112Gbps LR COM Investigation (III)

Mike Li, Hsinho Wu, Masashi Shimanouchi, Adee Ran

For IEEE 802.3ck

Jan, 2019

Intel

Recap of the Basics Assumptions Used In Previous Investigations

- Investigation (I):http://www.ieee802.org/3/ck/public/18_09/li_3ck_02_0918.pdf
- Investigation (II): http://www.ieee802.org/3/ck/public/18_11/li_3ck_02a_1118.pdf
- Most of 100GEL/112Gbps LR Rx will be ADC-based designs, therefore
 - FFE-heavy/DFE(1-tap) (Config 0) should be the LR ref. receiver benchmark
 - TX:
 - Scale rise/fall time (T_r), jitter (A_DD, sigma_RJ)
 - Extended pre-tap 1 and post-tap 1 range to -0.3
 - RX:
 - eta_0 (8.2e-9 V^2/GHz),
 - CTLE: f_z, f_p1 (both scaled), f_p2 (56GHz), f_HP_PZ (0.7GHz)
 - Added FFE (3 pre-taps + 12 post-taps)
 - 1-tap DFE
 - Due to feedbacks and considerations in design complexity, IP protection, and complications in standardization, we explored 2 ref. Rx options.

Summary of Findings in Nov/2018 802.3 ck Presentation

(http://www.ieee802.org/3/ck/public/18_11/li_3ck_02a_1118.pdf)

- In the Nov/2019 802.3ck meeting, we proposed and examined 2 COM LR reference Rx
 - FFE-lite/DFE-heavy (Config 2)
 - Rx has FFE for pre-taps and DFE for post-taps
 - DFE-only (Config 1)
 - RX only has DFE
 - Goal is to develop simple COM method yet provide reasonable performance

Config #	Baseline Ref. RX	Performance (w.r.t. Config 0)	Complexity	Notes
0	FFE-heavy (3-pre/n- post)/DFE (1-tap)	High	High 👎	Good performanceComplex COM model and standardization
1	DFE-only	Low 👎	Low	Low performanceUses existing COM methodology
2	FFE-lite (3-pre/0- post)/DFE-heavy (n-taps)	High I	Low/Medium	 Good Performance Use existing 802.3/OIF-CEI and COM methodology

Scope of This Work

- Recent 802.3ck discussions raised some concerns about the FFE-lite/DFE-heavy and DFE-only
 options
 - [1] Y. Hidaka and P. Sun, "COM Simulation for 100G KR/CR Channels" (http://www.ieee802.org/3/ck/public/adhoc/dec05_18/hidaka_3ck_adhoc_01_120518.pdf)
 - [2] P. Sun and Y. Hidaka, "Comparison of KR/CR Reference Receivers" (http://www.ieee802.org/3/ck/public/adhoc/dec05_18/sun_3ck_adhoc_01a_120518.pdf)
 - [3] Y. Lu, Z. Huang, and Y. Zhuang, "Investigation of Baseline Reference Receivers", (http://www.ieee802.org/3/ck/public/adhoc/dec12_18/lu_3ck_adhoc_01a_121218.pdf)
 - [4] Y. Lu, Z. Huang, and Y. Zhuang, "More Insights of IEEE 802.3ck Baseline Reference Receivers", (http://www.ieee802.org/3/ck/public/adhoc/dec12_18/lu_3ck_adhoc_01a_121218.pdf)
- Scope and Tasks
 - Simulate with more 802.3ck channels
 - Confirm/check observations from [1][2][3][4]
 - Study the risk and feasibility of enhanced DFE-only option (Config. 1)
 - Modify FFE-lite/DFE-heavy option (Config. 2) to address performance concerns

P802.3ck

100GEL/112Gbps LR COM with DFE-only (Config 1) and FFE-lite/DFE-heavy (Config 2) options

- Baseline
 - 802.3cd COM
 - http://www.ieee802.org/3/cd/public/adhoc/archiv e/mellitz_080217_3cd_01_adhoc.pdf
 - http://www.ieee802.org/3/cd/public/adhoc/archiv e/mellitz_3cd_0817_COM.zip
- Change Summary
 - TX
 - Scale: TX rise/fall time (T_r), jitter (A_DD, sigma_RJ)
 - TX EQ
 - Config 0 and Config 2: 2 pre-taps + 1 post-tap, 2.5% step size, pre-tap1 and post-tap1 min. = -0.3
 - Config 1: Same as above or 3 pre-taps + 1 post-tap
 - Same R_{LM} , SNR_{TX}
 - RX
 - RX input referred noise (eta_0): 8.2e-9 V²/GHz
 - Equalization
 - CTLE
 - » Scale f_z, f_p1, f_p2
 - » f_p2 = 56 GHz (= baud rate)*
 - » f_HP_PZ: 0.7 GHz (=f_b / 80)

*: In 802.3cd COM, f_p2 is 2x baud rate (112GHz) which we believe it might be too high for today's CMOS technology. Further, f_r (RX noise filter) is set at 0.75x baud rate which will reduce the effectiveness of higher f_p2.

- Config 1: DFE-only
 - DFE Configuration
 - 16 or 20 post-taps
 - DFE tap coef. Tap $1 \le 0.7$ or 0.85, others ≤ 0.2
- Config 2: FFE-lite/DFE-heavy
 - DFE Configuration
 - 16 or 20 post-taps
 - DFE tap coef. Tap $1 \le 0.7$ or 0.6 or 0.5, others ≤ 0.2
 - FFE Configuration
 - 3 pre-taps
 - FFE tap coef: Main cursor: 1, Pre-tap 1: ≤0.5, other taps:
 ≤0.125
- Package / TX/RX Capacitance and Termination
 - Length: max 20 or 30mm
 - T-Line: No change
 - Cd: 130fF
 - Cp: 110fF
 - Rd: 50 Ohms

Proposed 112Gbps LR COM Spreadsheet Config 1: DFE-only

Table 93A-1 parameters						
Parameter	Parameter Setting Units Information					
f_b	56	GBd				
f_min	0.05	GHz				
Delta_f	0.01	GHz				
C_d	[1.3e-4 1.3e-4]	nF	[TX RX]			
z_p select	[12345]		[test cases to run]			
z_p (TX)	[12 20 30 20 30]	mm	[test cases]			
z_p (NEXT)	[12 12 12 12 12 12]	mm	[test cases]			
z_p (FEXT)	[12 20 20 30 30]	mm	[test cases]			
z_p (RX)	[12 20 20 30 30]	mm	[test cases]			
C_p	[1.1e-4 1.1e-4]	nF	[TX RX]			
R_0	50	Ohm				
R_d	[50 50]	Ohm	[TX RX] or selected			
f_r	0.75	*fb				
c(0)	0.6		min			
c(-1)	[-0.3:0.025:0]		[min:step:max]			
c(-2)	[0:0.025:0.1]		[min:step:max]			
c(1)	[-0.3:0.025:0]		[min:step:max]			
g_DC	[-20:1:0]	dB	[min:step:max]			
g_DC_HP	[-6:1:0]		[min:step:max]			
f_HP_PZ	0.7	GHz				
f_z	22.4	GHz				
f_p1	22.4	GHz				
f_p2	56	GHz				
A_v	0.41	V	tdr selected			
A_fe	0.41	V	tdr selected			
A_ne	0.6	V	tdr selected			
L	4					
М	32					
N_b	16	UI				
b_max(1)	0.7					
b_max(2N_b)	0.2					
sigma_RJ	0.01	UI				
A_DD	0.02	UI				
eta_0	8.20E-09	V^2/GHz				
SNR_TX	32.5	dB	tdr selected			
R_LM	0.95					
DER_0	1.00E-04					
	Operational control		-			
COM Pass threshold	3	dB				
Include PCB	0	Value	0, 1, 2			

I/O control				
DIAGNOSTICS	0	logical		
DISPLAY_WINDOW	0	logical		
Display frequency domain	0	logical		
CSV_REPORT	1	logical		
RESULT_DIR	.\results\D1p2_{date}\			
SAVE_FIGURES	0	logical		
Port Order	[1 3 2 4]			
RUNTAG	v165_d1p0a			
Ree	eiver testing			
RX_CALIBRATION	0	logical		
Sigma BBN step	5.00E-03	V		
IDEAL_TX_TERM	0	logical		
T_r	0.006160714	ns		
FORCE_TR	1	logical		

RX FFE			
ffe_enable	0	logical	
ffe_pre_tap_len	3	UI	
ffe_post_tap_len	0	UI	
ffe_tap_step_size	0	UI	
ffe_main_cursor_min	1		
ffe_pre_tap1_max	0.5		
ffe_post_tap1_max	0.5		
ffe_tapn_max	0.125		

Table 93A–3 par		
Parameter	Setting	Units
package_tl_gamma0_a1_a2	[0 1.734e-3 1.455e-4]	
package_tl_tau	6.141E-03	ns/mm
package_Z_c	90	Ohm (tdr sel)

Table 92–12 par		
Parameter	Setting	
board_tl_gamma0_a1_a2	[0 4.114e-4 2.547e-4]	
board_tl_tau	6.191E-03	ns/mm
board_Z_c	110	Ohm
z_bp (TX)	151	mm
z_bp (NEXT)	72	mm
z_bp (FEXT)	72	mm
z_bp (RX)	151	mm

Proposed 112Gbps LR COM Spreadsheet Config 2: FFE-lite/DFE-heavy

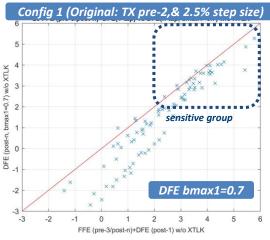
	Table 93A-1 parameters				
Parameter	Setting	Units	Information		
f_b	56	GBd			
f_min	0.05	GHz			
Delta_f	0.01	GHz			
C_d	[1.3e-4 1.3e-4]	nF	[TX RX]		
z_p select	[12345]		[test cases to run]		
z_p (TX)	[12 20 30 20 30]	Mm	[test cases]		
z_p (NEXT)	[12 12 12 12 12 12]	Mm	[test cases]		
z_p (FEXT)	[12 20 20 30 30]	mm	[test cases]		
z_p (RX)	[12 20 20 30 30]	mm	[test cases]		
C_p	[1.1e-4 1.1e-4]	nF	[TX RX]		
R_0	50	Ohm			
R_d	[50 50]	Ohm	[TX RX] or selected		
f_r	0.75	*fb			
c(0)	0.6		min		
c(-1)	[-0.3:0.025:0]		[min:step:max]		
c(-2)	[0:0.025:0.1]		[min:step:max]		
c(1)	[-0.3:0.025:0]		[min:step:max]		
g_DC	[-20:1:0]	dB	[min:step:max]		
g_DC_HP	[-6:1:0]		[min:step:max]		
f_HP_PZ	0.7	GHz			
f_z	22.4	GHz			
f_p1	22.4	GHz			
f_p2	56	GHz			
A_v	0.41	V	tdr selected		
A_fe	0.41	V	tdr selected		
A_ne	0.6	V	tdr selected		
L	4				
М	32				
N_b	16	UI			
b_max(1)	0.5				
b_max(2N_b)	0.2				
sigma_RJ	0.01	UI			
A_DD	0.02	UI			
eta_0	8.20E-09	V^2/GHz			
SNR_TX	32.5	dB	tdr selected		
R_LM	0.95				
DER_0	1.00E-04				
	Operational contro				
COM Pass threshold	3	dB			
Include PCB	0	Value	0, 1, 2		

I/O control				
DIAGNOSTICS	0	logical		
DISPLAY_WINDOW	0	logical		
Display frequency domain	0	logical		
CSV_REPORT	1	logical		
RESULT_DIR	.\results\D1p2_{date}\			
SAVE_FIGURES	0	logical		
Port Order	[1 3 2 4]			
RUNTAG	v165_d1p0a			
Rec	eiver testing			
RX_CALIBRATION	0	logical		
Sigma BBN step	5.00E-03	V		
IDEAL_TX_TERM	0	logical		
T_r	0.006160714	ns		
FORCE_TR	1	logical		

Table 93A–3 par		
Parameter	Setting	Units
package_tl_gamma0_a1_a2	[0 1.734e-3 1.455e-4]	
package_tl_tau	6.141E-03	ns/mm
package_Z_c	90	Ohm (tdr sel)

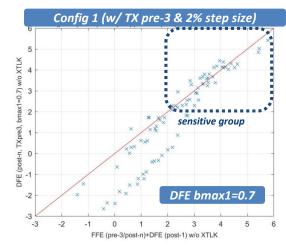
Table 92–12 par		
Parameter	Setting	
board_tl_gamma0_a1_a2	[0 4.114e-4 2.547e-4]	
board_tl_tau	6.191E-03	ns/mm
board_Z_c	110	Ohm
z_bp (TX)	151	mm
z_bp (NEXT)	72	mm
z_bp (FEXT)	72	mm
z_bp (RX)	151	mm

	RX FFE	
ffe_enable	1	logical
ffe_pre_tap_len	3	UI
ffe_post_tap_len	0	UI
ffe_tap_step_size	0	UI
ffe_main_cursor_min	1	
ffe_pre_tap1_max	0.5	
ffe_post_tap1_max	0.5	
ffe_tapn_max	0.125	

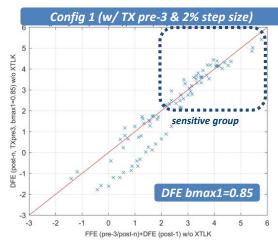

Channel Data

CH #	Description	Reference Document	Notes
1-3	Initial Host 30dB Backplane Channel Models	heck_100GEL_01_0118.pdf	
4-6	Best Case 3", 13", 18" Tachyon Backplane	mellitz_100GEL_adhoc_01_010318.pdf	
7-8	Synthesized CR Channels (2.0m and 2.5m 28AWG Cable)	mellitz_100GEL_adhoc_01_021218.pdf	
9-10	Orthogonal or Cabled Backplane Channels	tracy_100GEL_03_0118.pdf	
11-26	16/20/24/28dB Cabled Backplane Channels	heck_3ck_01_1118.pdf	
27-32	24/28/32dB Cabled Backplane Channels including Via	mellitz_3ck_adhoc_02_081518.pdf	
33-51	Measured Traditional Backplane Channels		
52-70	Measured Cabled Backplane Channels	kareti_3ck_01a_1118.pdf	
71-85	Measured Orthogonal Backplane Channels		

All channel data are from IEEE 802.3ck Task Force Tools & Channels page: <u>http://www.ieee802.org/3/ck/public/tools/index.html</u>



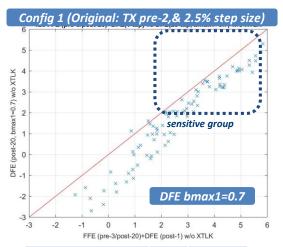
112Gbps Test Channel COM Results w/20mm Packages w/o Crosstalk*: DFE-only (Config 1, 16 post-taps)



	Value	Note
Mean Diff	0.81	
Sensitive Group Mean Diff	0.53	
False Pass	1	1.18%
False Fail	10	11.76%

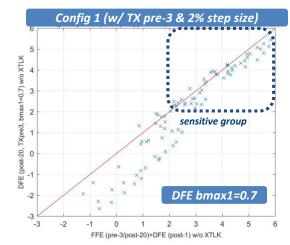
Original Config 1 is too pessimistic w.r.t. Config 0

	Value	Note
Mean Diff	0.53	
Sensitive Group Mean Diff	0.13	
False Pass	2	2.35%
False Fail	4	4.71%

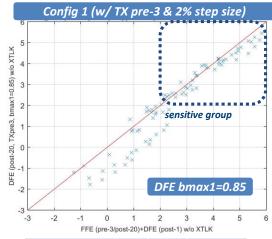


	Value	Note
Mean Diff	0.30	
Sensitive Group Mean Diff	0.04	
alse Pass	2	2.35%
alse Fail	3	3.53%

Config 1 w/ b_{max}(1)=0.85 and TX w/ 3 pre-taps matches better with Config 0



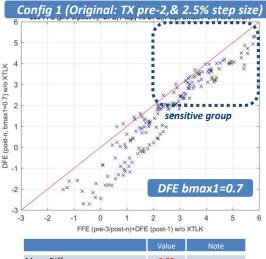
112Gbps Test Channel COM Results w/ 20mm Packages w/o Crosstalk*: DFE-only (Config 1, 20 post-taps)



	Value	Note
Mean Diff	0.90	
Sensitive Group Mean Diff	0.76	
False Pass	0	0.00%
False Fail	6	7.06%

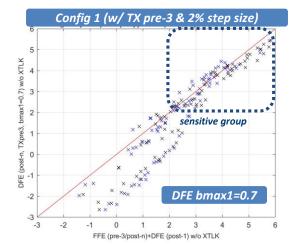
Original Config 1 is too pessimistic w.r.t. Config 0

	Value	Note
Mean Diff	0.60	
Sensitive Group Mean Diff	0.34	
False Pass	1	1.18%
False Fail	4	4.71%

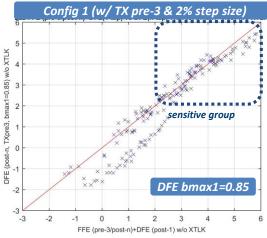


	Value	Note
Mean Diff	0.37	
Sensitive Group Mean Diff	0.23	
alse Pass	1	1.18%
alse Fail	4	4.71%

Config 1 w/ b_{max}(1)=0.85 and TX w/ 3 pre-taps matches better with Config 0



112Gbps Test Channel COM Results w/ 20mm Packages w/o Crosstalk*: DFE-only (Config 1, 16/20 post-taps)



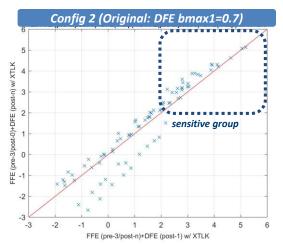
Mean Diff	0.85	
Sensitive Group Mean Diff	0.65	
False Pass	1	0.59%
False Fail	16	9.41%

Original Config 1 is too pessimistic w.r.t. Config 0

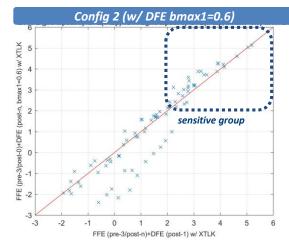
	Value	Note
Mean Diff	0.56	
Sensitive Group Mean Diff	0.24	
False Pass	3	1.76%
False Fail	8	4.71%

	Value	Note
Mean Diff	0.33	
Sensitive Group Mean Diff	0.14	
False Pass	3	1.76%
False Fail	7	4.12%

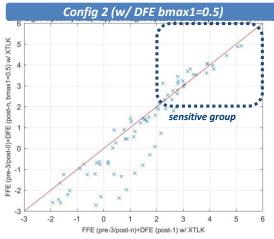
Config 1 w/ b_{max}(1)=0.85 and TX w/ 3 pre-taps matches better with Config 0


Concerns with DFE-only (Config 1) with Large DFE-Tap Limit

- Observed same trend in [1][2] that DFE tap 1 with b_{max}(1)=0.85 (Config 1) yields closer results with ADC-based design (Config 0)
- Concerns
 - Most of 100/112Gbps transceivers are ADC-based with FFE-heavy/DFE-lite (Config 0) configuration
 - e.g. RX FFE with 3 pre-taps and long post taps and 1-tap DFE
 - DFE with increased tap coefficient range, e.g. $b_{max}(1)=0.85$, is known to
 - Exacerbate burst errors and reduce FEC efficiency
 - Shift post-cursor equalization away from TX FIR and CTLE
 - » Due to "enhanced" DFE tap weight, CTLE output will likely be poorly equalized and, hence, make clock recovery more difficult
 - » In contrary to today's RX design and operating condition
 - TX with additional pre-tap
 - Adding additional burden to TX
 - » Mismatch with ADC-based design and increase COM computation time P802.3ck


112Gbps Test Channel COM Results

w/ 20mm Packages w/ Crosstalk: FFE-lite/DFE-heavy (Config 2, 16 post-taps)

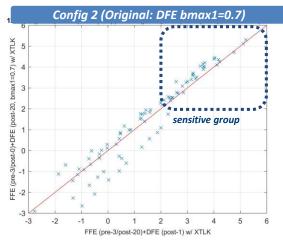


	Value	Note
Mean Diff	0.04	
Sensitive Group Mean Diff	-0.30	
False Pass	8	9.41%
False Fail	0	0.00%

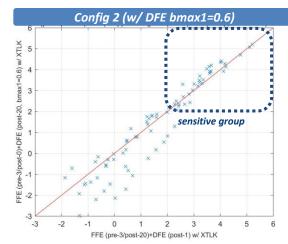
Original Config 2 is optimistic w.r.t. Config 0

	Value	Note
Mean Diff	0.30	
Sensitive Group Mean Diff	-0.19	
False Pass	7	8.24%
False Fail	0	0.00%

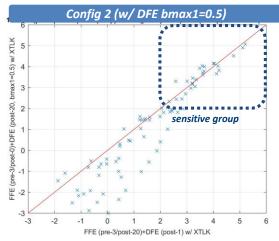
	Value	Note
Mean Diff	0.97	
Sensitive Group Mean Diff	0.03	
False Pass	5	5.88%
False Fail	1	1.18%


Config 2 w/ b_{max}(1)=0.5 matches better with Config 0

P802.3ck


112Gbps Test Channel COM Results

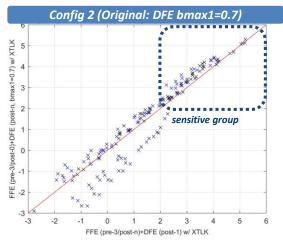
w/ 20mm Packages w/ Crosstalk: FFE-lite/DFE-heavy (Config 2, 20 post-taps)



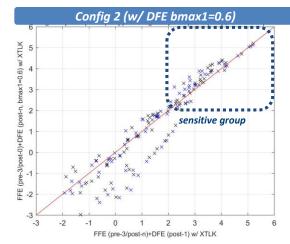
	Value	Note
Mean Diff	0.03	
Sensitive Group Mean Diff	-0.23	
False Pass	3	3.53%
False Fail	0	0.00%

Original Config 2 is optimistic w.r.t. Config 0

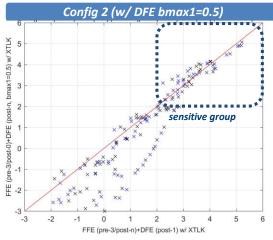
	Value	Note
Mean Diff	0.28	
Sensitive Group Mean Diff	-0.10	
False Pass	2	2.35%
False Fail	0	0.00%


	Value	Note
Mean Diff	0.66	
Sensitive Group Mean Diff	0.14	
False Pass	1	1.18%
False Fail	1	1.18%

Config 2 w/ b_{max}(1)=0.5 matches better with Config 0


112Gbps Test Channel COM Results

w/ 20mm Packages w/ Crosstalk: FFE-lite/DFE-heavy (Config 2, 16/20 post-taps)



	Value	Note
Mean Diff	0.03	
Sensitive Group Mean Diff	-0.27	
False Pass	11	6.47%
False Fail	0	0.00%

Original Config 2 is optimistic w.r.t. Config 0

	Value	Note
Mean Diff	0.29	
Sensitive Group Mean Diff	-0.14	
False Pass	9	5.29%
False Fail	0	0.00%

	Value	Note
Mean Diff	0.81	
Sensitive Group Mean Diff	0.09	
False Pass	6	3.32%
False Fail	2	1.18%

Config 2 w/ b_{max}(1)=0.5 matches better with Config 0

FFE-lite/DFE-heavy (Config 2) Adjustment

- Observed same trend in [1][2][3][4] that FFE-lite/DFE-heavy (Config 2) is seen to be more optimistic than FFE-heavy/DFE-lite (Config 0)
- In ADC-based design, DFE tap coefficient 1 is unlikely to be high because
 - 1st post-cursor ISI is jointly equalized by TX FIR, CTLE, RX FFE/DFE
- Propose adjustment to FFE-lite/DFE-heavy (Config 2)
 - Reduce DFE tap 1 coefficient limit, e.g. $b_{max}(1)$, from 0.7 to 0.55
 - Align with FFE-heavy/DFE-lite (Config 0) performance
 - Reduce burst errors and improve FEC efficiency
 - CTLE output will be better optimized for CDR operation

Summary and Conclusions

- Goal clarifications of COM LR reference RX model
 - Provide reasonable performance of mainstream RX design, e.g. ADC-based
 - Simple to be specified in COM and 100GEL specifications
 - Likely to get consensus/agreement from IC vendors
- FFE-lite/DFE-heavy (Config 2, with $b_{max}(1)=0.55$) is shown to be the best candidate

Config #	Baseline Ref. RX	Performance (w.r.t. <i>Config 0</i>)	Complexity	Notes
0	FFE-heavy (3-pre/n-post)/DFE (1- tap)	High	High 👎	 Good performance and align with mainstream RX design Complex COM model and standardization
1	DFE-only	Low	Low	Not align with mainstream RX designUses existing COM methodology
2	FFE-lite (3-pre/0-post)/DFE-heavy (n-taps)	High	Low/Medium	 Good Performance and better match with mainstream RX design Use existing 802.3/OIF-CEI and COM methodology

Thank You

