

100 Gb/s/lane chip-to-module interface simulation analysis

Adam Healey and Cathy Liu

IEEE P802.3ck 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force July 2018 (r2)

Key attributes of previous chip-to-module interfaces

- Module reference receiver is a simple continuous-time linear equalizer (CTLE)

 Low-power interface seen as critical to meeting stringent module power budgets
- Interface is symmetric in that the same reference receiver is used for module and host
 - Enables lower-power hosts
- Interface target BER supports "end-to-end" forward error correction with optical PMDs
- Host channel is compatible with passive "direct attach" copper cable medium

100 Gb/s/lane chip-to-module interface

- Low-power host interface is critical to meeting stringent module power budgets
 - However, there is a demand for a larger host insertion loss budget as a consequence of the higher (2x) signaling rate
 - More complex reference receivers are being considered [1].
- There is continued value in having a symmetric interface
- Support for the "end-to-end" FEC model supported by the Annex 120E interface is strongly desired
- A simulation model will be used to explore whether or not these key attributes of previous chip-to-module interfaces can be preserved for 100 Gb/s/lane

[1] Miyaoka and Sakai, "Consideration on 100Gb/s C2M SerDes Equalizer", May 2018.

Simulation model

Tx parameter	Value
FFE number of coefficients	2 pre, 1 post
FFE coefficient ranges	[0, 10%], [-25%, 0], [-25%, 0]
FFE coefficient step size	2.5%
Differential output voltage, pk-to-pk	800 mV [a]
Level separation mismatch ratio	0.95
Signal-to-Noise-and-Distortion ratio	33 dB (at TP0 [b])
Even-odd jitter, pk-to-pk	19 mUI
Bounded uncorrelated jitter, pk-to-pk	40 mUI (sinusoid)
Random jitter, RMS	10 mUI
Termination	Design extracted
Package	Design extracted, 3 dB and 5 dB

-159.25 dBm/Hz "external noise"

Reference Rx parameter	Value
CTLE reference	Annex 120D
CTLE gDC	0 to -15 dB, 1 dB steps
CTLE gDC2	0 to -4 dB, 1 dB steps
Normalized poles, zeros	[1/2.5, 1/80, 2], [1/2.5, 1/80]
FFE number of coefficients	0 pre, 4 post
FFE coefficient ranges	+/-20%, +/-20%, +/-10%, +/-10%
FFE coefficient step size	2%

[a] At driver and termination output with no equalization.

Host-to-module channels considered

#	Description
1	MCB
2	5" host PCB
3	No information
4	Lim, 10 dB channel (<u>link</u>)
5	QSFP-DD, 9" 34AWG cable
6	QSFP-DD, 12" 34AWG cable
7	Lim, 12 dB channel (<u>link</u>)
8	No information
9	QSFP, 22" 30 AWG cable
10	Lim,14 dB channel (<u>link</u>)
11	Tracy, 8.5" PCB, micro-via, Rx6 (<u>link</u>)
12	Tracy, 8.5" PCB, micro-via, Rx5 (<u>link</u>)
13	Tracy, 8.5" PCB, "long barrel", Tx6 (<u>link</u>)
14	Tracy, 8.5" PCB, "long barrel", Tx5 (<u>link</u>)
15	QSFP, 40" 30AWG cable

Channel information: 3 dB package trace

NOTE: Tx package FEXT is included in the SNDR parameter.

Channel information: 5 dB package trace

NOTE: Tx package FEXT is included in the SNDR parameter.

Eye quality metrics and equalizer optimization

- Eye height and eye width measured at PAM4 symbol error ratio = 1e-5
- Eye quality metrics
 - Vertical eye closure (VEC) instead of eye height since eye height is a strong function of the gain of reference receiver
 - Eye symmetric mask width (ESMW) is always less than or equal to eye width
- The test pattern is random data
- Tx FFE and Rx FFE are optimized to minimize ISI
- Rx CTLE optimized to maximize the product of 10^(-VEC/20) and ESMW

Impact of removing Rx FFE: 3 dB package trace

■ with Rx FFE ■ no Rx FFE

■ with Rx FFE ■ no Rx FFE

- The "no Rx FFE" case reduces the CTLE gain step to 0.5 dB
- This aligns with the Annex 120E
 reference receiver
- Annex 120E ESMW limit is not met for most cases
- A new limit may be needed for 100 Gb/s/lane
- Annex 120E VEC limit met for insertion loss up to 12 dB even without Rx FFE
- Rx FFE is needed to meet the VEC limit for insertion loss up to 15 dB

Impact of removing Rx FFE: 5 dB package trace

 The higher host package loss causes to "CTLE only" case to exceed the VEC limit for some channels with insertion loss in the vicinity of 12 dB

Equalizer optimization and eye quality metrics

- Rx FFE improves the quality of the eye produced by the reference receiver
- It does not necessarily align with low-power implementation as desired
- Can the performance be recovered with extension of the Tx FFE?
- Remove the Rx FFE and change the Tx FFE configuration as follows
 - FFE number of coefficients: 2 pre, 4 post
 - FFE coefficient ranges: [0, 10%], [-20%, 0], +/-20%, +/-20%, +/-10%, +/-10%
 - FFE coefficient step size: 2%

Comparison of Tx and Rx FFE: 3 dB package trace

Rx FFE Tx FFE

- The "Tx FFE" case reduces the CTLE gain step to 0.5 dB
- Partly responsible for "Tx FFE" slightly outperforming "Rx FFE" for most of the cases

■ Rx FFE ■ Tx FFE

Comparison of Tx and Rx FFE: 5 dB package trace

■ Rx FFE ■ Tx FFE

• For both cases, reduced impact from higher package loss

Summary and conclusions

- IEEE P802.3ck should define a reference receiver for chip-to-module that is conducive to a low-power implementation
 - Minimize the impact of the interface on the module power budget
- The chip-to-module interface should also be symmetric to enable a similar low-power implementation in the host
- Simulations suggest that these objectives can be satisfied under appropriate constraints
 - E.g., ~12 dB host channel insertion loss with ~3 dB Tx package allocation [2]
 - Constraints also serve to extend reach for "direct attach" passive copper cable
- Extensions to the Tx FFE can improve margin and/or increase the loss budget (channel and/or package) while keeping a simpler reference receiver

[2] Lim et al., "100GEL C2M Channel Reach Options & System Design Impacts", May 2018.

Next steps

- Eye opening sensitivity to the Tx FFE coefficient values must be assessed
- Additional work must be done to determine the appropriate limits for the eye opening at TP1a

