Further Study on RS(544, 514) FEC - Symbol Interleaving and Bit Muxing

Authors: Xiang He, Alex Nicolescu

January, 2019

www.huawei.com

Introduction

- he_3ck_adhoc_01a_010219 showed some simulation results on different FEC schemes for 100G FEC sublayer.
- This presentation added one more case, where 2 FEC codewords are symbol interleaved into two lanes, and the 100G lane is formed by 2:1 bit multiplexing in the PMA.

Background

- FEC interleaving was discussed in gustlin_3ck_01_1118.
- anslow_3ck_01_1118 & anslow_3ck_01_0918 compared many options including interleaving two FEC codewords to form a 100G lane, and 2:1 and 4:1 bit-muxing.
 - It was shown that symbol interleaving outperformed 2:1 or 4:1 bit muxing.
- Precoding effects for DFE based model was also studied (<u>zhang 3ck 01a 0918</u>).
- We did some more analysis based on the contributions above and some measured channel data provided in previous meetings, to show the benefit of symbol interleaving.

Precoding Disabled

SNR

- We did some analysis based on different possibilities of burst continuing "a" values.
 - The model was based on the block diagram below.

Precoding only helps when "a" is greater than 0.6, as shown in the calculated data below:

^{*} In these figures, (SNR – 6.99) is the SNR as defined in anslow 3ck 01 1118.

 Our simulation in the following slides was performed on ADC-based model with low tap values, so we disabled precoding.

SNR

W HUAWEI

Simulation Setup

- The simulations were done based one channel data provided in mellitz_3ck_adhoc_02_081518.
 - The first set of data shown in this contribution was based on "CaBP_BGAVia_Opt2_28dB".
 - More channels will be simulated, including mellitz 3ck adhoc 02 081518 & kareti 3ck 01a 1118
 - This work is done with ADC-based SerDes model*.

TX side:

- Matlab environment generates the RS(544,514) FEC codewords;
- Perform the distribution and interleaving/bit-muxing;
- Modulates the signal stream and sends them over channels that suffer of insertion loss and cross talk.

RX side:

- Equalization is provided by the CTLE whose output is connected to the ADC, followed by the
 FFE/DFE equalization.
- The received demodulated codewords are error corrected and statistics extracted.
- 1000 codewords per encoder is simulated for each data point.

^{*} No precoding. DFE: Tap 1 = 0.3, Tap 2 = 0.05

Case 1 – 1 codeword, 1 lane, direct symbol output.

- This case is provided as a reference.
 - It shows the performance of a native RS(544,514) FEC without any symbol interleaving or bit-muxing.

- The data was taken on different ICN values.
 - Pre-FEC and post-FEC BER values were extracted.
 - The average and worse SNR at FEC decoder for each run were recorded.
 - Two different flavors of plots were tried
 - post-FEC BER vs Pre-FEC BER
 - Pre-FEC BER vs SNR(worst) & SNR (average)

ICN(mV)	preFEC BER	SNR (dB) (Worst)	` '	postFEC BER
1.6	9.04E-04	10.549892	12.169264	1.05E-04
1.2	5.59E-04	10.719422	12.305772	2.43E-05
1.0	4.50E-04	10.995735	12.339306	1.33E-05
0.8	3.82E-04	11.086742	12.358319	7.45E-06

Case 2 – 1 codeword, 2 lanes, bit mux

Round robin distribution of FEC symbols from 1 FEC codeword to two lanes. 2:1 bit multiplexing in the PMA.

- This is equivalent to 802.3cd defined FEC
- Plotting the pre-FEC BER and SNR makes a clearer comparison.
 - Worst SNR is directly related to the number of error bits in a codeword.
 - Average SNR does not reflect the real situation where many error bits are located in one codeword (burst cases).

ICN(mV)	preFEC BER	SNR (dB) (Worst)	· · ·	postFEC BER
1.6	8.05E-04	10.184004	12.142603	8.31E-05
1.2	5.26E-04	10.396164	12.242248	3.15E-05
1	4.09E-04	10.58238	12.312874	1.40E-05
0.8	3.20E-04	11.134963	12.347067	4.41E-06

Case 3 – 2 codewords, 1 lane, symbol mux

2:1 Symbol interleave from 2 FEC codewords to a single 100G lane.

- Symbol interleaving improves FEC performance.
 - No post-FEC errors were detected for ICN <= 1.2mV.</p>
 - The result is almost 0.8mV better than the reference case in terms of ICN value.

ICN(mV)	preFEC BER	SNR (dB) (Worst)	`	postFEC BER
1.6	8.35E-04	11.040394	12.213918	4.60E-06
1.2	4.84E-04	11.137942	12.382493	0
1	3.80E-04	11.185276	12.431798	0
0.8	3.33E-04	11.479653	12.446318	0

Case 4 – 2 codewords, 2 lanes, bit mux

2 FEC codewords symbol interleaved into two lanes. 2:1 bit multiplexing in the PMA.

- Only "20a20b" is simulated.
 - No post-FEC errors were detected for ICN <= 1.0mV.</p>
 - Slightly worse than 2 codewords, 1 lane, symbol mux case.
 - "10ab10ba" could be slightly better.

ICN(mV)	preFEC BER	SNR (dB) (Worst)	`	postFEC BER
1.6	7.84E-04	10.719422	12.183344	3.37E-05
1.2	4.81E-04	11.134963	12.326718	3.86E-06
1	3.66E-04	11.251666	12.382125	0
0.8	3.06E-04	11.237942	12.410276	0

Case Study Summary

- Preliminary conclusion:
 - 2 codewords performs better based on the channel simulated.
 - The performance of 802.3cd type of bit-muxing is not as good as native RS(544,514) FEC.
- Table below shows some example codewords with error bits that may be corrected by one case but failed in another.

Codeword # with > 15 errored bits	Number of error bits	Adjacent errored bit positions	Number of error symbols	Correctable by 1 CW, 2 Lanes, Bit Mux	Correctable by 1 CW, 1 Lane, Direct Symbol Output
369	22	3	15	NO	YES
817	19	2	14	NO	YES
1160	22	2	14	NO	YES
1499	31	2	14	NO	YES
1549	46	4	24	NO	NO

Conclusions and Questions

- This contribution compares different RS(544,514) FEC options against a reference RS(544,514)
 FEC with direct symbol output.
 - Performance ranking high to low:
 - 2 codewords, 1 lane, symbol mux
 - 2 codewords, 2 lanes, bit mux
 - 1 codeword, 1 lane, direct symbol output
 - 1 codeword, 2 lanes, bit mux
 - 1 codeword, 4 lanes, but mux (pending update)
- PCS/FEC/PMA: How many codewords? How many lanes? PMA mux at bit level or symbol level?
 - 2 codewords 2x50G FEC encoders
 - Better performance than 1 codeword.
 - 1 codeword 1x100G FEC encoder
 - Backward compatible.

THANK YOU

