IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 91	SC 91	P89 L5	\# I-40
Ran, Adee		Cisco Systems, Inc.	
Comment Type	E	Comment Status A	(bucket1)

The amendment of clause 91 has subclauses under 91.5 and 91.5 . 2 without the full hierarchy. It is common to include the full hierarchy of each amended subclause.

SuggestedRemedy

Add headings for:
91.5 Functions within the RS-FEC sublayer
91.5.2 Transmit function

Response Response Status

 ACCEPT.| $C l$ | 91 | SC 91.5.3.3 | P89 31 | \# I-41 |
| :--- | :--- | :---: | :---: | :---: |

Ran, Adee Cisco Systems, Inc
Comment Type \qquad Comment Status A
(bucket1)

The amended text in this paragraph refers to "This option", without stating what option it
is... (it is the option to bypass error correction)
It would be easier for readers to understand the requirement if the option is stated explicitly.
SuggestedRemedy
Include the entire third paragraph from the base document. In 802.3dc the text is:
The Reed-Solomon decoder may provide the option to perform error detection without error correction to reduce the delay contributed by the RS-FEC sublayer. The presence of this option is indicated by the assertion of the FEC_bypass_correction_ability variable (see 91.6.8). When the option is provided, it is enabled by the assertion of the

FEC_bypass_correction_enable variable (see 91.6.1). This option... <remainder of the text as in D3.0>

Response

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 91	SC 91.6.7a	P91	L5
Dawe, Piers J G	NVIDIA		\# I-164

Dawe, Piers J G NVIDIA
Comment Type
Comment Status A

Cl 91	SC 91.7.3	P92	L41	\# I-165
Dawe, Piers J G	NVIDIA			

NVIDIA

Comment Type $\quad \mathbf{T}$
Comment Status A
There is a "major capability/option" "RS-FEC-Int is supported. 161 Used to form complete
100GBASE-CR1, or 100GBASE-KR1 PHY".
I don't see text in this clause or in 161 to justify this.

SuggestedRemedy

Add the text. In 161, state which PHY types use the RS-FEC-Int
Response

$$
\text { Response Status } \mathbf{C}
$$

ACCEPT IN PRINCIPLE.
Change *FINT row so that it is named *KP1, with feature "100GBASE-CR1, or 100GBASE-
KR1 PHY", with subclause cell blank, and existing value/comment. Move this row so it comes before the *KP4 row.
Change "FINT:M" to "KP1:M" in the status column of the FE row on line 44
Change subclause reference from 91.6 to 91.6 .7 a .

CI 161 SC 161	P133	L4
Nicholl, Shawn	Xilinx	\# l-8
Comment Type E	Comment Status A	
(bucket1)		

The latest P802.3/D3.0 (i.e. 802.3dc) nows uses lowercase "forward error correction", where previously uppercase was used.
SuggestedRemedy
For P802.3ck, propose to change the Clause 161 title to lower case.
Also, within the text body of Clause 161 propose to change to lowercase other places where "Forward Error Correction" is currently found.
Response Response Status C

ACCEPT.

Cl $161 \quad$ SC 161.5.2.6	P134	L46	\# I-76
Slavick, Jeff		Broadcom Inc	
Comment Type E	Comment Status A		
(bucket1)			

With the breaking up of 161.5.2.6 into two sub-clauses the introduction paragraph could use some pointers towards which sub-clause it's referring to.
SuggestedRemedy
Add "(see 161.5.2.6.2)" after the word re-inserted on line 46
Add "(see 161.6.2.6.1)" at the end of the first sentence of 161.5.2.6

```
Response
Response Status C
```

ACCEPT.

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 161	SC 161.5.2.6	$P 135$
Ben-Artsi, Liav	Marvell Semiconductor, Inc.	\#

Comment Type TR Comment Status R (bucket1)
In figure 161-2 it seems that this FEC does not support EEE. If such is desired recommend amending in a similar manner as Figure 91-2 in clause 91

SuggestedRemedy

Add EEE support similar to Figure 91-2 in clause 91

Response
 Response Status w

REJECT.
EEE is not an objective of P802.3ck.
The baseline proposal says EEE deep sleep is not supported (see
https://www.ieee802.org/3/ck/public/19_05/nicholl_3ck_01_0519.pdf)

$C l 161$	$S C$ 161.5.2.6.1	$P 135$
Slavick, Jeff	Broadcom Inc	$L 50$

Comment Type E Comment Status D
The introduction paragraph and the first sentence of this sub-clause call this a "function"
SuggestedRemedy
Change the sub-clause title to be "Alignment marker mapping function"
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Cl 161	SC 161.5.2.6.1	P136	L5	\# l-43
Ran, Adee		Cisco Systems, Inc.		
Comment Type E	Comment Status A			
(bucket1)				

Cl 161	SC 161.5.2.6.2	P137 L3	\# l-44
Ran, Adee		Cisco Systems, Inc.	
Comment Type E	Comment Status A	(bucket1)	

" x " should not be used as a multiplication symbol.
Also applies in 161.5.3.5.
SuggestedRemedy
Change to a multiplication symbol as in the last paragraph of 161.5.2.6.1, in both places.
Response Response Status C

ACCEPT.

Cl $161 \quad$ SC 161.5.2.6.2	P137	L6	\# l-4
Marris, Arthur		Cadence Design Systems, Inc.	
Comment Type T			

Comment Type T Comment Status A
(bucket1)
It would help understanding to point to where tx_scrambled is defined

SuggestedRemedy

Change:
"Let the set of vectors tx_scrambled_i<256:0> represent consecutive values of
tx_scrambled<256:0>."
To:
"Let the set of vectors tx_scrambled_i<256:0> represent consecutive values of the transcoder output tx_scrambled<256:0> (see 161.5.2.5 for a definition of the transcoder)."

$$
\text { Response } \quad \text { Response Status C }
$$

ACCEPT.

The variable x is inconsistency italicized in the text of list items a-c.
SuggestedRemedy
Make x italic wherever it denotes a lane number.
Response Response Status C

ACCEPT.

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

$C l 161$	SC 161.5.2.6.2	P137	L6
Dawe, Piers J G	NVIDIA		\# l-166

Comment Type T
Comment Status R
(bucket1)

What do you mean, "let"? In IEEE standards, we have shall, should, may and can. See 1.1.6.

SuggestedRemedy

Change "Let the set of vectors tx_scrambled_i<256:0> represent consecutive values of tx_scrambled<256:0>" to "In the following, the set of vectors tx_scrambled_i<256:0> represent consecutive values of $t x$ _scrambled<256:0>", or "Consecutive values of
tx_scrambled<256:0> are represented by a set of vectors tx_scrambled_i<256:0>"
Or use "Given" as on the previous page.
Response
Response Status C
REJECT.
This text is consistent with the text in 119.2.4.4.1 in the base standard from which it is derived. The word "let" is used in this manner throughout Clause 91 and similar clauses. It is also a common form for defining a variable in a function

| Cl $161 \quad$ SC 161.5.2.6.2 | P137 | L7 | \# li-9 | |
| :--- | :---: | :---: | :---: | :--- | :--- |
| Nicholl, Shawn | | Xilinx | | |
| Comment Type E | Comment Status a | | | |

Comment Type E Comment Status A
The variable tx scrambled<256:0> is mentioned with little context to its origin or definition. Readers of the sub-clause may not realize that the variable's detailed definition is found outside of the Clause 161. Including some guiding text may help the reader to navigate

SuggestedRemedy

Propose to change the sentence to:

- "Let the set of vectors tx_scrambled $\mathrm{i}<256: 0>$ represent consecutive values of the transcoder output tx_scrambled<256:0> (see 161.5.2.5 for the definition of the transcoder)."
Response
Response Status \mathbf{C}
ACCEPT.

CI 161	SC	161.5.2.6.2	P137	L7
Dawe, Piers J G		NVIDIA		\# l-167
Comment Type T	Comment Status A		(bucket1)	

Something called "tx scrambled" appears without explanation. According to the text and figures 161-4 and 161-5, it is 257 bits long (but what is it?), but according to Fig 161-3 it's 2 RS symbols or 20 bits.

SuggestedRemedy

In 161.5.2.5, add a sentence saying that the transcoder output is tx_scrambled which is a 257-bit block. In Figures 161-3, change "tx_scrambled" to "Beginning of tx_scrambled", pointing at row 0 , if that is what is intended.
Response
Response Status C
ACCEPT IN PRINCIPLE.
Comments 4 and 9 add a reference to 161.5.2.5 which defines tx_scrambled by
referencing 91.5.2.5 which makes clear the tx_scrambled is a 257-bit block.
Make changes to Figure 161-3 in accordance with the response to comment 11

The paragraph ending in "followed the alignment marker on each respective lane" leaves the reader thinking that some other text is meant to follow it.

SuggestedRemedy

Propose to re-locate this paragraph to the area prior to the text "For a 10280-bit block without an alignment marker group". This enhances readability of the sub-clause by coocating the "with an alignment group" portions together
Response
Response Status C
ACCEPT

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 161	SC 161.5.2.6.2	$P 137$	L 36
Nicholl, Shawn	Xilinx	\# I-11	

Comment Type E Comment Status A (bucket1)
In Figure 161-3 tx scrambled is inserted into an area of 2×10 bits. However, tx scrambled is 257 bits wide. This causes confusion. The diagram should be clarified.

SuggestedRemedy

P802.3/D3.0 (i.e. 802.3 dc) Figure 119-5 and Figure 119-7 are very similar to Figure 161-3 and are the basis for the following proposed changes to Figure 161-3:

- Remove the arrow from the diagram
- Replace "FEC codeword A" with "from FEC codeword A"
- Replace "FEC codeword B" with "from FEC codeword B"
- Add shading to the final cell/column of the table (i.e. for the rows pertaining to FEC lane
$0-3)$. The shading should be different colour from the 5 -bit pad shading.
- Add superscript text "B A" into the newly shaded area for FEC lanes 1 and 3
- Add superscript text "A B" into the newly shaded area for FEC lanes 2
- Replace "tx_scrambled" with "Resumption of 257-bit blocks" or "Resumption of 257-bit tx scrambled blocks"
- If "Resumption of 257 -bit tx scrambled blocks" is chosen, then propose to make - If "Resumption of 257-bit tx_scrambled blocks" is chosen, then propose to make
similar text change to Figure 119-5 and Figure 119-7 through maintenance of P802.3/D3.0 (i.e. 802.3dc)
- Beside the new text, add an "=" (equal symbol) and a rectangle that is shaded the
same colour as the newly shared area
- Note that this diagram is also consistent with latest P802.3/D3.0 (i.e. 802.3dc) Figure 91 4 and ideally will remain consistent with Figure 91-4

Response

Response Status \mathbf{C}

ACCEPT IN PRINCIPLE.
The commenter has made a similar comment against Clause 91 in the ballot against draft 3.0 of the 802.3 dc revision project. Draft 3.1 of the revision project is expected to be published before draft 3.1 of 802.3ck
Implement the suggested remedy with editorial licence and as far as possible maintain consistency with Figure $91-4$ in draft 3.1 of the 802.3 dc revision project.

Cl 161	SC 161.5.2.6.2	P137	L44	\# 1-12
Nicholl, Shawn		Xilinx		
Commen	ype E	tatus A		(bucket1)

In Figure 161-4 tx scrambled is mentioned in several places -- for an area of 35×257-bit and also in an area of 40×257-bit. However, tx_scrambled is 257 bits wide.
SuggestedRemedy
Propose to make the following change(s) to Figure 161-4:

- Replace (in two places) "am_txmapped 5x257-bit blocks" with "am_txmapped (5×257 bits)"
- Replace (in two places) "tx_scrambled 35×257-bit blocks" with " 35×257-bit tx_scrambled blocks"
- Replace "tx_scrambled 40x257-bit blocks" with "40x257-bit tx_scrambled blocks"
- Note that this diagram is consistent with latest P802.3/D3.0 (i.e. 802.3dc) Figure 119-6
and Figure 119-8 and ideally will remain consistent with Figure 119-6 and Figure 119-8

Response

Response Status C
ACCEPT IN PRINCIPLE.
The commenter has made a similar comment against Clause 119 in the ballot against draft 3.0 of the 802.3 dc revision project. Draft 3.1 of the revision project is expected to be published before draft 3.1 of 802.3 ck .
Implement the suggested remedy with editorial licence and as far as possible maintain consistency with Figure 119-6 in draft 3.1 of the 802.3 dc revision project. Also rename 161-4 to "Alignment marker insertion period"

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

CI 161 SC 161.5.2.6.2	P137	L54	\# I-14
Nicholl, Shawn		Xilinx	
Comment Type E	Comment Status A		
(bucket1)			

In order to enhance readability and help readers to mentally connect together sections that
are called by reference, the draft should include some detail about how
tx_scrambled_am<10279:0> is consumed.

SuggestedRemedy

Propose to add a new final paragraph at the end of 161.5.2.6.2 with the following text: - the contents of tx_scrambled_am<10279:0> are an input to the Pre-FEC distribution (see 161.5.2.7 for the definition of the Pre-FEC distribution)

SuggestedRemedy

Propose to insert fec_lane_mapping<x> after fec_lane.
For fec_lane_mapping<x> definition propose to use: "Identical to the definition of fec_lane in 91.5.4.2.1 except that 161.6.8 defines the FEC lane mapping."

- Note that this sub-section number may be changed by a related comment against the draft.
Response
Response Status C
ACCEPT.

| Cl $161 \quad$ SC 161.5.4.2.2 | P143 |
| :--- | :---: | :---: |
| Rannow, R K | |
| Comment Type \quad T | IEEE member / Self Employed |
| Multiple instances of the term "both", and both $=$ and. This appears verbose and perhaps
 ambiguous. | |

Confusing statement:
If current_pcsl and first_pcsl both found a match and indicate the same PCS lane number, amp_match is set to true. Otherwise, amp_match is set to false.

SuggestedRemedy

Review and remove the term "both".
Suggested modification:
If current_pcsl and first_pcsl match and indicate the same PCS lane number, amp_match is set to true. Otherwise, amp_match is set to false.

Response
 Response Status C

REJECT.
The commenter has not explained why the existing text is confusing
The text is similar to existing text in the base standard in 119.2.6.2.3.
The suggested remedy does not improve upon the accuracy or clarity of the existing text.

Cl 161	SC 161.6	P146	L19	\# 1-16
Nicholl, Shawn		Xilinx		
Comme	pe ER	Comment Status A		(bucket1)

The latest P802.3/D3.0 (i.e. 802.3dc) Table 91-3 lists rows sorted by "Register/bit number" it seems appropriate for P802.3ck Table 161-2 to do the same.

SuggestedRemedy

Summary of proposed changes to P802.3ck CL161:

- move "1.201.3" higher in the table (i.e. after 1.201.2)
- move "1.201.4" higher in the table (i.e. after the new location of 1.201.3)
- move "1.207 to 1.209 " higher in the table (i.e. after 1.206)

Response

ACCEPT.

Response Status W
W

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl $161 \quad$ SC 161.6	P146	L49
Nicholl, Shawn	Xilinx	\# I-17
Comment Type ER	Comment Status A	
(bucket1)		

In the sub-sections of 161.6, a number of cross-references to sections of CL91 of the latest In the sub-sections of 161.6, a number of cross-references to sections of CL91 of the latest
P802.3/D3.0 (i.e. 802.3 dc) are incorrect. There are also some ordering issues with the subsections of 161.6.

SuggestedRemedy

Summary of proposed changes to P802.3ck CL161:

- pg. 146, line 49, 161.6.1 FEC_bypass_indication_enable: change "91.6.1" to "91.6.2"
pg. 146, line 50, move the existing 161.6.10 FEC_degraded_SER_enable sub-clause after 161.6.1 FEC_bypass_indication_enable sub-clause to retain consistency with the order of entries in Table 161-1 ; update the FEC_degraded_SER_enable section to contain the text "Identical to the definition in 91.6.4, except the reference becomes 161.5.3.3.2." - pg. 146, line 50, move the existing 161.6.14 100G_RS_FEC_Int_enable after the new location of FEC_degraded_SER_enable to retain consistency with the order of entries in Table 161-1
- pg. 146, line 50, move the existing 161.6.11 FEC degraded SER activate threshold sub-clause after the new location of 100G_RS_FEC_Int_enable sub-clause to retain consistency with the order of entries in Table 161-1; update the
FEC_degraded_SER_activate_threshold section to contain the text "Identical to the definition in 91.6.5, except the reference becomes 161.5.3.3.2."
- pg. 146, line 50, move the existing 161.6.12 FEC_degraded_SER_deactivate_threshold sub-clause after the new location of FEC_degraded_SER_activate_threshold sub-clause ; update the FEC_degraded_SER_deactivate_threshold section to contain the text "Identical to the definition in 91.6.6, except the reference becomes 161.5.3.3.2."
- pg. 146, line 50, move the existing 161.6.13 FEC_degraded_SER_interval sub-clause after the new location of FEC_degraded_SER_deactivate_threshold sub-clause ; update the FEC_degraded_SER interval section to contain the text "Identical to the definition in 91.6.6, except the reference becomes 161.5.3.3.2."
- pg. 146, line 53, 161.6.2 FEC_bypass_indication_ability: change "91.6.4" to "91.6.9" - pg. 147, line 3, 161.6.3 hi_ser: change "91.6.5" to "91.6.10"
- pg. 146, line 5, move the existing 161.6.20 FEC_degraded_SER_ability sub-clause after 161.6.3 hi_ser sub-clause to retain consistency with the order of entries in Table 161-2 ; update the FEC_degraded_SER_ability section to contain the text "Identical to the definition in 91.6.11, except the reference becomes 161.5.3.3.2."
pg. 146, line 5, move the existing 161.6.21 FEC_degraded_SER sub-clause after the new location of FEC_degraded_SER_ability sub-clause ; update the FEC_degraded_SER section to contain the text "Identical to the definition in 91.6.12, except the reference becomes 161.5.3.3.2."
- pg. 147, line 7, 161.6.4 amps lock<x>: change "91.6.7" to "91.6.14"
pg. 147, line 11, 161.6.5 fec_align_status: change "91.6.8" to "91.6.15"
- pg. 147, line 15, 161.6.6 FEC_corrected_cw_counter: change "91.6.9" to "91.6.16"
- pg. 147, line 15, 161.6.6 FEC_corrected_cw_counter: change "91.6.9" to " 91.6 .16 "
- pg. 147, line 23, 161.6.8 FEC_lane_mapping<x>: change "91.6.11" to "91.6.18"
-pg. 147, line 24, move the existing 161.6 .22 FEC_cw_counter sub-clause after FEC_lane_mapping<x> sub-clause to retain consistency with the order of entries in Table 161-2
- pg. 147, line 27, 161.6.9 FEC_symbol_error_counter_i: change "91.6.12" to "91.6.19" - pg. 147, line 28, move the existing 161.6.23 FEC_codeword_error_bin_i sub-clause after FEC symbol error counter i sub-clause to retain consistency with the order of entries in Table 161-2
- pg. 148, line 3, 161.6.15 align_status: change "91.6.13" to "91.6.20"
- pg. 148, line 7, 161.6.16 BIP_error_counter_i: change "91.6.14" to "91.6.21"
- pg. 148, line 11, 161.6.17 lane_mapping<x>: change "91.6.15" to "91.6.22"
- pg. 148, line 15, 161.6.18 block_lock $<x>$: change "91.6.16" to "91.6.23"
- pg. 148, line 19, 161.6.19 am_lock<x>: change "91.6.17" to "91.6.24"

Response
Response Status W
ACCEPT IN PRINCIPLE.
Implement the suggested remedy with editorial licence

CI 161	SC 161.6.2	P146	L53
Marris, Arthur	Cadence Design Systems, Inc.		\#-6

Comment Type E Comment Status A
(bucket1)
Some of the cross references point to the wrong subclauses in Clause 91.

SuggestedRemedy

On page 146 line 49 change 91.6 .1 to 91.6.2
On page 146 line 53 change 91.6.4 to 91.6.9
On page 147 line 2 change 91.6 .5 to 91.6 .10
On page 147 line 7 change 91.6 .7 to 91.6.14
On page 147 line 11 change 91.6 .8 to 91.6 .15
On page 147 line 15 change 91.6 .9 to 91.6.16
On page 147 line 20 change 91.6 .10 to 91.6 .17
On page 147 line 23 change 91.6 .11 to 91.6 .18
On page 147 line 28 change 91.6 .12 to 91.6 .19
On page 147 line 32 change 91.6 .2 b to 91.6 .4
On page 147 line 35 change 91.6 .2c to 91.6 .5
On page 147 line 39 change $91.6 .2 d$ to 91.6 .6
On page 147 line 43 change 91.6.2e to 91.6 .7
On page 148 line 3 change 91.6 .13 to 91.6 .20
On page 148 line 7 change 91.6 .14 to 91.6 .21
On page 148 line 11 change 91.6 .15 to 91.6 .22
On page 148 line 16 change 91.6.16 to 91.6.23
On page 148 line 19 change 91.6 .17 to 91.6.24
Response
Response Status C
ACCEPT.
C

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

CI 161	SC 161.6.10	P147	$L \mathbf{3 0}$
Ran, Adee	Cisco Systems, Inc.	\# I-45	

Comment Type ER Comment Status A (bucket1)
The reference for FEC degraded SER enable is to 91.6 .2 b . This was the subclause added in 802.3 cd . After integration into 802.3 dc , this became 91.6.4.

Simlarly in 161.6.11 through 161.6.13, 161.6.20, and 161.6.21.
SuggestedRemedy
In 161.6.10 change the reference to 91.6.4.
In 161.6.11 change the reference to 91.6.5.
In 161.6.12 change the reference to 91.6.6.
In 161.6.13 change the reference to 91.6.7.
In 161.6.20 change the reference to 91.6.11.
In 161.6.21 change the reference to 91.6 .12
Response Response Status W

ACCEPT.

Cl 161	SC 161.7.3	P150	L13	\# 1-46
Ran, Adee		Cisco Systems, Inc.		

Comment Type E Comment Status A (bucket1)
The "FEC degraded SER detection" option for this clause is defined in 161.5.3.3.2.

SuggestedRemedy

Change the reference of item *FDD from 91.5.3.3.1 to 161.5.3.3.2.
Similarly change item RF12 in 161.7.4.2.

Response

Response Status C
ACCEPT.
Cl 162 SC $162 \quad$ L6
Zivny, Pavel Tektronix, Inc.

Comment Type T
Comment Status \mathbf{R}
TX measurement
The "using a test system with a fourth-order Bessel-Thomson low-pass response with 40
GHz 3 dB bandwidth." allows for large range of result change depending on the end of $\mathrm{B}-\mathrm{T}$ GHz 3 dB bandwidth." allows for large range of result change depending on the end of B-T
filter compliance. This can readily be corrected by specifying the roll-off, as has been done in optical standards for years - see e.g. 140.7.5 Transmitter and dispersion eye closure for PAM4 (TDECQ).
Reasoning: experiments show that for realistic signals the sensitivity (of measurment
esults) to roll-off compliance becomes insignificant past about 55 GHz . Presentation available.

SuggestedRemedy
Append "using a test system with a fourth-order Bessel-Thomson low-pass response with 40 GHz 3 dB bandwidth" with "compliant (to the B-T response) to at least 58 GHz , and lower or the same level as the 58 GHz response thereafter".

Response

Response Status C
REJECT.
According to straw poll \#7 there is no consensus to implement the suggested remedy Further consensus and analysis is encouraged

Straw poll \#7
I support specifying the scope filter response in line with the suggested remedy in
comment i-224.
Yes: 11
No: 13

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 162	$S C 162.8 .2$	P162	L34
Ran, Adee		Cisco Systems, Inc.	\#-47

Comment Type T
Comment Status A
TX QUIET mode

The transmit function operating modes listed are DATA and TRAINING, but with the change of the PMD control state diagram we also need a QUIET mode, as in clause 136 (in 802.3 dc).

SuggestedRemedy

In the first paragraph change "The PMD transmit function has two operating modes, DATA and TRAINING" to "The PMD transmit function has three operating modes: DATA, TRAINING, and QUIET".

Add the following paragraph at the end of 162.8.2:
"When operating in QUIET mode the PMD transmit function shall turn off the transmitter such that the transmitter drives a constant level (i.e., no transitions) and does not exceed the differential peak-to-peak output voltage (max) with Tx disabled in Table 162-10."

Response

Response Status C
ACCEPT IN PRINCIPLE.
The suggested remedy is good except the transmitter does not necessarily "turn off"; "disable" is a better term.

In the first paragraph change "The PMD transmit function has two operating modes, DATA and TRAINING" to "The PMD transmit function has three operating modes: DATA, TRAINING, and QUIET"

Add the following paragraph at the end of 162.8.2:
"When operating in QUIET mode the PMD transmit function shall disable the transmitter such that the transmitter drives a constant level (i.e., no transitions) and does not exceed the differential peak-to-peak output voltage (max) with Tx disabled in Table 162-10."

CI 162 SC 162.8.2	P162	L35	\# 1-79
Lusted, Kent		Intel Corporation	
Comment Type	TR	Comment Status A	TX QUIET mode

The IEFE P802.3dc revision project made a change to the PMD control state diagram
The IEEE P802.3dc revision project made a change to the PMD control state diagram
referenced in the P802.3ck draft. The PMD transmit function now has three operating referenced in the P802.3ck draft. The PMD transmit function now has three operating
modes, DATA, TRAINING and QUIET. (see IEEE P802.3dc D3.0 CI 136.8.2 on p5315, modes, DATA, TRAINING and QUIET. (see IEEE P802.3dc D3.0 CI
line 49). The 3ck text does not specify the QUIET mode nor it's use.

SuggestedRemedy

Change the first sentence of Cl 162.8 .11 to include the QUIET state by changing the sentence to "The PMD transmit function has three operating modes: DATA, TRAINING and QUIET."

Add a second sentence to the first paragraph in Cl 162.8.11: "Support for the QUIET operating mode is required and implementations shall set the variable use_quiet_in_training (see 136.8.11.7.1) to TRUE."

Add a new paragraph to the end of Cl 162.8.11 that describes the QUIET mode: "When operating in QUIET mode the PMD transmit function shall turn off the transmitter such that the transmitter drives a constant level (i.e., no transitions) and does not exceed the differential peak-to-peak output voltage (max) with Tx disabled in Table 136-11."

Response

Response Status
ACCEPT IN PRINCIPLE.
Resolve using the responses to comments \#47 and \#48.

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 162	SC 162.8.11	P164 L27	\# I-48
Ran, Adee		Cisco Systems, Inc.	
Comment Type	TR	Comment Status A	TX QUIET mode

When we defined the addition of QUIET state to the PMD control function in 136.8.11, it
had the text "This variable is always set to FALSE for $50 \mathrm{~Gb} / \mathrm{s}$ per lane PHYs, otherwise it is set to TRUE". Now that this change has been implemented in 802.3dc D3.0 and clause 136 removed from 802.3 ck , we lost the requirement to set it to TRUE for the PHYs in clauses 162 and 163.

The suggested remedy is to add this requirement as another exception in 162.8.11.
An alternative solution is to amend the updated 136.8.11.7.1 (as of 802.3dc D3.0) specifically the definition of use_quiet_in_training, to be optional only in $50 \mathrm{~Gb} / \mathrm{s}$. This could be done as follows:
"Boolean variable that is TRUE if the PMD control function (see Figure 136-7) can enter the QUIET state. The value of this variable is implementation dependent for $50 \mathrm{~Gb} / \mathrm{s}$ per lane PHYs, and TRUE for all other PHYs"

And amend the PICS of clause 136 accordingly.

SuggestedRemedy

Add exception to the list in 162.8.11.
h) The value of use_quiet_in_training (see 136.8.11.7.1) is TRUE.

Add a corresponding PICS item in 163.13.4.2.
Response
Response Status W
ACCEPT IN PRINCIPLE.
Implement the suggested remedy.
Also, add new PICS items in 162.14.4.2 as well.
Implement with editorial license

CI 162 SC 162.8.11	P164	L42	\# 1-78
Slavick, Jeff		Broadcom Inc	
Comment Type	TR	Comment Status A	TX QUIET mode

Comment Type TR Comment Status A TX QUIET mode
In D2.2 the use_quiet_in_training variable found in Cl 136 is set to TRUE for non-50Gbps PHYs. In the current baseline draft use_quiet_in_training being set to TRUE is implementation dependent.

SuggestedRemedy

In the list of exceptions add:
h) The variable use_quiet_in_training is set to TRUE (see 136.8.11.7.1)

Response
Response Status \mathbf{C}
ACCEPT IN PRINCIPLE.

Resolve using the response to comment \#48.			
Cl $\mathbf{1 6 2} \quad$ SC $\mathbf{1 6 2 . 8 . 1 1}$	P164	L42	\# l-121
Healey, Adam	Broadcom Inc.		
Comment Type T	Comment Status A	TX QUIET mode	

SuggestedRemedy

If the intent is require use quiet in training to be TRUE for $100 \mathrm{G} /$ lane PHYs, then add the following item to the list: " "f) The variable use_quiet_in_training is set to TRUE."

Response

Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#48.

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

CI 162	$S C 162.9 .3$	P166	L9
Ran, Adee	Cisco Systems, Inc.	\# l-49	

Comment Type TR Comment Status A TX measurement

The 50 Ohm termination on each conductor is specified only for DC common mode measurement. I cannot find a requirement that differential signal measurement is also done with similar terminations.

It is important to specify the termination of each conductor separately, to avoid reflections from the test equipment, and to ensure the expected common mode termination (the scope cannot be isolated from signal ground)

SuggestedRemedy

Change "using a test system with a fourth-order Bessel-Thomson low-pass response with
40 GHz 3 dB bandwidth" to "using a test system with 50 Ohm termination on each
conductor of the differential pair, and a fourth-order Bessel-Thomson low-pass response with 40 GHz 3 dB bandwidth".

Response

Response Status W
ACCEPT IN PRINCIPLE.
Subclause 163.9.1 specifies the terminations expected for differential and common-mode measurements for KR. A similar subclause in Clause 162 would address the concern in this comment.

Insert a new subclause in 162.9 similar to 163.9.1
Implement the suggested remedy with editorial license.

Cl 162	SC 162.9.3	P166	L24	\# 1-103
Mellitz,		Samtec, Inc.		

Comment Type TR Comment Status A
AC CM noise
RMS is poor indicator for CM mode noise. See CM histograms in
mellitz_3k_adhoc_01_120821, mellitz_3ck_01a_0721, and
mellitz_3ck_adhoc_01_121620. Clause 163.9.2.7 defines a more meaningful parameter V_CMPP as the peak-to-peak AC common-mode voltage.

SuggestedRemedy

Replace "AC common-mode RMS voltage, v_cmi (max)" with V_CMPP as the peak-topeak AC common-mode voltage and set to 223 mV . See presentation.
Response
Response Status \mathbf{C}
ACCEPT IN PRINCIPLE.
The following presentation was reviewed by the task force:
https://www.ieee802.org/3/ck/public/22_01/mellitz_3ck_02 0122.pdf https://www.ieee802.org/3/ck/public/22_01/mellitz_3ck_01_0122.pdf

There was consensus to adopt the specification methodology on slide 4 of mellitz 3ck 020122 ; except that there is no discrimination based on correlated and uncorrelated CM noise.

According to straw polls \#4 and \#5, the favored values for V_CMPP_LF and V_CMPP_HF are 60 mV and 80 mV , respectively.

Specify that V_CMPP general measurement is according 163.9.2.7 and measurement of HF and LF components is according mellitz_3ck_01_0122 slide 4.

For C2M include text that specifices that V_CMPP is measured over all except 1E-5, rather than $1 \mathrm{E}-4$, of the distribution.

Set maximum V_CMPP_LF and V_CMPP_HF values to 60 mV and 80 mV , respectively.
mplement with editorial license.
Straw poll \#4 (chicago)
support the following value for V_CMPP_HF:
A: 80 mV
B: 100 mV
C: 120 mV
A: 12, B: 9, C: 8
Straw poll \#5 (chicago)
support the following value for V CMPP LF:
A: 60 mV
B: 65 mV
A: $13, \mathrm{~B}: 11$

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 162	SC $\mathbf{1 6 2 . 9 . 3}$	P166	L45
Dudek, Michael	Marvell	\# l-237	
Comment Type	TR	Comment Status A	
Residual ISI			

With the $\mathrm{Np}=200$ value used for the linear fit procedure in the SNDR measurement it is possible that the transmitter can have significant pulse distortions at times beyond the reach of the receiver DFE. These pulse distortions cannot be equalized and could increase the BER unacceptably.

SuggestedRemedy

Add a Residual Intersymbol Interference specification with value -31 dB max referring to the test procedure in 163.9.2.6
Response Response Status C

ACCEPT IN PRINCIPLE.
Implement the suggested remedy with editorial license except set the limit to -30 dB rather than -31 dB .

Cl 162 SC 162.9.3.1.2	P169	L1	\# l-172
Dawe, Piers J G	NVIDIA		
Comment Type T	Comment Status A		TX Rpeak

Table 162-10 says "Linear fit pulse peak ratio" and refers to this subclause whose title is "Steady-state voltage and linear fit pulse peak", and does not say what "pulse peak ratio" means. Nor does 162.9.3.1.1.
SuggestedRemedy
Change the title to "Steady-state voltage and linear fit pulse peak ratio". Define linear fit pulse peak ratio.
Response Response Status C
ACCEPT IN PRINCIPLE.
Change the title to "Steady-state voltage and linear fit pulse peak ratio".
Otherwise resolve using the response to comment \#51.

"The linear fit pulse peak ratio shall be greater than 0.397 " - but there is no definition of that parameter.
163.9.2.5 has a related parameter "Difference linear fit pulse peak ratio" calculated using a procedure in 163A.3.2.1, where Equation (163A-9) defines R_peak(meas). A similar calculation should be used here, but for this clause there is only a measured parameter without a reference parameter, so it can't point to 163A.
SuggestedRemedy
Insert a paragraph after the first paragraph of 162.9.3.1.2:
"The linear fit pulse peak ratio R _peak is defined as the ratio between the maximum value of $p(k)$ and the steady-state voltage $v _f . "$
\{where _ indicates subscript\}
Response \quad Response Status w
ACCEPT.

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 162	SC 162.9.3.1.2	P169
Hidaka, Yasuo	Credo Semiconductor	\# l-136

Comment Type E Comment Status A
TX Rpeak

The minimum value of the linear fit pulse peak ratio should not be described in the body text. The text is inconsistent with Table 162-10, because the text says "greater than" but Table 162-10 implicates "greter than or equal to". 0.397 is allowed in Table 162-10 as the minimum value, but not allowed in the body text. Avoid the minimum value in the text and the text should refer to the table.

SuggestedRemedy

Change "The linear fit pulse peak ratio shall be greater than 0.397 after the transmit equalizer initial condition has been set to preset 1 (no equalization)." to "The linear fit pulse peak ratio shall meet the requirements specified in Table 162-10 after the transmit equalizer initial condition has been set to preset 1 (no equalization)."

Response

Response Status
ACCEPT IN PRINCIPLE.
The equalization is already defined in the first paragraph of 162.9.3.1.2 so it need not be repeated here.

Change "The linear fit pulse peak ratio shall be greater than 0.397 after the transmit equalizer initial condition has been set to preset 1 (no equalization)." to
"Th
"The linear fit pulse peak ratio shall meet the requirement specified in Table 162-10."
Implement with editorial license.

$C l$				
162	$S C$	162.9.3.1.5	P170 23	\# l-52

Ran, Adee Cisco Systems, Inc.

Comment Type T Comment Status A TX control that coefficient' - but $c(0)$ will be set to 1 this way.

The requirements to set to zero are only for $c(-3), c(-2), c(-1)$ and $c(1)$
SuggestedRemedy
Change the quoted sentence to:
'Any of the coefficients $c(-3), c(-2), c(-1)$, or $c(1)$ may be set to zero by asserting a
coefficient request of "no equalization" for that coefficient'.
Response
Response Status C

ACCEPT.

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

CI 162	SC 162.9.3.4	P170	L52	\# l-174
Dawe, Piers J G	NVIDIA			

Comment Type T Comment Status A
This says "NOTE-If the measuring instrument is triggered by a clock based on th
signaling rate divided by an even number, the even-odd jitter may not be correctly
observed." If the measurement sees the wrong EOJ, the reported J3u and Jrms will be off, too.
SuggestedRemedy
Delete "even-odd"
Response Response Status C

ACCEPT IN PRINCIPLE.
EOJ is a sub-component of J 3 u and Jrms so it makes sense that with the wrong pattern the latter two would be different.

Also to address comment \#175, change "may" to "might".
Replace the note with the following:
"NOTE-If the measuring instrument is triggered by a clock based on the signaling rate divided by an even number, the even-odd jitter might not be correctly observed. As a result, the observation of J3u and Jrms might also be affected."

CI 162	SC 162.9.3.4	P170	L52
Dawe, Piers J G	NVIDIA		\# I-175

Comment Type E
TX jitter
"may not be" is troublesome. As "The word may is used to indicate a course of action permissible within the limits of the standard (may equals is permitted to)", "may not" means is not permitted to.
SuggestedRemedy
Change "may not be correctly observed" to "might be incorrectly observed".

Cl 162	SC 162.9.3.5	P172	$L 13$	\# l-176
Dawe, Piers J G		NVIDIA		
Comment Type T	Comment Status R		TX ERL	

ERL needs a parameter Delta f for the S-parameter measurement. I don't see that it is defined for ERL nor incorporated by reference from COM.

SuggestedRemedy

Add a Delta f entry to all the ERL tables. I suppose the value can be the usual 10 MHz although for small test fixtures, a larger value might work too.
Response
Response Status C
REJECT.
Clause 162.9.3.5 states: "Parameters that do not appear in Table 162-13 take values from Table 162-19. Table 162-19 specifies the delta f requirement, which addresses the concern raised by the comment.

Cl 162	SC 162.9.3.5	P172	L19	\# I-177
Dawe, P	J G	NVIDIA		
Comment Type				

Comment Type T
Comment Status R
TX ERL

I wouldn't call this switch or option, a flag with a numerical value. I think it is a parameter, as in functional specifications, and as it is called in 93A.5.1.
SuggestedRemedy
Change flag to parameter, here and in tables 162-18 and 163-6, 163-7, 163-12 and 93A-4. Here and in tables 162-18 and 163-6, 163-7 and 163-12, change 1 to true.
Response
Response Status C
REJECT.
The suggested remedy does not improve the accuracy or clarity of the specified method.
There was no consensus make the proposed changes.
[Editor's note: CC: 93A, 162, 163]

Response Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#174 SORT ORDER: Clause, Subclause, page, line

$C l 162$	$S C 162.11 .5$	P184	$L 33$
Ran, Adee	Cisco Systems, Inc.	\# l-57	

Ran, Adee Cisco Systems, Inc.

Comment Type TR Comment Status R
CA ILcd
Equation 162-19 lets the difference between ILcd and ILdd be 10 dB up to half of (an old Nyquist frequency) and then linearly lower at higher frequencies. This does not make sense physically, and open the door to poor cables. The Tx output common mode noise problem is exacerbated by strong conversion from common mode to differential signal.

Note that COM does not cover the conversion loss term, so we should strive to make it negligible, rather than allowing it to be large.

At low frequencies we expect low ILdd and high ILcd, and the difference is much larger than 10 dB . Even at high frequencies up to 40 GHz , channels submitted to 802.3ck do not exceed 10 dB . We should not allow less than 10 dB difference across the upper half of the spectrum.

Based on samples of submitted channels and some measured channels it is suggested to tighten this specification to be 24 dB at the lowest frequency, linear slope to 10 dB at Nyquist/2, and constant 10 dB at maximum frequency.

This also holds for the specification in clause 163 (channel construction may be different but the arguments above still hold and the effect on the link budget is the same).

A presentation of some contributed data compared to the proposed limit is planned. Any contradictory data would be welcome.

There is no consensus to adopt the proposed changes at this time.

Cl 162	SC 162.11.7	P187	L31	\# l-183
Dawe, Piers J G	NVIDIA			
Comment Type	TR	Comment Status A		Rx bgmax

Cable channels' reference receiver tap weights are less -ve than -0.02, and taps 13 to 40 are less than +0.025 . The tap weight limits are not hard cable or channel limits, but they let cables that go outside the envelope pay a price in COM for it (see dawe_3ck_01a_0921).

The normalized DFE coefficient minimum limit bbmin for taps 3 to 12 is -0.03 and for taps 13 to 40 it is -0.05 (bgmax 0.05) but the receiver is protected from bad taps $25-40$ by the
tail RSS limit. But the receiver is not protected so well for taps 13 to 24 .
We can expect cable channels to be better for reflections than backplane channels because hosts must be designed for maximum-loss performance, and cable technology will also be adequate for maximum-loss performance. As a cable can have worse tap
weights than the headline numbers for a very small COM penalty (see
dawe_3ck_01a_0921 slide 5), this remedy leaves margin for the cable.
SuggestedRemedy
For CR, in Table 162-19, change Normalized coefficient magnitude limit for DFE floating taps, bgmax, from 0.05 to 0.03 .
Response
Response Status C
ACCEPT

Change equation 162-19 limit to be
$24-13.56 / f * 14 \mid 0.05<=f<=13.56$
$10 \quad \mid 13.56<=\mathrm{f}<=40$
Change Figure 162-9 accordingly.
Response
Response Status

REJECT.
Commenter has requested to update suggested remedy to:
Change equation 162-19 limit to be
$30-8 \mathrm{f} \mid 0.05$ </= f </= 2.5
$10 \mid 2.5</=\mathrm{f} \ll=25$
$10-(\mathrm{f}-25) / 3 \quad \mid 25</=\mathrm{f}</=40$
This proposed responses is shown plotted along with the current limit line and responses of
posted channels on slide 28 of the following presentation:
https://www.ieee802.org/3/ck/public/22_01/heck_3ck_01a_0122.pdf
There is interest in aligning the limit line with recently adopted test methodology for TX common-mode AC noise. However, a complete proposal with consensus is required. SORT ORDER: Clause, Subclause, page, line

Page 15 of 18 2022-01-26 2:53:52 PM

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

CI 162B	SC 162B.4.1	P293	L1
Dawe, Piers J G	NVIDIA		\# l-218

Comment Type T
Comment Status A
MTF ILdd
The reference differential-mode to differential-mode insertion loss of the mated test fixture
is a scaled version of Eq 120E-3 and it doesn't align well to kocsis_3ck_01_0719, slide 4.
This causes a problem when constructing the lossy channel for the module stressed input
test (in dawe_3ck_01a_1121 slide 8, the green line is straighter than the black line at low frequencies).
The new equation has the same loss at Nyquist as the existing one.
See new presentation.
SuggestedRemedy
Change equation 162B-5 from
ILddMTFref(f$)=0.942(0.471 \operatorname{sqrt}(\mathrm{f})+0.1194 \mathrm{f}+0.002 \mathrm{f} 2)$
to
LddMTFref(f) $=0.8153^{*} \operatorname{sqrt}(\mathrm{f})+0.003405^{\star} f \wedge 2$)
Update Figure 162B-3, Mated test fixtures differential-mode to differential-mode insertion loss
Response Response Status C

ACCEPT IN PRINCIPLE.
Implement the suggested remedy with editorial license.

CI 162B	$S C$ 162B.5.4	$P 300$	$L 38$	\# $1-119$

Ghiasi, Ali Ghiasi Quantum LLC,Marvell Semiconductor, Inc.
Comment Type TR Comment Status D
I suggest TF7 under feature add single-lane
SuggestedRemedy
Single-lane, SFP112,
Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter

For D2.2 comment resolution, there was contribution for an improved MDI connector mapping that was not accepted by the comment resolution group (CRG). see https://www.ieee802.org/3/ck/public/21_09/ghiasi_3ck_01_0921.pdf One key feedback point on the contribution from the CRG was that the Ground pins should remain in the specification.

QSFP-DD800: For the TX2n/TX2p pair, note that GND pin \#1 is closest to TX2n and GND pin \#4 is closest to TX2p. Also, GND pin \#4 is closest to TX4n and GND pin \#7 is closest to TX4p.

For the OSFP TX2n/TX2p pair, note that GND pin \#1 is closest to TX2p and GND pin \#4 is closest to TX2n. Also, GND pin \#4 goes with TX4p and GND pin \#7 goes with TX4n.

The issue now comes from having both the OSFP and QSFP-DD800 pins in the same able
For the QSFP-DD800 column, GND pin \#1 is the physical pin next to SL1n (TX2n in the connector spec) and GND pin \#4 is the physical pin next to SL1p (TX2p). However, in the OSFP column, the physical GND pin next to SL1n (TX2n) is pin \#4, not pin \#1 as shown above, and the physical GND pin next to SL1p (TX2p) is pin \#1, not \#4. Then the table becomes very messy on subsequent rows because the GND pin number can be one of two values in the OSFP case; for example, GND pin \#1 is next to SL1p (TX2p) but GND pin \#7 is next to SL 3 n (TX4n).

The GND pins are useful information, keep them in the table(s)
SuggestedRemedy
Replace Table 162C-3 with three tables:
QSFP/QSFP-DD800 table
OSFP table
SFP/SFP-DD/DSFP table
see accompanying presentation.
Response
Response Status C
ACCEPT IN PRINCIPLE
A proposal to address this comment is provided in the following presentation: https://www.ieee802.org/3/ck/public/22_01/lusted_3ck_01_0122.pd

Implement, with editorial license, the proposal in lusted_3ck_01_0122.

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments

Cl 162C	SC 162C.1	P303	L10
Ghiasi, Ali		Ghiasi Quantum LLC,Marvell Semiconductor, Inc.	

Comment Type TR
Comment Status A

Table 162C-3 has number of error due to lack of pin alignment between OSFP and QSFP/QSFP-DD800

SuggestedRemedy
These need to be broken in to three tables: SFP112/SFP-DD112/DSFP, QSFP112/QSFPDD800, and the 3rd table for OSFP. Plesae see Lusted-Ghiasi presentation.

Response
 Response Status C

ACCEPT IN PRINCIPLE.

Resolve using the response to comment \#1.

CI $163 \quad$ SC 163.9.2	P203	L43	\# l-101
Mellitz, Richard	Samtec, Inc.		
Comment Type	TR	Comment Status A	AC CM noise

Comment Type TR Comment Status A
AC CM noise
Low frequency CM will not be very dependent on a test fixture. Signal to AC commonmode noise ratio, SCMR (min), is related to the Peak Pulse and used to compensate for test fixture loss. Since the low frequency the loss is very small the tp0v compensation is not correct. As demonstrated in mellitz_3k_adhoc_01_120821 noise originating from a power supply or other low frequency sources can be detrimental.
SuggestedRemedy
Add a new line to table 163-5 called maximum low frequency AC common mode max peak o peak noise (V_CMPP) and set to 30 mV . Create a new section for such indicating the a ow pass 4th order Bessel Thomson filter with a 3 dB point of 10 MHz is to be applied to the CM measurement. Additionally in section 163.9.2.7 indicate that the a high pass 4th order Bessel Thomson filter with a 3 dB point of 10 MHz is to be applied to the AC CM measurement and set SCMR (min) to 11.8 dB . See presentation

Response
 Response Status C

ACCEPT IN PRINCIPLE.
The following presentations were reviewed by the task force
https://www.ieee802.org/3/ck/public/adhoc/jan12_22/mellitz_3ck_adhoc_01_011222.pdf https://www.ieee802.org/3/ck/public/22_01/mellitz_3ck_01_0122.pdf

According to straw poll \#1 there is strong support to adopt the measurement methodology on slides 4 and 5 of mellitz_3ck_01_0122.

According to straw polls \#2 and \#3, the favored specification values for V_CMPP_LF and SCMR_HF are 60 mV and 15 dB , respectively.

Implement methodology and values summarized above for KR and C 2 C .
For C2C add text that specifices that V CMPP is measured over all except $1 \mathrm{E}-5$, rather than $1 \mathrm{E}-4$, of the distribution
mplement with editorial license

STRAW POLLS

Straw poll \#1 (Direction)
For KR and C2C, I support the AC CM voltage test methodology in mellitz_3ck_01_0122
slides 4 and 5
A. Yes
B. No
C. Abstain

Results: A: 20, B: 4 C: 6
Straw poll \#2 (Direction)

IEEE P802.3ck D3.0 100/200/400 Gb/s Electrical Interfaces Task Force Initial Sponsor ballot comments
For KR and C2C, I support V_CMPP_LF value of:
A. 30 mV
. 60 mV
Results: A: 8, B: 15
Straw poll \#3 (Direction)
For KR and C2C, I support SCMR_HF value of:
A. 16 dB
B. 15 dB

Results: A: 9, B: 14

Page 18 of 18
2022-01-26 2:53:52 PM

