PACKAGE DISCUSSIONS UPDATE & SUGGESTED PKG MODEL BASE-LINE FOR 802.3CK COM

Richard Mellitz – Samtec Liav Ben Artsi – Marvell Semiconductor

Executive Summary

- Multiple discussions held to exchange package model related thoughts Multiple participants
- Taking on Inputs from the group during Bangkok plenary PKG trace loss was updated -Slide #3
- Inputs stated that the trace length in a 70mm² PKG will exceed 30mm (can be as long as 36mm-40mm)
 - It is assumed that in a long trace case PKG trace characteristics can not follow 5dB @30mm (as was presented in Bangkok)
 - What is the appropriate trace length to be used in COM? (many options were brought up)
- A suggested path forward will be shared including a PKG baseline

PKG Extracted Trace Change Highlights

- Surface Roughness to follow best case of surface roughness technology
- Dielectric material characteristics taken @ room temperature (0.004)
- Resulting loss ≈ 4dB @ Nyquist Correlated to inputs
- Ball side equivalent capacitance taken closer to the higher end. i.e. 90fF (actual is 87fF)
- Impedance used was a bit higher (closer to the 92.5Ω target)
- Matched to a model by Rich (Thanks!)
- There is a notion to proceed with this trace loss (and the model that goes with it) to the next phase
- Used 110fF for die side capacitance in runs
- Running with Zambel orthogonal 28.6dB orthogonal BP result >3.5dB COM

Suggested Matched Parameters

[1.1e-4 1.1e-4]	nF	[TX RX]
[12]		[test cases to run]
[12 30; 1.8 1.8 ; 0 0 ; 0 0]	mm	[test cases]
[12 30; 1.8 1.8 ; 0 0 ; 0 0]	mm	[test cases]
[12 30; 1.8 1.8 ; 0 0 ; 0 0]	mm	[test cases]
[12 30; 1.8 1.8 ; 0 0 ; 0 0]	mm	[test cases]
[0.87e-4 0.87e-4]	nF	[TX RX]
	[1.1e-4 1.1e-4] [12] [12 30; 1.8 1.8;0 0;0 0] [12 30; 1.8 1.8;0 0;0 0] [12 30; 1.8 1.8;0 0;0 0] [12 30; 1.8 1.8;0 0;0 0] [0.87e-4 0.87e-4]	[1.1e-4 1.1e-4] nF [1 2] mm [12 30; 1.8 1.8; 0 0; 0 0] mm [12 30; 1.8 1.8; 0 0; 0 0] mm [12 30; 1.8 1.8; 0 0; 0 0] mm [12 30; 1.8 1.8; 0 0; 0 0] mm [12 30; 1.8 1.8; 0 0; 0 0] mm [12 30; 1.8 1.8; 0 0; 0 0] mm

package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
package_tl_tau	6.14E-03	ns/mm
package_Z_c	[87.5 87.5 ; 92.5 92.5; 100 100 ; 100 100]	Ohm (tdr sel)

The Graph below without Cd -5 -10 - 30 mm Tx side: 1.8 mm channel: 0 mm RX side: IL: -4.03dB@26.6GHz data1 IEEE 90Ohm UpdatedIL: -4dB@26.6GHz -20 2 3 0 5 6 4 O Bia Font __Auto... OFigures o... $\times 10^{10}$ * First section impedance may vary to $92.5\Omega/97.5\Omega$

Updated Run

- Former runs resulted in ~2.8-2.9dB of COM
- Current parameters result in 3.6dB COM

Decision Tree – Shared during Ad-hoc

- Assumption: Trace parameters and ball discontinuity to follow written in slide #4
 - Recommendation is that these parameters will be used for future analysis (excluding length)
- Decision #1: Topology options (main open item to be defined before putting PKG model stake in the ground):

Lengths below exclude 1.8mm designated for PTH+lower laser via+ball delay and loss

- Symmetric
 - 30mm, 32mm, 34mm, 36mm per side
- Asymmetric (36mm & 30mm)
 - Tx Longer (may pose a challenge on ITol Rx testing)
 - Rx Longer (May pose a challenge on Tx qual @ TPO in longer packages
- Decision #2: Cd = 130fF / 110fF (10fF assumed to be related to PKG side bump pad parasitic capacitance)

Recommendation:

- Use data provided to analyze and come up with recommendation(s) as to appropriate decision(s) in the above decision tree

- Rx model should be short → Pose a challenge on Rx IPs if actual PKG loss is above COM models' or if reflections reside outside compensated area
- A Symmetric approach gives an answer to both concerns as long as DFE/FFE length is shorter than Rx package delay → Suggest using 32mm on both sides (excluding PTH)

IEEE Interim Meeting - Long Beach - January 2019

Suggested Package Base-Line

- Use the an updated flexible PKG model with two sections (based on the one described in http://www.ieee802.org/3/ck/public/18_09/mellitz_3ck_01_0918.pdf) Allows accounting for PTH @ different impedance as well as for its (+ lower buildup + ball) delay
- Follow trace parameters as in slide #4
- Two symmetric COM package cases (32mm, 1.8mm) and (12mm, 1.8mm) on Tx and Rx sides + DFE/FFE length ≤ 24 taps
- Use Cd=110fF ; Cp=87fF

Thanks!

IEEE Interim Meeting - Long Beach - January 2019