Reference Architecture Proposals and Channel Data

Richard Mellitz, Samtec
Howard Heck. Intel
Contribution Acknowledgment: Oluwafemi Akinwale and Subas Bastola , Intel
IEEE802.3 Plenary July 2018, San Diego, Ca

Outline

- 4 COM architectures

Data for each architecture vs a collection of channels
\square Next steps

4 Signal Architecture Approaches

1. Zero Forced DFE
2. Quantized Forced DFE
3. One DFE tap and a number of (Rx)FFE taps
4. One DFE tap and a number of (Rx)FFE taps with gain at cursor

COM is based on the pulse response (Annex 93A)

Thru (ISI) channel response is $h^{(0)}(t)$ i.e. the pulse response

The pulse response $h^{(k)}(t)$ is derived from the voltage transfer function $H^{(k)}(f)$ (see 93A.1.4) using Equation (93A-24).

$$
\begin{equation*}
h^{(k)}(t)=\int_{-\infty}^{\infty} X(f) H^{(t)}(f) \exp (j 2 \pi f t) d t \tag{93~A-24}
\end{equation*}
$$

The following uses pulse response plots to describe COM equalization

The FOM is calculated for each permitted combination of $c(-1), c(1)$, and g_{DC} values per Table $93 \mathrm{~A}-1$. The combination of values that maximizes the FOM, including the corresponding value of t_{s} is used for the calculation of the interference and noise amplitude in 93A.I.7 and the calculation of COM in 93A.I.
\square All legal Tx FFE and CTF (continuous time function) settings are considered

- Called a full grid search
- Caveat: Very often CTF settings dominate over the Tx FFE post cursor.
\square Exception: Samples corresponding to DFE cursor of is $h^{(0)}(t)$ greater than certain values ($\mathrm{b}_{\text {max }}$) are converted in to ISI noise

Example where $1^{\text {st }}$ DFE tap reach limit creating ISI noise

Quantized DFE

\square Same as Zero force except:

- Samples corresponding to a DFE cursor $h^{(0)}\left(t_{n}\right)$ greater than the DFE quantization step size are also converted into ISI noise

One DFE tap + (Rx)FFE

\square Same full grid as for zero forced DFE except

- 1 tap of DFE w/ an Rx FFE of a specified number and resolution of pre-cursors and post-cursors are determined from a vector forced optimization.
- The cursor for the vector forcing is $h^{(0)}\left(t_{s}\right)$ where t_{s} is the sample point and
- The first post cursor is set the maximum allowed setting ($\mathrm{b}_{\max }$)
- $\mathrm{C}=\left(\left(\mathrm{HH}^{\prime} \star \mathrm{HH}\right)^{\wedge}-1 \star \mathrm{H}^{\prime}\right)^{\prime} \star \mathrm{FV}^{\prime}$;
- C are the Rx FFE taps HH is derived from $h^{(0)}(t)$
- FV is the forcing vector, $\mathrm{FV}=[\ldots 0,0$, As, bmax (1)*As, $0,0,0,0 \ldots]$
- FOM is computed from each CTF and Tx FFE setting with
- $h_{\text {fferx }}(f)$ is computed from the C found as in eq 93A-32

$$
\begin{equation*}
H_{j f c}(f)=\sum_{i=-1}^{1} c(i) \exp \left(-j 2 \pi(i+1)\left(f / f_{b}\right)\right) \tag{93~A-21}
\end{equation*}
$$

$\square \operatorname{FFE}(3,32)$ used here for now

- 3 precursors and 32 post cursors

IEEE $802.3100 \mathrm{~Gb} / \mathrm{s}, \mathbf{2 0 0} \mathrm{Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Electrical Interfaces Task Force

One DFE tap $+(R x)$ FFE w/ Cursor Gain

\square Same as one DFE tap and a number of Rx FFE taps (pre and post cursor) except:

- The cursor for the vector forcing $\left(h^{(0)}\left(t_{s}\right)\right.$ where t_{s} is the sample point) has some gain
- $\mathrm{C}=\left(\left(\mathrm{HH}{ }^{\prime *} \mathrm{HH}\right)^{\wedge}-1 * \mathrm{HH}^{\prime}\right)^{\prime}{ }^{*} \mathrm{FV}^{\prime}$;
- C are the Rx FFE taps HH is derived from $h^{(0)}(t)$
- FV is the forcing vector, $\mathrm{FV}=\left[\ldots 0,0, A s * 10^{\text {gatn }} \frac{20}{20}, \mathrm{~b}_{\max }(1) *_{\mathrm{A} s}, 0,0,0,0 \ldots\right]$
- 3 dB gain seems to work best

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f_b	53.125	GBd	
f_min	0.05	GHz	
Delta_f	0.01	GHz	
C_d	[1.3e-4 1.3e-4]	nF	[TX RX]
2_p select	[2]		[test cases to run]
z_p (TX)	[12 30]	mm	[test cases]
z_p (NEXT)	[12 30]	mm	[test cases]
2_p (FEXT)	[12 30]	mm	[test cases]
$z_{\sim} \quad \mathrm{p}(\mathrm{RX})$	[12 30]	mm	[test cases]
C_p	[1.1e-4 1.1e-4]	nF	[TX RX]
R_0	50	Ohm	
R_d	[5050]	Ohm	[TX RX] or selected
f_r	0.75	*fb	
c(0)	0.6		min
$\mathrm{c}(-1)$	[-0.28:0.025:0]		[min:step:max]
c(-2)	[0:0.05:0.1]		[min:step:max]
$\mathrm{c}(-3)$	[-0.1:0.025:0]		[min:step:max]
c(-4)	0		[min:step:max]
c(1)	[-0.05:025:0]		[min:step:max]
g_DC	[-20:1:10]	dB	[min:step:max]
f_z	21.25	GHz	
f_p 1	21.25	GHz	
f_p2	53.125	GHz	
A_V	0.41	V	tdr selected
A_fe	0.41	v	tdr selected
A_ne	0.6	v	tdr selected
L	4		
M	32		
N_b	32	UI	
N_b_step	0		normailized
b_max(1)	0.7		
b_max(2..N_b)	0.2		
sigma_RJ	0.01	UI	
A_DD	0.02	UI	
eta_0	8.20E-09	V^2/GH2	
SNR_TX	32.5	dB	tdr selected
R_LM	0.95		
DER_0	1.00E-04		
Operational control			
COM Pass threshold	3	dB	
Include PCB	0	Value	0, 1, 2
g_DC_HP	[-6:1:0]		[min:step:max]
f_HP_PZ	0.6640625	GHz	

Set to zero

COM config sheet for ZF or Q DFE

For reference

IEEE 802.3100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f_b	53.125	GBd	
f_min	0.05	GHz	
Delta_f	0.01	GHz	
C_d	[1.3e-4 1.3e-4]	nF	[TX RX]
z_p select	[2]		[test cases to run]
z_p (TX)	[12 30]	mm	[test cases]
z_p (NEXT)	[12 30]	mm	[test cases]
2_p (FEXT)	[1230]	mm	[test cases]
$z_{\text {_ }}(\mathrm{P}$ (P$)$	[12 30]	mm	[test cases]
C_p	[1.1e-4 1.1e-4]	nF	[TX RX]
R_0	50	Ohm	
R_d	[5050]	Ohm	[TX RX] or selected
f_r	0.75	*fb	
c(0)	0.6		min
c(-1)	[-0.28:0.025:0]		[min:step:max]
$\mathrm{c}(-2)$	[0:0.05:0.1]		[min:step:max]
c(-3)	0		[min:step:max]
c(-4)	0		[min:step:max]
c (1)	[-0.05:.025:0]		[min:step:max]
g_DC	[-20:1:10]	dB	[min:step:max]
f_z	21.25	GHz	
f_p1	21.25	GHz	
f_p2	53.125	GHz	
A_v	0.41	V	tdr selected
A_fe	0.41	v	tdr selected
A_ne	0.6	v	tdr selected
L	4		
M	32		
N_b	1	UI	
b_max(1)	0.7		
b_max(2..N_b)	0.2		
sigma_RJ	0.01	UI	
A_DD	0.02	UI	
eta_0	8.20E-09	V^2/GHz	
SNR_TX	32.5	dB	tdr selected
R_LM	0.95		
DER_0	1.00E-04		
Operational control			
COM Pass threshold	3	dB	
Include PCB	0	Value	0, 1, 2
g_DC_HP	[-6:1:0]		[min:step:max]
f_HP_PZ	0.6640625	GHz	

Table 92-12 parameters		
Parameter	Setting	
board_tl_gamma0_a1_a2	$[04.114 \mathrm{e}-42.547 \mathrm{e}-4]$	
board_tl_tau	$6.191 \mathrm{E}-03$	$\mathrm{~ns} / \mathrm{mm}$
board_Z_c	110	Chm
Z_bp (TX)	151	mm
Z_bp (NEXT)	72	mm
z_bp (FEXT)	72	mm
Z_bp (RX)	151	mm

COM config sheet for FFE and w/wo gain

Reference: ZF DFE

Channels:

- Cabled backplane (2)
- Cabled fabric switch (12)

Used channels with $\mathrm{COM} \geq 2.3 \mathrm{~dB}$
Analysis used 32 taps total (DFE+FFE or DFE-only)

- Is the ZF DFE too optimistic
- Does the implication of the ZF DFE require too much power

Data Summary

- Quantized DFE seems like just derating COM of the ZF DFE
- FFE with gain seems to get closer to ZF DFE for high loss

COM Correlations to DFE-based COM

More variability for the FFE based COM

Quantized DFE $=-0.4393+0.9172272^{*}$ DFE \triangle Summary of Fit

RSquare		0.994505	
RSquare		0.994047	
Root Me	Square Error	0.051023	
Mean of	Response	2.51465	
Observat	ons (or Sum Wgts)	14	
\checkmark Lack Of Fit			
\triangle Analysis of Variance			
Source	DF $\begin{array}{r}\text { Sum of } \\ \text { Squares }\end{array}$	Mean Square	F Rati
Model	5.6535462	5.65355	2171.62
Error	120.0312405	0.00260	Prob >
C. Total	$13 \quad 5.6847867$		<. 0001
\triangle Parameter Estimates			
Term	Estimate Std Er	ror t Ratio	Prob> \mid \| \mid
Intercept	-0.4393 0.0648	-6.78	<.0001*
DFE	0.91722720 .01	46.6	<.0001*

- Linear Fit
- Bivariate Normal Ellipse $\mathrm{P}=0.950$

\triangle Linear Fit

\section*{\triangle Summary of Fit
 | RSquare | 0.94702 |
| :--- | ---: |
| RSquare Adj | 0.94261 |
| Root Mean Square Error | 0.24503 |
| Mean of Response | 2.16739 |
| Observations (or Sum Wgts) | 1 | Observations (or Sum Wgts) 2.16739
 Lack Of Fit
 | | Sum of | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Source | DF | Squares | Mean Square | FRatio | |
| Model | 1 | 12.881333 | 12.8813 | 214.5404 | |
| Error | 12 | 0.720498 | 0.0600 | Prob $>$ F | |
| C. Total | 13 | 13.601831 | | $<.0001^{*}$ | |}

\triangle Parameter Estimates

$\begin{array}{lrrrr}\text { Term } & \text { Estimate } & \text { Std Error } & \boldsymbol{t} \text { Ratio } & \text { Prob }>|t| \\ \text { Intercept } & -2.291455 & 0.311381 & -7.36 & \end{array}$ $\begin{array}{lllll}\text { Intercept } & -2.291455 & 0.311381 & -7.36<.0001^{*} \\ \text { DFE } & 1.3845124 & 0.094524 & 14.65<0001^{*}\end{array}$

-Linear Fit

- Bivariate Normal Ellipse $\mathrm{P}=0.950$

\triangle Linear Fit

FFE 3dB Gain $=-2.710912+1.567303^{*}$ DFE
Δ Summary of Fit

mary of Fit		
RSquare	0.881475	
RSquare Adj	0.871597	
Root Mean Square Error	0.430078	
Mean of Response	2.336621	
Observations (or Sum Wgts)	14	
\triangleright Lack Of Fit		
\triangle Analysis of Variance		
Source DF Sum of	Mean Square	F Rat
$\begin{array}{llll}\text { Model } & 1616.507187\end{array}$	16.5072	89.244
Error $12 \quad 2.219600$	0.1850	Prob
$\begin{array}{lll}\text { Total } & 13 & 18.72678\end{array}$		<. 0

Δ Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$
Intercept	-2.710912	0.546529	-4.96	0.0003^{*}

X and Y
axis are $d B$ of COM

Summary \& Next Steps

\square Reference EQ architecture choices impact on COM results
\square More variability in results with DFE+FFE-based reference EQ
I Is a quantized DFE good enough?

- It seems like it is the same as raising the COM threshold
\square Follow-on work
- Assess the sensitivity to \# of taps in the Rx Equalizer
- Look at algorithm to better optimize gain in FFE; goal being to reduce uncertainty in results
Follow-work for channels: Address PCB manufacturing to further reduce the channel ISI.

Backup

COM vs Channel IL

Consolidated Data

Consolidated Data \#2

Quantized DFE

Delta calculated relative to ZF-DFE.

DFE + FFE

DFE + FFE w/ 3dB Cursor Gain

Correlation to COM with DFE

