitter package trace length".

```
Response
Response Status C
```

ACCEPT.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 120G	SC 120G.3.3.5.2	P270	L21	\# 56
Ran, Adee				
Comment Type	TR	Comment Status A		HI/MI SI PG EQ

(CC - Host stressed input and Module stressed input)
The term "pattern generator pre-emphasis" is used in both procedures without any definition, and does not appear anywhere else. Furthermore, it is stated that the "settings that minimize VEC are used". But it is not stated from which set of settings the minimum is taken.

Pattern generators used to create the stressed input signal may be able to apply arbitrarily ong FFEs for "pre-emphasis". Consider the following two cases:

1. An FFE that optimizes the signal (e.g., zero-forces the ISI) after the test channel and the reference RX with some CTLE setting (there is a different FFE for each CTLE setting even without any DFE)
2. An FFE that similarly optimizes the signal at the slicer of a DUT with a receiver which is different from the reference (for example, has a more capable equalizer with lower noise).

The FFE(s) (one per CTLE) of the first case would create the best VEC during stress calibration (which would require adding jitter to get the VEC to the target). The specification can be interpreted as if one of these multiple FFEs is the "pre-emphasis" that should be used (as there is no restriction), and each one creates a different stress. This does not make sense, as the signal in real life will not be optimized like that.

The FFE in the second case would create a signal that may look less ideal in calibdation (so less jitter will be added) but is actually better for the DUT. If we allow this FFE it can be used to game the test.

With no limitation on what "pre-emphasis" means, both cases above are equally valid; we do not expect people to go into the trouble of finding these FFE, but different people can use different settings and get different stressed signals which would defeat the purpose of a standard test. And other people may use signal generators with shorter FFEs or no FFE at all, creating even more variability in test conditions.
If we think the allosed "pre-emphasis" settings are not unlimited, we should specify what is allowed (and thus the optimization space for creating the stressed signal).

Although any specification would be better than none, the most reasonable specification would be the 5 -tap FFE (3 pre, 1 post) in the COM model of clauses 162, 163, and annex 120D, which was used in multiple presentations that analyzed channels and stress signals, and will be widely implemented
SuggestedRemedy
Insert the following paragraph after the 3rd paragraph of 120G.3.3.5.1 (Host stressed input test setup):
"The pattern genrator has pre-emphasis capability equivalent to the functional model of the transmit equalizer defined in 120F.3.1.2, with the coefficient values ranges and step sizes
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 120f	SC 120f.4	$P \mathbf{2 4 9}$	$L \mathbf{1 5}$
Mellitz, Richardd	Samtec	\# 58	

Comment Type TR Comment Status R Channel ERL (CC)
Table 162-7 has a note for ERL "Cable assemblies with a COM greater than 4 dB are not required to meet minimum ERL". The same should apply to Table 120F-7 channels for the same reason it was include included in table 162-2

SuggestedRemedy

For the entry "minimum ERL" add a note: "Channels with a COM greater than 4 dB are not required to meet minimum ER"

Response Response Status C
REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
Resolve using the response to comment \#57.

Cl 93A	SC 93A	P237	L44
Mellitz, Richardd	Samtec		\# 59

HO AC CM voltage (CC)
Common mode measurements are not well enough defined to precisely specify CM voltage at TP0v, TP1a, TP4 and TP2. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz_3ck_adhoc_01_090821.

SuggestedRemedy

Add section "93A. 6 Common Mode measurements". See presentation
Response
Response Status C

ACCEPT IN PRINCIPLE.
The proposed solution was discussed in
https://www.ieee802.org/3/ck/public/adhoc/sept08_21/mellitz_3ck_adhoc_01_090821.pdf.
The task force reviewed the following presentation:
https://www.ieee802.org/3/ck/public/21_09/mellitz_3ck_01a_0921.pdf
There is no consensus to implement in D2.3 the decomposed common-mode parameter as proposed in mellitz_3ck_01a. However, there was concern that some improvement in measurements at TPOv for $\bar{K} R$ and C 2 C are necessary.

Change the AC common-mode voltage specification for KR and C2C to be the ratio of common-mode peak-to-peak at 1E-4 probability to the differential mode pmax value. The ratio limit is -16 dB . Add editor's note indicating the the value needs further consideration. Implement with editorial license.

Straw poll \#4 (direction)
I support replacing or supplementing the "composite" AC common-mode parameter with new separate parameters for correlated and uncorrelated portions for one or more interfaces.
A: Yes
. Need more information or more work needed
A: 10 , B: $8, \mathrm{C}: 11$
Straw poll \#5 (decision)
In Draft 2.3, I support replacing or supplementing the "composite" AC common-mode parameter with new separate parameters for correlated and uncorrelated portions for one or more interfaces.
A: Yes
B: No
A: $16 \mathrm{~B}: 18$
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 120G	SC 120G.3.1	P261	L13	\# 60

Mellitz, Richardd		Samtec	
Comment Type	TR	Comment Status R	C CM voltage (CC) (bucket2)

Common mode measurements are not well enough defined to precisely specify CM voltage at TP1a. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz 3ck adhoc 01090821.

SuggestedRemedy

Replace item "AC common-mode RMS output voltage (max)""Uncorrelated AC common mode SNR (min)
With "Peak fitted AC common mode (max) Pmax_ccm" using a value of 50 mV

Response

Response Status W
REJECT.
The resolution to closed comment \#59 indicates there was no consensus to make the
proposed changes to C2M host output or module output.
Resolve using the response to comment \#59.
[Editor's note: Changed page from 161 to 261.]
Cl 120G SC 120G.3.2.1 P264

Mellitz, Richardd Samtec
Comment Type TR Comment Status R
C CM voltage (CC) (bucket2)
Common mode measurements are not well enough defined to precisely specify CM voltage at TP4. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz_3ck_adhoc_01_090821.

SuggestedRemedy

Replace item "AC common-mode RMS output voltage (max)"
With "Peak fitted AC common mode (max) Pmax_ccm" using a value of 50 mV
Response
Response Status W

REJECT.

The resolution to closed comment \#59 indicates there was no consensus to make the
proposed changes to C2M host output or module output.
Resolve using the response to comment \#59.

Common mode measurements are not well enough defined to precisely specify CM voltage at TP2. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz_3ck_adhoc_01_090821.

SuggestedRemedy

Replace item "AC common-mode RMS output voltage (max)"
With "Peak fitted AC common mode (max) Pmax_ccm" using a value of 50 mV
Response Response Status w
REJECT.
The resolution to closed comment \#59 indicates there was no consensus to make the proposed changes to CR TX.
Resolve using the response to comment \#59.

Cl 120F	SC 120F.3.1	P242	$L 13$
Mellitz, Richardd	Samtec	\# 63	

| Mellitz, Richardd | Samtec |
| :--- | :--- | :--- |
| Comment Type | TR \quad Comment Status A |

Common mode measurements are not well enough defined to precisely specify CM voltage at TPOv. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz_3ck_adhoc_01_090821.
SuggestedRemedy
Remove item "AC common-mode RMS output voltage (max)"
Response

Response Status W

ACCEPT IN PRINCIPLE.
The resolution to closed comment \#50 provides an alternate parameter to constrain AC common-mode for KR and C2C TX.
Resolve using the response to comment \#59.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 163	SC 163.9.2	P207	L43	\# 64

| Mellitz, Richardd | Samtec | |
| :--- | :---: | :---: | :---: |
| Comment Type | TR \quad Comment Status A | |
| C CM voltage (CC) (bucket2) | | |

Common mode measurements are not well enough defined to precisely specify CM voltage at TPOv. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz 3ck adhoc 01090821.

SuggestedRemedy
Remove item "AC common-mode RMS output voltage (max)"
Response
Response Status W

ACCEPT IN PRINCIPLE.
The resolution to closed comment \#59 provides an alternate parameter to constrain AC common-mode for KR and C2C TX.
Resolve using the response to comment \#59.

Cl 162	SC 162.9.3	$P \mathbf{1 7 0}$	$L \mathbf{4 6}$
Mellitz, Richardd	Samtec		\# 65

Since the jitter at TP2 may be viewed though a channel with a loss of approximately 17 dB (package, host interconnect, HCB) there will likely be measurements error from the phase modulation of the voltage time quantization. The consequence is the measured jitter will be larger than in table 162-10

SuggestedRemedy

Increase J_RMS, J3u, Even-odd jitter, pk-pk to [\#,\#, \#] respectively. As consequence the jitter specified in the receiver interference tolerance (162.9.4.2) step d needs to change since it measured near the beginning of the channel. Change the reference on page 179 step d form table 162-10 to table 163-5
Response
Response Status C
REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.

Per Figure 162A-3 the insertion loss from TP0 to TP2 is 10.975 dB and there is an additional loss of around 4 dB due to the transmit function package for a total of around 15 dB . This is lower insertion loss than considered in the comment.

Increasing the specified jitter values is not a good solution since it could allow higher jitter when the measurement is accurate.

The following related presentation was reviewed by the task force
https://www.ieee802.org/3/ck/public/adhoc/sept22_21/calvin_3ck_adhoc_01_092221.pdf
During the presentation, the presenter recognized that the insertion loss assumptions were incorrect and subsequently withdrew his related comments \#85 and \#86.

The comment does not provide sufficient evidence to justify the proposed changes
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl $163 \quad$ SC 163.9.2	P208	$L 12$
Healey, Adam	Broadcom Inc.	\# 68

Comment Type TR
Comment Status A
TX SNDR (CC) (bucket2)

The reference for the SNDR specification is 162.9 .3 . 3 which specifies Np to be 29
Reflections from the test fixture can easily have a round-trip delay exceeding 25 (29-1-Dp)
UI which will degrade the SNDR measurement. However, such reflections have no relationship to the quality of the transmitter under test. Also, the introduction of the
SI_RES specification in Draft 2.2 limits intersymbol interference and makes it unnecessary o consider it again in the SNDR measurement. The purpose of SNDR, as the name suggests, is to limit noise and distortion. Prior specifications have used and Np value of 200 to avoid including intersymbol interference in the result.

SuggestedRemedy

Change Np for the Clause 163 SNDR specification to 200.
Response

Response Status W

ACCEPT IN PRINCIPLE.
The resolution to comment \#50 changes the value of N_p to 200 in 162.9.3.3, which is referenced from the SNDR specification in Table 163-5.
[Editor's note: Changed page from 207 to 208.]

Steady state voltage is measured at the output of a lossy host channel without equalization and its value will be larger for larger Nv (at least up to a point). Setting Nv to 200 may overestimate the amplitude that the receiver will actually see since that amplitude will only be realized when Nv consecutive identical symbols are transmitted. The number of consecutive identical symbols transmitted during normal operation is likely to be much lower. This suggests that the value of $N v$ should be lower so that the measured steady state voltage is closer to the amplitude the receiver might see in practice.

SuggestedRemedy
Change Nv for the Clause 162 steady-state voltage calculation to 29.

Response
 Response Status C

ACCEPT IN PRINCIPLE
The resolution to closed comment \#50 retains the value of N_v to 200. Straw poll \#3
indicated preference to use a value of 200 for N_v.
Resolve using the response to comment \#50.

Cl $\mathbf{1 6 3}$ SC 163.9.2.1.2	P209	L15	\# 70
Healey, Adam Comment Type T	Comment Status A		

In Table 163-6, N is set to 20 UI but this seems to be too small given the 5 dB insertion loss allowance for the test fixture given in 163.9.2.1.1. Using the transmission line parameters in Table 162-20, a transmission line with 5 dB loss at 26.6 GHz can have a propagation delay almost twice N (and therefore a round-trip delay almost four times N). The significance of the N value is that reflections with delay larger than N are not
considered in the ERL value. The N value should be extended so that all reflections added
by the longest test fixtures allowed by the standard are counted in the ERL value. There is no obvious downside to increasing this value.

SuggestedRemedy

Change the "length of the reflection signal" N to 200.
Response Response Status C
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
Implement the suggested remedy.

CI 135	SC 135.5.7.2	P123	L49
Dudek, Mike	Marvell		\# 75

Comment Type E Comment Status A (bucket1)
Inconsistent use of C2C
SuggestedRemedy
Either put C2C after all the variants or just the last one. Also on page
Response Response Status C
ACCEPT IN PRINCIPLE.
Put C2C once after all the variants on page 123

$C l 162$	SC 162.11.3	P186	L43
Dudek, Mike	Marvell	\# 76	

Comment Type T Comment Status A 'L Tfx wording (CC) (bucket1)
While testing the Cable ERL there isn't a "host-facing connection'
SuggestedRemedy
Change "host facing connection" to cable-facing connection"
Response
Response Status C
ACCEPT IN PRINCIPLE
Resolve using the response to comment \#26.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$	$S C$	120G.5.2
	K278	L11

| Calvin, John | Keysight Technologies |
| :--- | ---: | :---: |
| Comment Type TR Comment Status D | EO RR bbmax |

The $\operatorname{bbmax}(1)$ is limited to .4. Reference contribution "DFE-TP1a-
coefficient limits_Calvin". In summary TP1a needs to support an 18.2 dB channel, and the bbmax(1) hits the .4 limit at just 16.4 dB in both emperical test setups and in COM.

SuggestedRemedy
Increase bbmax(1) to a maximum value of .55 or reduce the maximum channel for TP1a to 16.4 dB .

Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

$C l$ 162A	SC 162A.4	P288 Calvin, John

Comment Type T
Keysight Technologies
Host PCB ILdd

Cl 162	SC 162.9.3	P170
Calvin, John	Keysight Technologies	\# 47

Comment Type T Comment Status D
Table 162.10 suggests a TP2 Jrms value of 23 mUI and a J3u of 115 mUl . The best possible case channel between TP0 and TP2 is 10.975 dB which will support these Jitter numbers. The problem is nobody comes close to 10.975 dB and most systems operate typically at 15.27 dB which requires a higher value of J3u and Jrms.

SuggestedRemedy

The principal of conducting a precison jitter measurment at the end of a 10.975 or a 15.27 dB channel should be re-visted. The loss driven slew rate limitations of the signal at say 15.27 dB results in a higher AM to jitter conversion factor. This measurment should either be removed, or increased to $\mathrm{J} 3 \mathrm{u}<160 \mathrm{mUI}$ to allow for channel induced jitter amplification.
Proposed Response
Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C I 162$	$S C 162.9 .3$	$P 170$	$L 32$
Dawe, Piers	Nvidia		\# 87

Dawe, Piers
Comment Type TR

Comment Status R
CR loss budget
The draft CR loss budget wastes over 3 dB in nearly every case. The relative range of host losses, $6.875 / 2.3=3: 1$, is too small for switch layout yet not needed for NICs.
The recommendation for the host traces plus BGA footprint and host connector footprint,
6.875 dB , compares very poorly with C2M's host insertion loss up to 11.9 dB , making
passive copper to this draft expensive and unattractive for a switch, yet a full range of NICs can be made with only 3.75 dB . Server-switch links are asymmetric in form factor (e.g. QSFP-DD to $2 \times$ QSFP) and will get made with an asymmetric loss budget, so it would be better for the standard to regularise what will happen anyway. C2M already has short and long ports.
This change would also benefit CR switch-switch links because the shortest ports would get credit for their low loss
The symmetric budget is used for some designs under way and may be useful in future for LOM, so it is kept here, and the better way added.

SuggestedRemedy

As in dawe 3ck 01a 0721.pdf:
3 classes of CR ports, host loss allocations of $A 10, B 6.875, C 3.75 \mathrm{~dB}$. B is as D2.1. A connects to C, B to B or C, C to A, B or C
Use 2 bits in the training control field to advertise A, B or C to the other end.
In Table 162-10, add limits A and C for linear fit pulse peak ratio (min). Change text in 162.9.3.1.2 to refer to the table.

In Table 162-14, add columns for Test 2 (high loss), A and C, with test channel insertion loss: A: 6.875-3.75 = 3.125 dB lower (20.5 dB to 21.5 dB), and $\mathrm{C}: 9.5-6.875=2.625 \mathrm{~dB}$ higher (26.25 dB to 27.25 dB). No change needed for Test 1.
In 162A.4, add equations for IL_PCBmax and ILHostMax A and B and show them in Fig 162A-1 and 2. In 162A.5, add Value columns A, C in Table 162A-1 (ILChmin and LMaxHost differ). Adjust figures 162A-3 and 4.
Add MDIO registers to report local and remote host ability to station management, for inventory and diagnostics

Response

Response Status U
REJECT.
This comment is a restatement of comment \#92 against D2.1, which was rejected by the
task force. This new comment provides only minor changes to the suggested remedy. A related straw poll (\#10) indicated strong opposition to adopting this proposal therefore there was no consensus to make the proposed changes
July 2021 Straw Poll \#10 is reproduced here for reference..
Strawpoll \#10 (direction)
I support P802.3ck specifying multiple CR host types such as in dawe_3ck_01_0721
Y: $7 \mathrm{~N}: 24$ A: 8
Cl $162 \quad$ SC 162.11 \quad P184
Dawe, Piers Nvidia

CA IL budget
Comment Type T Comment Status R
The poor max cable loss makes CR unattractive, while all NICs and some ports on any switch have host loss going to waste. Enabling longer cables on a minority of links is needed.
In the remedy, each host knows the other host's loss class through the training protocol and the cable's loss class from its I2C compliance code, so no extra management features needed in the spec for the long cable class.

SuggestedRemedy

2 classes of cable, which could be called "short" (19.75 dB , as today) and "long",
$19.75+2^{*}(6.875-3.75)=19.75+6.25-0.5=25.5 \mathrm{~dB}$ max (achievable cable length 3 m)
Long cables connect port types C (see another comment) at both ends, short cables
connect a valid combination of A, B, C.
In 162.11.2, cable assembly insertion loss, change text to refer to Table 162-17.
n 162.11.7.1.1, add $\mathrm{zp}=30.7 \mathrm{~mm}$ for the "short" cable.
In Table 162A-1, add a column for the A-short-A scenario (ILCamax differs).
Illustrate in figures 162A-3 and 162A-4.
Response
Response Status C
REJECT.
This comment is a restatement of D2.1 comment \#93 which was rejected as there were no changes to the host port types
The suggested remedy is predicated on the adoption of Comment \#87, Comment \#87 was rejected.
No changes to the draft.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 162	$S C$	162.11.6	P189	L 38
Dawe, Piers	Nvidia	\# 89		

Dawe, Piers
Comment Type TR
As in provious comments: this common common mode return loss spec RLce becomes useless at the frequency when the MCB loss is $1.8 / 2 \mathrm{~dB}$, which is only 8.5 GHz . We need a common mode return loss spec to stop large common-mode voltages building up through multiple low-loss reflections. The revised proposed remedy for D2.1 comment 79 seems OK: 1.8 $\mathrm{dB} 0.5<=\mathrm{f}<=4 \mathrm{GHz}, 1.4+0.1^{*} \mathrm{f} \mathrm{dB} 4<\mathrm{f}<=30 \mathrm{GHz}$. The 30 GHz fmax allows margin for real-world coax-PCB transitions (although the mated compliance boards are specified $>=3$ dB to 50 GHz); the cable itself should pass this comfortably because it is insulated from the test by the MCB loss.
SuggestedRemedy
Use a frequency-dependent mask $1.8 \mathrm{~dB} 0.5<=\mathrm{f}<=4 \mathrm{GHz}, 1.4+0.1^{*} \mathrm{f} \mathrm{dB} 4<\mathrm{f}<=30 \mathrm{GHz}$ f is in GHz. Similarly for Tx, Table 162-11, 162.9.3.6.
Response
Response Status U
REJECT.
This comment is a restatement of D2.1 comment \#79
The suggested remedy does not provide sufficient additional justification to support the change to the draft

Per straw poll \#6, there was no consensus to make the proposed changes.
However, there was concern that the limits should be tightened. Further work and consensus is required

Straw poll \#6 (decision)
I support adopting the changes in comment \#89 suggested remedy
Yes: 11
No: 19

Cl 162	$S C$ 162.11.7	P191
Dawe, Piers	Nvidia	L39

Comment Type TR Comment Status R
COM DFE bgmax/min (CC
The normalized DFE coefficient minimum limit bbmin for taps 3 to 12 is -0.03 . It doesn't make sense that taps 13 to 40 could be worse, -0.05 . I know of only example channel with a tap like this. Remember, these are reference receiver limits not hard cable or channel limits anyway; a cable or channel can go beyond a tap limit if it makes up the COM another way, e.g. with acceptable crosstalk. In the case of Bch2_b2p5_7_t, reducing |bmaxg| from 0.05 to 0.03 increases COM by less than 0.1 dB , and the channel still passes comfortably In this example, there were no taps that would be affected by reducing +ve bgmax from 0.05 to 0.03; one -ve tap was limited.

SuggestedRemedy

Change bgmax 0.05 to bbgmax 0.05, bbgmin -0.03 . Also in 163.
Response
Response Status w
REJECT.
This is a restatement of comment \#95 against D2.1 which was rejected by the task force due to insufficient supporting evidence. Some new information on the analysis of one channel is provided, but this is insufficient evidence to support the proposed changes [Editor's note: CC: 162, 163]

Cl 162	SC 162.11.7	P191	L 38	\# 91
Dawe, Piers		Nvidia		
Comment Type	TR	Comment Status R	COM DFE RSS (CC)	

The spec allows a cable to have its COM calculated with 9 taps in the range 13 to 24
clipped at $+/-0.05$ - which means that the channel's pulse response could be worse than +/-
0.05 for all these 9 taps. That's a very bad cable! and not likely to get made: there won't be
that many reflections in the same area. (Remember, these are reference receiver limits
not hard cable limits anyway; a cable can go beyond a tap limit if it makes up the COM
another way, e.g. with acceptable crosstalk.)
We don't need to provide all the receiver power and complexity to cope with unreasonably bad cables.

SuggestedRemedy

Use another DFE root-sum-of-squares limit for positions 13-24. A limit of 0.045 works well with Bch2_b2p5_7_t. Similarly in 163.
Response Response Status W
REJECT.
This is a restatement of comment \#96 against D2.1 which was rejected by the task force due to incomplete remedy and insufficient analysis. This new comment provides some new, but unsubtantiated information.
[Editor's note: CC: 162,163]
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l 162$	$S C 162.8 .1$	$P 165$	$L 48$
Dawe, Piers	Nvidia		\# 92

| Dawe, Piers | Nvidia |
| :--- | :--- | :---: |
| Comment Type E Comment Status R | |

"differential-mode to differential-mode insertion loss" is unnecessarily wordy; everyone understands just "insertion loss" to mean differential-mode to differential-mode if they know it's a system or component that uses differential signalling, which is made plain above. Similarly for return loss. It would be disruptive and unnecessary to go through the many clauses in the base document for this, although the terminology and notation for mixedmode and common-mode losses may be worth retrofitting.

SuggestedRemedy

Change "differential-mode to differential-mode insertion loss" to "insertion loss", change "differential-mode to differential-mode return loss" to "return loss" throughout the document.

Response

Response Status
REJECT.
The changes were made after task force discussion acceptance of D2.1 Comment \#13.
The resolution was to:
"Implement the parameter names and variables names provided in slide 15 of the following presentation:
https://www.ieee802.org/3/ck/public/21_07/brown_3ck_01a_0721.pdf"
Resolution to comments against the new revision (802.3dc) has resulted in terminology different to what was recently adopted in 802.3ck D2.2. To minimize churn in 802.3ck, it would be best to defer this topic until after the next draft of 802.3 dc is published
No changes to the draft.
[Editor's note: CC: many]

Cl 120G SC 120G.3.2	P 264	L11	\# 93	
Dawe, Piers		Nvidia		
Comment Type	TR	Comment Status R		MO EH

Comment Status
If the eye height limit is the same at long near end as at long far end, there is huge margin at near end and the implementer is encouraged to optimise for far end or beyond, only limited by the NE VEC spec, while we want modules to be set up consistently, for the full range from near to far. EH is naturally larger at NE than FE for a well set up output and the spec should reflect that. Host designers know their own loss and medium-loss hosts can take advantage of a better signal that cost the module nothing.

SuggestedRemedy

Change the eye height, long near end, so that it is 3 dB above long far end, e.g. 15 mV (far) and 21 mV (near) if long far is not changed. 3 dB is about half the loss from long near end to long far end, so long far end remains the harder one to meet.
Response
Response Status U

REJECT

This comment is a restatement of D2.1 comment \#98, for which there was no consensus to make the proposed changes.

The intent of specifications is to enforce what is necessary not what is possible. However, as this comment states, a long-mode host might be able to take advantage of the extra eye height.

There is insufficient evidence to make the proposed changes.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 120G	SC 120G.3.2	P264	L
Dawe, Piers	Nvidia	\# 94	

Dawe, Piers
Comment Type \quad TR \quad Comment Status A
There used to be a footnote under the table: "DC common-mode voltage is generated by the host. Specification includes effects of ground offset voltage.", as in OIF VSR, and annexes 83 E and 120E. That note told the reader how the system worked, and told him why these numbers aren't the same as in Table 120G-1, and everyone could get oin with earning their living. Now, there is a gratuitous, silly "DC common-mode voltage tolerance" spec row, which fussy customers will ask to see satisfied with a test report. If a module uses traditional capacitors, that's pointless. Notice that there is no equivalent spec in 162.11 Cable assembly characteristics (nor in annexes 83E and 120E).

SuggestedRemedy

Restore the DC common-mode voltage rows to the way they were and reinstate the table footnote. Delete 120G.3.2.4. Similarly in Table 120G-9, and delete 20G.3.4.5.
Response
Response Status \mathbf{C}
ACCEPT IN PRINCIPLE.
The information in the footnotes was not lost as it was moved to subclauses 120G.3.2.4 and 120G.3.4.5.

The specifications as previously written had the implication as currently specified but required some extrapolation to come to that realization. The specifications as they were previously written were ambiguous.

The assumption that there will be AC-coupling capacitors on the module is circular, since the specified common-mode voltages may force the use of a capacitor.

But the language could softened using similar text adopted in the revision project 802.3dc D2.0 comment \#101.

In two places...
Change: "A module shall meet all output specifications"
To: "A compliant module meets the output specifications"

Cl 120G SC 120G.5.2	P 279	L43	\# 95
Dawe, Piers		Nvidia	
Comment Type	TR	Comment Status R	EO mask

Comment Status R
The Gaussian weighting has the effect of destroying the histogram width, allowing bad fast eyes to pass, while giving the impression that the histogram width still applies. With a weighting standard deviation of 0.02 UI , the eye height is measured at around $+/-0.03 \mathrm{UI}$ rather than the $+/-0.05$ UI in the previous draft. Compare 120E with ESMW of 0.2 or 0.22 UI.
SuggestedRemedy
Remove the Gaussian weighting and set the eye height and VEC limits (which need revision anyway) appropriately.
Response
Response Status
U
REJECT.
The current method of determining eye height and VEC using a weighted window was introduced in D2.2 based on approved D2.1 comment \#39. A final straw poll indicated acceptance of the response with a ratio (yes:no) of 21:11.

Per straw poll \#9 and \#10 there is no consensus to change the measurement method.
--- the following added 2021/10/4 ---
Straw poll \#9 (pick one)
Straw poll \#10 (chicago)
(direction)
support the following method of determining eye height and VEC:
A: weighted window per Draft 2.2 (no change)
B: weighted window per Draft 2.2, except increase standard deviation
: unweighted window per Draft 2.1 (perhaps with different width)
D: mask per D2.2 comment \#101
\#9: A: 17 B: 5 C: 6 D: 2
\#10 A: 22 B: 12 C: 7 D: 3
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 120G	SC 120G.3.2	P264	$L 10$
Dawe, Piers	Nvidia	\# 96	

Dawe, Piers
Comment Type T Comment Status A

For module output, the differential peak-to-peak output voltage (envelope) is weakly pattern dependent, predictably so because the loss to the observation point (TP4) is moderate and mostly known. The spec is clear and unambiguous and not broken because it tells the reader which pattern applies. The envelope at a "long mode" host IC would be lower than at TP4. However, it may be that we intended that the envelope at TP4 in service should be 900 mV , which I believe was the intention in other VSR-like specs.

SuggestedRemedy

If so, reduce the "900" in Table 120G-3 by $\sim 4 \%$ to 845.
Response Response Status C
ACCEPT.

Cl 120G SC 120G.3.2.2.1	P265	L46	\# 97
Dawe, Piers		Nvidia	
Comment Type	TR	Comment Status	

The near end and far end should be placed far enough apart so that the module implementer has little choice what emphasis to use, so that all modules are set up similarly. As short is easier than long, this means that far minus near (mm or dB) for short should be more than far minus near for long. As real host channels are not exactly like the theoretical reference host channel and host makers hate avoidable precision, measurement and record-keeping, there should be a healthy overlap of short and long to give the host room for its implementation. D2.0's 160 mm delivered on both these criteria, D2.1's 133 mm doesn't.

SuggestedRemedy
Change 133 to 150 , change 80 to 90

Cl 120G SC 120G.5.2	P279	L6	\# 101
Dawe, Piers		Nvidia	
Comment Type	TR	Comment Status R	EO mask

This draft has a weighted rectangular eye mask spec with mask height $=\max (E H m i n$,
EA/VECmax) and effective mask width $\sim 2 \times 0.03 \mathrm{UI}$, although it is described as a histogram
2×0.05 UI wide. Measuring a diamond eye with a rectangular mask provides weak and uncertain protection against too much jitter; de-weighting the sides of the histogram weakens it further; the effective BER criterion is hard to establish but seems to be around $1 \mathrm{e}-4$, not $1 \mathrm{e}-5$ as intended.
We need an eye mask that's more eye shaped, so that a higher proportion of the samples near the boundary are measured at full weight and contribute properly to the
measurement. Eye mask measurement with a 10 -sided mask has been pre-programmed into scopes for about 20 years, we should use established tools and methods where they work well.

SuggestedRemedy
Change from a 4-cornered weighted mask with corners at $\mathrm{t}=\mathrm{ts}+/-0.05, \mathrm{~V}=\mathrm{y}+/-\mathrm{H} / 2$ to a
10 -cornered unweighted mask with corners at $\mathrm{t}=\mathrm{ts}+/-1 / 16, \mathrm{ts}+/-0.05, \mathrm{ts}+/-3 / 32, \mathrm{~V}=\mathrm{y}+/-$
$\mathrm{H} / 2, \mathrm{k}+/-\mathrm{H}^{*} 0.4, \mathrm{y}$. y is near VCmid, VCupp or VClow (vertically floating, as in D2.2).
H is max(EHmin, Eye Amplitude * $10^{\wedge}(-\mathrm{VECmax} / 20)$). Eye Amplitude is AVupp, AVmid or
AVlow, as in D2.2.
This simple scalable method can remain as the EH and VEC limits are revised.
Response
Response Status U
REJECT.
This comment is a restatement of D2.1 comment \#106 and D2.0 comment \#180 for which there was no consensus to make the proposed changes. No new evidence or consensus has been provided.

Resolve using the response to comment \#95.

Response

Response Status U
REJECT.
This comment is a restatement of D2.1 comment \#102 for which
there was no consensus to make a change. However, the response notes that there may be some benefit to explore this further.

However, no further analysis or significant additional justification has been provided.
Further discussion indicated there are concerns with making the proposed changes.
There is no consensus to make the proposed changes.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 162	$S C$	162.9.3.4	P174
Dawe, Piers	Nvidia	L47	\# 102

Comment Ty TR Comment Status R
Having alternative normative patterns to measure one thing when the choice makes a difference, adds cost because the test has to be done both ways (if one way passes and the other fails). Also, the spec limit was relaxed from 0.019 UI to 0.025 to allow for PRBS13. We understand that the result would look better with PRBS9. There is no requirement to generate PRBS9.

SuggestedRemedy

Make PRBS13 normative, as usual. Use a different set of PRBS13Q pattern symbols used for jitter measurement vs. Table 120D-4 to reduce the pattern dependency issue.

Response

Response Status W

REJECT.

This is a restatement of comment \#109 against D2.1 which was rejected by the task force (insufficient remedy and lack of consensus to make the change). The comment does not provide new data or analysis to support it

Cl $\mathbf{1 6 2}$	SC 162.9.3.4	P174	L49	\# 103
Dawe, Piers		Nvidia		
Comment Type	TR	Comment Status R		TX EOJ

We know that CRU corner frequency makes a difference to EOJ measurement. Allowing an unbounded " 4 MHz or anything you like that's lower" is very bad: how many attempts must the tester try before he can fail a bad part?

SuggestedRemedy

Pick a single definitive CRU corner, e.g. 1 MHz or 2 MHz . Add informative NOTE saying that we expect that if it passes with the usual 4 MHz , it would also pass with the lower corner frequency.
Response Response Status w
REJECT.
This is a restatement of comment \#109 against D2.1 which was rejected by the task force (insufficient remedy and lack of consensus to make the change). The comment does not provide new data or analysis to support it.

Cl 120G SC 120G.5.2	P277	L17	\# 104
Dawe, Piers			
Comment Type \quad T	Comment Status A	EO method	

This needs explanation/correction/deletion: "Unless specified otherwise the probabilities are relative to the number of PAM4 symbols measured." For a histogram, it should be the expectation of number of bad samples in the histogram / total number of samples *in the histogram*. In conventional eye mask terminology, hit ratios are hits in a keepout region / number of samples, assumed evenly distributed across 1 UI (see 86.8.3.2.1). Anyway, are there any probabilities outside eye height / VEC, which is covered later in this subclause and is indeed done per sample not per symbol.

SuggestedRemedy

Delete the sentence.
Response
Response Status C
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.

This sentence is no longer relevant.
Implement suggested remedy.

302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$ 120G	SC 120G.3.4.3.2	P274	L9
Dawe, Piers	Nvidia		\# 106

Comment Type T Comment Status A (bucket1)
The 18.2 dB is information that lets the reviwer understand the spec - does it occur in the text or just in this editor's note?

SuggestedRemedy
Add it to the text: change "This represents..." to "the differential-mode insertion loss (18.2 dB) represents.

Response Response Status C
ACCEPT IN PRINCIPLE.
Change "representing ILdd from the output of the pattern generator to TP1a of 18.2 dB at 26.56 GHz . This represents 16 dB channel loss with an additional allowance for host transmitter package loss."
To ". The resulting insertion loss from the output of the pattern generator to TP1a is 18.2 dB at 26.56 GHz , representing 16 dB channel loss with an additional allowance for host transmitter package loss."

Cl $\mathbf{1 6 2}$	SC 162.9.4.3.3	P180	L 34	\# 107
Dawe, Piers		Nvidia		
Comment Type T	Comment Status R	RITT cal		

SuggestedRemedy

Please add the plot of Hhp to Figure 162-5, NSD(f) constraints

Response
 Response Status C

REJECT

The referenced equation is a simple first order high-pass filter with 6 GHz corner
frequency. Plotting this simple, well understood response is unnecessary. Adding to the
current plot would detract from the intent of the plot.
[Editor's note: Changed page from 179 to 180.]

Cl 162	SC 162.9.4.3.3	P179	L 46	\# 108
Dawe, P		Nvidia		
Comme	e T	Comment Status A		RITT cal (bucket1)

Comment Status A
As far as I can see, sigma_bn is a number to be found, all the other inputs to Equation 162-
12 (fb and f _hp) are constant in the draft: so the ratio sigma_hp/sigma_bn is fixed too, at a little less than 1.

SuggestedRemedy
Please tell the reader what that ratio is
Response Response Status C

ACCEPT IN PRINCIPLE.
Change equation (162-12) to show the constant value (0.6954) to be multiplied by sigma_bn^2.

$C l$	120G	SC 120G.3.4.3.2	P275	\# 110

Dawe, Piers Nvidia

Comment Type T Comment Status A
MI SI FDA
The formula and target exist at all frequencies. The loss board consists of PCB and good grade microwave connectors. We should not be encouraging implementers to do a bad job above 40 GHz . It's a target, there is no spec on how "approximate" is good enough.
SuggestedRemedy
Graph the target up to the signalling rate as done in Figure 163B-1, delete the editor's note on the previous page.
Response Response Status

ACCEPT.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 120G	SC 120G.3.4.3.2	P273	L34	\# 112
Dawe, Piers		Nvidia		
Comment Type	TR	Comment Status A	HI SI method	

Comment Type
TR
Comment Status A
HI SI method
as X as possible" is bad language in a standard or any kind of spec. How hard is the reader supposed to try? No expense spared!? This isn't a moonshot, what we ask for has to be achievable at a reasonable cost. I know in this case, the cost of getting to the differential peak-to-peak input voltage tolerance should not be a problem, but avoid bad language.

SuggestedRemedy

Change "The initial signal level is set as high as possible without exceeding the differential peak-to-peak input voltage tolerance given in Table 120G-9" to "The initial signal level does not exceed the differential peak-to-peak input voltage tolerance given in Table 120G-9, but may be set at the high end of the range for jitter calibration". Similarly in 120G.3.3.5.2.
Response
Response Status
C
ACCEPT IN PRINCIPLE.
Change the sentence to:
The initial signal level is set to the differential peak-to-peak input voltage tolerance given in Table 120G-9.

Cl 93A SC 93A.1.6	P235	$L 15$	\# 113
Dawe, Piers	Nvidia		

Comment Type E Comment Status R b(n) eqn
The equation for $b(n)$ is clumsy and hard to understand. When you study it enough, you can see that it is repetitive.
SuggestedRemedy
Make a substitution: $s(n)=h(0)(t s+n . T b)$
Then the equation becomes
$\{\operatorname{bbmin}(\mathrm{n}) \mathrm{s}(\mathrm{n}) / \mathrm{s}(0)<\operatorname{bbmin}(\mathrm{n})\}$
$\mathrm{b}(\mathrm{n})=\{\operatorname{bbmax}(\mathrm{n}) \mathrm{s}(\mathrm{n}) / \mathrm{s}(0)>\operatorname{bbmin}(\mathrm{n})\}$
$\{\mathrm{s}(\mathrm{n}) / \mathrm{s}(0)$ otherwise $\}$
Similarly for Eq 93A-27.
Response
Response Status C
REJECT.
This is a restatement of D2.1 comment \#118 which was rejected by the task force due to lack of consensus. The new comment provides a new equation form to consider. The proposed solution does not improve upon the accuracy or clarity of the existing equation.

Cl 120G	SC 120G.3.3.5.2	P270	L25
Dawe, Piers	Nvidia		\# 116

Comment Type E
Blank line

SuggestedRemedy

Remove
Response Response Status
REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
This "blank line" is a result of putting the table anchor on its own line to prevent odd formatting as the text moves around. We can optimize spacing issues like this closer to publication once the document is more stable.

CI 120G	SC 120G.3.3.5	P268	L29
Dawe, Piers	Nvidia		\#17

Comment Type TR Comment Status A HI SI terminology (bucket1)
802.3 is not a test spec (there was a companion standard for that which has been withdrawn). There is no requirement to test, only to comply. We provide definitions of measurable parameters, not measurement requirements. Making the naming more consistent.
SuggestedRemedy
Here and in Table 120G-10, change "Host stressed input test" to "Host stressed input tolerance". Change "Host stressed input tolerance is measured according to the procedure" to "Host stressed input tolerance is defined by the procedure" Similarly in 120G.3.4.2 Module stressed input test.
Response

```
Response Status W
```

ACCEPT IN PRINCIPLE.
The title of 120G.3.3.5 should be updated to reflect the intent rather than the test.
In Table 120G-7 change "Host stressed input test" to "Host stressed input tolerance".
Change the title of 120G.3.3.5 to "Host stressed input tolerance".
In Table 120G-9 change "Module stressed input test" to "Module stressed input tolerance". Change the title of 120G.3.3.5 to "Module stressed input tolerance".
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co
 amplitude and transition time, and module stressed input calibration with target amplitude and slew time. It wasn't as clear as it could have been: crosstalk pattern or victim pattern? Amplitude calibration of crosstalk or victim? I believe it meant that the crosstalk pattern could be changed to a long one when calibrating the eye height of the victim. CEI 16.3.10.3.1 says "The crosstalk signal is calibrated at TP4 or TP1a using a QPRBS13-CEI pattern, then the pattern is changed to QPRBS31-CEI for the test".
SuggestedRemedy
Change "The pattern" to "The crosstalk pattern", change "amplitude calibration" to "stressed signal eye height and VEC calibration". Also in 120G.3.4.2.2 step e.

Response

Response Status C
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.

However, the proposed changes are an improvement to the draft.
Change the sentence as follows:
The crosstalk pattern is changed to PRBS31Q (see 120.5.11.2.2),
scrambled idle (see 82.2.11 and 119.2.4.9), or another valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal for crosstalk amplitude calibration and stressed signal calibration (see step g).
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$ 120G	SC 120G.3.3.5.2	P270	L30
Dawe, Piers	Nvidia		\# 124

| Dawe, Piers | Nvidia |
| :--- | :--- | :---: |
| Comment Type E Comment Status A | (bucket1) |

Table format
SuggestedRemedy
Use a separate Units column as usual.

Response Response Status C

ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
Implement the suggested remedy.

| Cl 120G SC 120G.3.3.5.3 | P270 | L48 | \# 125 |
| :--- | :---: | ---: | ---: | ---: |
| Dawe, Piers | | Nvidia | |
| Comment Type T | Comment Status A | | HI SI method |

This says that "the pattern generator is set ... with sinusoidal jitter for each case
in Table 162-16" then the HCB is detached from the MCB, implying that all SJ cases are used together (as one might for a TV receiver that must receive one channel while all others are active).
Editorial: detached and plugged are an odd pair.
SuggestedRemedy
After the stress has been calibrated, the pattern generator is set to generate PRBS31Q, scrambled idle, or another valid 100GBASE-R, 200GBASE-R, or 400GBASE-R sequence. The HCB is unplugged from the MCB and is plugged into the host under test. The host electrical output is enabled on all lanes with any of the patterns above. The sinusoidal jitter is stepped through the six cases in Table 162-16.

Response

Response Status \mathbf{C}
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.

However, the proposed change is an improvement to the draft.
Implement the suggested remedy, except use the following sentence:
"The test is repeated with sinusoidal jitter set to each of the six cases inTable 162-16."
Instead of:
" The sinusoidal jitter is stepped through the six cases in Table 162-16."

Cl 120G	SC 120G.3.3.5.3	P270	L50
Dawe, Piers	Nvidia		\# 126

Dawe, Piers Nvidia

HI SI method
Comment Type T Comment Status R
There's a problem with identifying which lanes are relevant. For "The host electrical output is enabled on all lanes with any of the patterns above", this is to include realistic crosstalk so it could include all 8 transmit lanes of a QSFP-DD, or maybe all the output lanes on the host if it makes a difference. While for "The host BER is the average of the BER of each of its lanes", only the lanes in the PMA (AUI) under test (1,2 or 4 lanes) are relevant.
"Module BER" in 120G.3.4.2.3 is even more open to misinterpretation because we are so clear how many lanes a module has. But, terminology for this has been set up: the term "interface BER" occurs 19 times in section 6, and is defined in 86.8.2.1, 86.8.4.7, 86.8.4.8, 95.8.1.1...

SuggestedRemedy
Change paragraph to:
The relevant BER is the interface BER, which is the average of the BER of each of the lanes in the AUl under test.
If the test is performed with PRBS31Q, the BER of a PMA lane may be calculated using the bit error counter in the PMA test pattern checker (see 120.5.11.2.2) as the number of bit errors divided by the number of received bits.
If the test is performed with scrambled idle or another valid 100GBASE-R, 200GBASE-R, or 400GBASE-R sequence, the interface BER may be calculated using the host FEC decoder error counters (see 91.6 and 119.3.1), as the number of FEC symbol errors divided by the number of received bits.
Similarly in 120G.3.4.2.3.
Response
Response Status C
REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.

The term "interface BER" is used exclusively in Clause 86 and Clause 95 and is related to optical PMDs and PMD service interface. The term "host BER" is used in Annex 120E which specifies the 200GAUI-4 and 400GAUI-8, which are a more relevant to 120G.

There is no concensus to make the proposed changes.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Cl 120G	SC 120G.3.3.5.3	P271	L7	\# 127
Dawe, Piers		Nvidia		
Comment Type	E	Comment Status D		HI SI method

Comment Type E
Comment Status D
HI SI method
"Methods of extracting the received bit pattern and counting errors other than the ones described above may be used if they generate equivalent results" - more wordy than needed for something that shouldn't need saying each time.
SuggestedRemedy
Other methods of extracting the received bit pattern and counting errors may be used if they generate equivalent results.
Also in 120G.3.4.2.3.
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

$C l$ 120G	SC 120G.3.3.5.2	P270	L3
Dawe, Piers	Nvidia		\# 128

Dawe, Piers Nvidia
Comment Type E Comment Status A
HI SI method
"transition time ... at TP4a", "jitter profile of the signal at the pattern generator output".
These are the same place apart from the DC block, and if that makes a difference it would be better to calibrate after it. Also 120G.3.5.2.2 says "at the output of the pattern
generator" (words in a different order, so a search won't find both).
SuggestedRemedy
Change "at the pattern generator output" to "at Tp4a".
Response Response Status C
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2
and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within
the scope of the recirculation ballot.
Note also that the proposed change is technical, not editorial.
Implement the suggested remedy.

Cl 120G SC 120G.3.4.3.2	P273	L32		
Dawe, Piers		Nvidia		
Comment Type	E	Comment Status A		I method test setup (bucket1)

"transition time ... at the input to the frequency-dependent attenuator", "jitter
profile of the signal at the output of the pattern generator". These are the same place and the style guide says to use the same name for the same thing every time. Also the
frequency-dependent attenuation/attenuator is not always present, and to measure
transition time or jitter one connects the scope to the PG not to the attenuator. By the way, 120G.3.3.5.2 says "at the pattern generator output" (see another comment).

SuggestedRemedy

Change "at the input to the frequency-dependent attenuator" to "at the output of the pattern generator".

Response
\section*{Response Status}
C

ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposes change is an improvement to the draft.
The comment refers to item a) in 120G.3.4.3.2 with reference to transition time measurement.
Item c) in 120G.3.4.3.2 refers to the output of the pattern generator with reference to jitter measurement.
Both reference points are on the same node so the same test point should be referenced. Implement the suggested remedy with editorial license.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

| Cl 120G SC 120G.3.3.5.2 | P270 | L19 | \# 130 |
| :--- | ---: | ---: | ---: | ---: |
| Dawe, Piers | | Nvidia | |
| Comment Type T | Comment Status A | | HI SI method |

Comment Type T
Comment Status A
HI SI method

If "differential peak-to-peak voltage" is supposed to convey the idea that the MSB and LSB are not adjusted separately as in 120E.3.3.2.1 and D2.0, it doesn't do it. Also, differential peak-to-peak voltage is limited at TP4, not the PG.

SuggestedRemedy

Change "differential peak-to-peak voltage are adjusted" to "amplitude are adjusted".
Change "voltage tolerance given" to "voltage tolerance at TP4 given".
See another comment against p268 line 45 about introducing the pattern generator. Similarly in 120G.3.4.3.2 step g.
Response Response Status C
ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft.
Note that the other comment referenced in the suggested remedy is comment \#118.
Change the paragraph to the following:
Eye height and VEC are measured at TP4 as described in 120G.5.2. The pattern generator amplitude and random jitter are adjusted so that the eye height of the smallest eye matches the target value and VEC is within the limits in Table 120G-8. The differential peak-to-peak voltage measured at TP4 does not exceed the differential peak-to-peak input voltage tolerance given in Table 120G-7. The pattern generator preemphasis and reference receiver settings that minimize VEC are used.

$C l$	163A	$S C$	163A.3.1.2	P321

Dawe, Piers Nvidia

Comment Type E Comment Status A
This says "The reference ERL value is determined from the reference
PTDR response using the method in 93A.5.2..." yet 93A.5.2 finds the effective reflection waveform, Reff(t), by time gating and weighting the PTDR waveform,
PTDR(t).

Cl 162B SC 162B.1.1	P293	L23	\# 135
Dawe, Piers		Nvidia	
Comment Type E	Comment Status A	formatting (bucket1)	

There's only one subclause in this annex, plus PICS, which makes it hard to find the what it contains from the contents.

SuggestedRemedy
Promote 162B.1.1 TP2 or TP3 test fixture to 162B.2, promote 162B.1.2 Cable assembly test fixture to 162B.3, promote 162B.1.3 Mated test fixtures to 162B.4.
Response Response Status C
ACCEPT IN PRINCIPLE
Implement the suggested remedy with editorial licence.

CI 162B	SC 162B.1.3.4	P298	$L 30$
Dawe, Piers	Nvidia		\# 136

Comment Type TR Comment Status A
MTF RLcC
Just as for the cable RLcc spec: this 3 dB becomes useless when the MCB trace loss is half of $3=1.5 \mathrm{~dB}(16 \mathrm{GHz})$.

SuggestedRemedy

As for the cable RLcc spec but 1 dB lower to 30 GHz , easing up to 50 GHz : $12-9 f \mathrm{~dB} 0.01$ $<=\mathrm{f}<1,3 \mathrm{~dB} 0.5<=\mathrm{f}<=4 \mathrm{GHz}, 2.6+0.1^{*} \mathrm{f} \mathrm{dB} 4<\mathrm{f}<=30 \mathrm{GHz}, 9.5-1.3^{*} \mathrm{f} \mathrm{dB} 30<\mathrm{f}<=50$ GHz . f is in GHz

Response

Response Status
ACCEPT IN PRINCIPLE.
Per straw poll \#7 there is sufficient consensus to make the proposed changes in the suggested remedy.

Implement the suggested remedy with editorial license.
Straw poll \#7 (decision)
I support adopting the suggested remedy in comment \#136.
Yes: 12
No: 10
SuggestedRemedy
Do you mean 93A.5.2 to 93A.5.5?
Response Response Status C
ACCEPT IN PRINCIPLE.
Change the text to "The reference ERL value is determined using the method in 93A.5..."
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

CI 162B	SC 162B.1.3	P295	L25
Dawe, Piers	Nvidia		\# 137

Comment Type E Comment Status A wording (bucket1)
"The TP2 or TP3 and cable assembly test fixtures" sounds like three test fixtures.
SuggestedRemedy
Change to "The TP2 or TP3 test fixture and the cable assembly test fixture".

Response
 Response Status C

ACCEPT.

$C l$ 162B	SC 162B.1.3.3	P297	$L 36$
Dawe, Piers	Nvidia		\# 138

Comment Type
T
Comment Status A
MTF ILdc/LLdc

If common-mode to differential-mode insertion loss is what we want to control, that's ILdc
However, we want to control both ILdc and IIcd, as we have both RLcd and RLdc specs in
120G. There is an argument that they are the related, and specifying one is enough, but I'm not sure it always holds.

SuggestedRemedy

Specify both ILcd and ILdc. It may be possible to specify one in one direction and the
other in the other: Scd21 and Sdc12, or Sdc21 and Scd12, where 1 is an input (instrument connector that would be connected to a pattern generator) and 2 is an output. I haven't thought through which we need, or maybe we need all four. It is simpler to require all four.
Response

Response Status \mathbf{C}

ACCEPT IN PRINCIPLE.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft
As pointed out by the comment both Ilcd and Ildc of the MTF must be similarly constrained. Since ILcd12 and ILdc21 are reciprocal and ILcd21 and ILdc12 reciprocal, the insertion loss mode conversion can be constrained by measuring either Ilcd (or Ildc) in both directions. The text as written was intended to require this but the wording could be improved.
Also, the variable "Ilcd" should be "Ildc" to correctly reflect the subclause title and text.
Change: "measured at either test fixture test interface"
To "measured in both directions"
and
Change variable name "llcd" to "lldc".

Cl 162D	SC 162D.1.1	P317
Dawe, Piers	Nvidia	L6

Comment Type E
Comment Status R
CA types
In table headers:
"supportable PMDs
Number"
SuggestedRemedy
Change to: Maximum number of PMDs (merge two cells vertically). Similarly in the following tables.
If changing to "maximum", change "supportable" to "maximum" in the text and table captions too, and in 162C.1.
Response
Response Status
REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
The suggested change is not necessary.

Cl 162D S	SC 162D.1.1	P317	L6	\# 141
Dawe, Piers		Nvidia		
Comment Type	E	Comment Status A		wording

other end

SuggestedRemedy

other end(s)

Response Response Status C
ACCEPT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
However, the proposed change is an improvement to the draft
Implement the suggested remedy.

CI 163A SC 163A.3.1	P320	L23	\# 142
Dawe, Piers		Nvidia	
Comment Type	E	Comment Status A	
(bucket1)			

Make it easier to see what $S(0)$ is
SuggestedRemedy
In figures 163A-2, 3 and 4, change "Reference channel" to "Reference channel S(0)"

Response
 Response Status C

ACCEPT.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

$C l$ 163A	SC 163A.3.1.3	P321	$L 53$
Dawe, Piers	Nvidia		\# 144

Comment Type E Comment Status A wording (bucket1)
The method for obtaining the reference transition time using the measured test fixture scattering parameters and the reference transmitter and package models are defined below, and are outlined in Figure 163A-3.
SuggestedRemedy
method \ldots is ... is
Response Response Status C
ACCEPT.

CI 163A SC 163A.3.2.2	P323	L44
Dawe, Piers Comment Type T Give the units	Comment Status A	\# 146

SuggestedRemedy

Say that ERL(ref) and ERL(meas) are in decibels
Response Response Status C
ACCEPT.
[Editor's note: Changed page from 232 to 323.]

Cl 120G SC 120G.3.3.5.2	P270	L22	\# 148	
Dawe, Piers				
Comment Type	TR	Comment Status R		HI SI method

The host stressed input signal is emulating a module so must obey the same rules. VEC and eye height must be in spec for both near end and far end. The signal should be and eye height must be in Spec for both near end and far end. The signal should be
adjusted to minimise VEC for both, or possibly to minimise VEC for far end while keeping adjusted to minimise VEC for both, or possibly to minimise VEC for far end while keeping in spec at
near end.

SuggestedRemedy
This procedure needs road-testing before the draft can be said to be "without technical issues". In the meantime, add text to the draft to explain more fully what the procedure is
Response
Response Status U
REJECT.
Item g) instructs that the eye height of the smallest eye match the target value in Table 120G-8. Table 120G-8 provides only one value to be used for both near-end and far-end measurements.
Item g) instructs that VEC is within the limits in Table 120G-8. Table 120G-8 provide only one range (with maximum and minimum) to be used for both near-end and far-end measurements.
The module output specifications for eye height and VEC are the same for near-end and far-end.

The comment does not provide sufficient evidence to support the proposed changes. The suggested remedy does not provide sufficient detail to implement.

CI 162 SC 162.9.3.5	P176	L11	\# 149
Dawe, Piers		Nvidia	
Comment Type	T	Comment Status R	

Transition time is defined by the referenced 93A. 5 which refers to 93A. 2 which refers to 86A.5.3.3 which says "for electrical signals, the waveform is observed through a 12 GHz low-pass filter response (such as a Bessel-Thomson response)", and it's dependent on state of emphasis.

SuggestedRemedy
Change "Transition time" to "Rise time". Explain that that is $20-80 \%$, unfiltered, as if at neutral emphasis. Coordinate with the maintenance project.
Response Response Status C
REJECT.
The terminology is consistent with 93A. 5 in both $802.3 \mathrm{~cd}-2018$ and the latest 802.3 dc draft. Any related changes in the new revision (802.3dc) can be considered once they are incorporated in the next draft.
302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

302.3ck D2.2 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Working Group recirculation ballot co

Response Response Status W

ACCEPT IN PRINCIPLE.
Change:
"QSFP-DD800 MSA QSFP-DD Specification for 800G operation, Rev 1.0, March 6, 2020"
To:
"QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification - Rev 6.01 May 20,2021"
"QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification - Rev 6.01 May 20,2021"
Add the following footnote:
"QSFP-DD, QSFP-DD800, and QSFP112 specifications are available from QSFP-DD
MSA (http://www.qsfp-dd.com)"
Given the reference change above change "QSFP+" to "QSFP112".
Implement with editorial license.

