\because_{0}° CrędŐ

KR/CR Simulation Results with COM Tool 2.57

IEEE P802.3ck Task Force
Phil Sun, Yasuo Hidaka
Credo Semiconductor

Introduction

$>$ There are discussions regarding performance of different KR/CR reference receivers.
$>$ This contribution simulated all $115 \mathrm{KR} / \mathrm{CR}$ channels submitted to 802.3ck project (including 100GEL) with the three reference receivers under discussion.

- A: Existing long DFE receiver.
- B: Long FFE + 1-tap DFE receiver.
- C: 3-tap FFE precursor + long DFE post cursor receiver.
> Extensive studies have been performed to support 100G KR/CR channels, e.g., package models and equalization parameters. Some important improvements made to support 100G KR/CR channels are analyzed.
$>$ This simulation is based on COM tool 2.57 as requested in minutes 121918 3ck adhoc.

COM Spread Sheet

Table 93A-1 parameters				I/O control			Table 93A-3 parameters		
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units
f_b	53.125	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[00.0009909 0.0002772]	
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	$6.141 \mathrm{E}-03$	$\mathrm{ns} / \mathrm{mm}$
Delta_f	0.01	GHz		RESULT_DIR	. Iresults\100GEL_WG_\{da te $\} \backslash$		package_Z_c	[87.5 $87.5 ; 92.592 .5$]	Ohm
C_d	[1.1e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical			
z_p select	[2]		[test cases to run]	Port Order	[1324]		Table 92-12 parameters		
z_p (TX)	[12 30; 1.8 1.8]	mm	[test cases]	RUNTAG	CR_eval_		Parameter	Setting	
z_p (NEXT)	[12 30; 1.8 1.8]	mm	[test cases]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (FEXT)	[12 30; 1.8 1.8]	mm	[test cases]	Operational			board_tl_tau	$5.790 \mathrm{E}-03$	ns/mm
z_p (RX)	[12 30; 1.81 .8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	90	Ohm
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	ERL Pass threshold	10.5	dB	z_bp (TX)	119	mm
R_0	50	Ohm		DER_0	$1.00 \mathrm{E}-04$		z_bp (NEXT)	119	mm
R_d	[50 50]	Ohm	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	119	mm
A_v	0.413	V	$\mathrm{vp} / \mathrm{vf}=.694$	FORCE_TR	1	logical	z_bp (RX)	119	mm
A_fe	0.413	V	$\mathrm{vp} / \mathrm{vf}=.694$	Include PCB	0	logical			
A_ne	0.608	V		TDR and ERL options					
L	4			TDR	1	logical			
M	32			ERL	1	logical			
filter and Eq				ERL_ONLY	0	logical			
f_r	0.75	*fb		TR_TDR	0.01	ns			
$\mathrm{c}(0)$	0.54		min	N	1000				
c(-1)	[-0.34:0.02:0]		[min:step:max]	TDR_Butterworth	1	logical			
c(-2)	[0:0.02:0.12]		[min:step:max]	beta_x	1.70E+09				
c(-3)	[-0.06:0.02:0]		[min:step:max]	rho_x	0.25				
c(1)	[-0.1:0.05:0]		[min:step:max]	fixture delay time	0	enter sec			
N_b	24	UI		Receiver testing					
b_max(1)	0.85			RX_CALIBRATION	0	logical			
b_max(2..N_b)	0.3			Sigma BBN step	$5.00 \mathrm{E}-03$	V			
g_DC	[-20:1:0]	dB	[min:step:max]	Noise, jitter					
f_z	21.25	GHz		sigma_RJ	0.01	UI			
f_p1	21.25	GHz		A_DD	0.02	UI			
f_p2	53.125	GHz		eta_0	$8.20 \mathrm{E}-09$	V^2/GHz			
g_DC_HP	[-6:1:0]		[min:step:max]	SNR_TX	33	dB			
f_HP_PZ	0.6640625	GHz		R_LM	0.95				
ffe_pre_tap_len	0	UI							
ffe_post_tap_len	0	UI							
ffe_tap_step_size	0								
ffe_main_cursor_min	0.7								
ffe_pre_tap1_max	0.3								
ffe_post_tap1_max	0.3								
ffe_tapn_max	0.125								
ffe_backoff	0								

Simulation Conditions

Model Name		DFE (DFE-based)	PDFE (DFE + 3 pre-taps)	FFE (FFE-based)
\# of taps	DFE	24 / 16	24	1
	FFE	0	4 (3-pre + 0-post)	28 (3-pre + 24-post) / 20 (3-pre + 16-post)
	TX FIR	5 (3-pre + 1-post)		
Step	RX DFE, FFE	0\%		
	TX FIR pre	1.5\% / 2.0\% / 2.5\%	2.0\% / 2.5\%	1.5\% / 2.0\% / 2.5\%
	TX FIR post	5\%		
DFE b1max		0.7 / 0.85 / 1.0	0.7 / 0.85	0.7 / 0.85

$>$ Label of Simulation Condition: Prefix + Model Name + Suffix (+ Option)

- Prefix: step of TX FIR pre taps
- None: 1.5\%, C (coarse): 2.5\%, M (Medium): 2.0\%
- Suffix: DFE b1max value
- Option: deviation from default condition
- ENOB5.2: optional model of ADC effective number of bits as 5.2 (default is no ENOB model)
- Nb16: 16-tap DFE (default is 24-tap DFE)
- pst16: 20-tap (3-pre + 16-post) FFE (default is 28-tap (3-pre + 24-post) FFE)
- Example
- CDFE0.85: DFE-based with DFE b1max=0.85 and 2.5\% step of TX FIR pre taps
- PDFE0.7: DFE + pre-taps with DFE b1max=0.7 and 1.5% step of TX FIR pre taps
> Modifications Made to COM 2.57:
" To guarantee full grid search, "break" is changed "continue" on line 2642 per discussion with Rich Melitz.
- The number of equalizer post taps is changed from 16 to 24 , as shorter equalizers have already been covered by earlier studies [1].
- $\quad b \max (2: \mathrm{Nb})$ is relaxed from 0.2 to 0.3 to tolerate higher b2. This will also alleviate error propagation.

Channel Data for Simulation

$>$ Simulation was done for the following publicly available 115 LR channels

- Among them, 8 channels are marked up with red dots in the plots.

CH \#	Channels marked with red dots	Group	Description	Reference Document
1-2		RM1	Two Very Good 28dB Loss Ideal Transmission Lines	mellitz_3ck_adhoc_02_072518.pdf
3-8	CH7 : CaBP_BGAVia_Opt2_28dB	RM2	24/28/32dB Cabled Backplane Channels including Via	mellitz_3ck_adhoc_02_081518.pdf
9-10		RM3	Synthesized CR Channels (2.0m and 2.5m 28AWG Cable)	mellitz_100GEL_adhoc_01_021218.pdf
11-13		RM4	Best Case 3", 13", 18" Tachyon Backplane	mellitz_100GEL_adhoc_01_010318.pdf
14-15		NT1	Orthogonal or Cabled Backplane Channels	tracy_100GEL_03_0118.pdf
16		AZ1	Orthogonal Backplane Channel	zambell_100GEL_01a_0318.pdf
17-19		HH1	Initial Host 30dB Backplane Channel Models	heck_100GEL_01_0118.pdf
20-35	CH21: 16dB 575mm high ISI CH33 : 28dB 575mm high ISI	HH2	16/20/24/28dB Cabled Backplane Channels	heck_3ck_01_1118.pdf
36-54	$\begin{gathered} \text { CH36 : Bch1_3p5 } \\ \text { CH46: Bch2_a7p5_7 } \end{gathered}$	UK1	Measured Traditional Backplane Channels	
55-73	CH68 : CAch3_b2	UK2	Measured Cabled Backplane Channels	kareti_3ck_01a_1118.pdf
74-88	$\begin{aligned} & \text { CH80 : OAch4 } \\ & \text { CH81 : Och4 } \end{aligned}$	UK3	Measured Orthogonal Backplane Channels	
89-115		AZ2	Measured Orthogonal Backplane with Varied Impedances	zambell_3ck_01_1118.pdf

All channel data are taken from IEEE 100GEL Study Group and P802.3ck Task Force - Tools and Channels pages.

i.e. http://www.ieee802.org/3/100GEL/public/tools/index.html and http://www.ieee802.org/3/ck/public/tools/index.html

Performance Comparison of DFE and FFE Receivers

$>$ With b1max $=0.85$, COM difference is within $\sim 0.5 \mathrm{~dB}$ for FFE and DFE receivers.

- The pass/fail inconsistency are three channels passed by either FFE or DFE receiver but failed by the other receiver up to 0.2 dB .

Inconsistent Channels Analysis

FFE model (X) v.s. DFE model (Y)

FFE model (X) v.s. Realistic FFE model (Y)

$>$ For DFE-failed channels, degradation from model performance (right figure Y) to more realistic performance (right figure Y) is $\sim 2.3 \mathrm{~dB}$ that is larger than typical degradation ($\sim 2 \mathrm{~dB}$).

- Not only DFE-based receivers, but also real FFE-based receivers are likely to fail these channels.
- These channels should not pass.
$>$ For FFE-failed channel, degradation from model performance to real performance is $\sim 1.6 \mathrm{~dB}$ that is smaller than typical degradation ($\sim 2 \mathrm{~dB}$).
- Although ideal FFE model failed for this channel, this channel is relatively easy for real FFE-based receivers.

Inconsistent Channels Analysis

Channel	MDFE0.85 COM	MFFE0.85 COM	MPDFE0.85 COM	ERL with 24 taps	ICN	Fitted IL
\#66	2.9382	3.4785	3.9994	11.31	0.54	26.19
\#67	2.7932	3.2609	3.8493	11.27	0.54	26.88
\#32	3.0362	2.8534	3.5566	19.99	1.56	29.66

MDFE0. 85

■ISI ■TX ■ nOnoise ■ p_DD ■ Xtalk ■ jitter

MFFE0.85

■SI ■TX ■ nOnoise ■ p_DD ■ Xtalk ■jitter

MPDFE0. 85

■ISI ■TX ■ nOnoise ■ p_DD ■ Xtalk ■ jitter
> For channel \#32, FFE and DFE have similar source of impairment. COM difference is small.
> For channel \#66 and \#67 DFE model sees higher normalized ISI.

PDFE Receiver Performance

MPDFE0.7 (X) vs MDFE* (Y)

MPDFE0.7 (X) vs MFFE* (Y)
$>$ PDFE is always better than DFE or FFE.

- Even MPDFE0.7 (b1max=0.7) is mostly better than MDFE* and MFFE*.
- MPDFE0.85 is always better than MPDFE0.7 (shown in backup)
$>$ PDFE is an ideal analog SERDES architecture.
- It has implementation penalties which is not captured by this ideal reference model.
>PDFE passes channels that cannot be supported by typical DFE or FFE receivers.

Receiver Performance with Relaxed b1max

> Performance difference close to 3dB threshold is more critical for channel qualification purpose.
$>$ In critical region, DFE receiver performance can be up to $\sim 0.5 \mathrm{~dB}$ better if b1max is relaxed from 0.7 to 0.85 .
$>$ In critical region, DFE receiver performance can be up to $\sim 0.14 \mathrm{~dB}$ better if b1max is relaxed from 0.85 to 1.00 .
> Relaxing b1max does not help FFE as much.

- The biggest COM difference is FFE0.7 performs about 0.04 dB better than FFE0.85.

TX Resolution Impact

TX Resolution
 2.0\% (X) vs 2.5\% (Y)

MFFEO.7(X) vs CFFEO.7(Y)

TX Resolution

 1.5% (X) vs 2.0\% (Y)$>2.5 \%$ (CDFE and CFFE) are often worse than 2.0% for both DFE and FFE. 2.0% (MDFE and MFFE) are close to 1.5% (DFE and FFE).
$>$ Finer TX resolution are being implemented for $100 \mathrm{~Gb} /$ s SERDES for better performance and shall be reflected in the standard. For example a 8-bit DAC is implemented for 112G SERDES with less than 1\% resolution. [2]
$>$ High resolution can be done by a low power half-size driver [7]. For DAC based architecture, increasing digital tap precision costs very trivial power.
> Finer TX resolution is needed to support C2M.
> Power impact is negligible or very little. This is one of the most efficient ways to help achieve SERDES performance for 100G.
CrędÓ

DFE Tap Weight Impact on FEC Performance

100G 5-tap DFE results ($0.7,0,0.2,0,0.2$) with precoding 100 G with 5 -tap DFE $(0.85,0.2$ or $0.1,0.2,0,0.2)$

> Historically b1max was constrained to limit error propagation [6]. For real implementations, b1, b2, and b3 can be controlled without degrading performance. No need to constrain b1max for a simple reference model.
$>$ With introduction of precoding, simulation shows b1max constraint is not needed.
$>[0.85,0.1 / 0.2,0.2,0,0.2]$ has less burst error penalty than $[0.7,0.0,0.2,0,0.2]$. Positive b2 alleviates error propagation.

DFE Tap Weight Impact on FEC Performance Cont.

100 G with 5 -tap DFE ($0.85,0.2$ or $0,0.15,0.1$ or $0,0.06$)

> Precoding is very effective for smaller DFE tail weight or when DFE tail taps cancel each other. DER required by a single-tap or multi-tap DFE becomes similar.
$>$ Precoding is less effective for some burst errors. Burst caused by heavy DFE tail is one of them, while FFE implementations have their own sources.

DFE Tap Weight b2, b3 Statistics

$>$ For b2min is often observed to be more positive with larger b1max.

- b2 ≥ 0.10 with b 1 max $=0.85$
- b2 ≥ 0.20 with b1max $=1.0$. The low b2 exception is a low loss channel with small b1.

Analysis of Channels Discussed In Ad Hoc Meetings

Channel		ID	IL fitted (dB)	$\begin{array}{\|c} \text { ICN } \\ (\mathrm{mV}) \end{array}$	$\begin{aligned} & \text { FOM_ILD } \\ & \text { (dB) } \end{aligned}$	COM (dB)				
		$\begin{gathered} \text { DFE } \\ \text { b_max }=0.7 \\ \text { MM-PD } \end{gathered}$				$\begin{gathered} \text { DFE } \\ \text { b_max=1.0 } \\ \text { MM-PD } \end{gathered}$	FFE-lite b_max=0.7 Modified PD	FFE-heavy b_max=0.7		
kareti_3ck_01_1118	Bch2_7		65	-15.65	1.77	0.47	3.31	2.91	3.50	2.73
backplane	Bch3_14	81	-21.21	1.11	0.45	2.99	3.41	3.40	2.80	
kareti_3ck_01_1118	Och1	109	-15.65	1.12	0.69	3.24	3.27	3.42	1.94	
ortho	Och2	110	-19.52	1.12	0.73	3.39	3.39	3.69	2.70	

lu 3ck adhoc 01121918

Ch 110 and 81 are not VSR channels, these two channels cannot rule out by other metrics such as ILD.
> The above 4 channels were discussed in ad hoc (lu 3ck adhoc 01 121918) and marked as "abnormal" channels. "Noise amplification was explained as the cause of abnormal". These channels are revisited here for better understanding.
$>$ This simulation based on COM 2.57 shows all these channels have very good COM. COM Difference by DFE and FFE models are less than 0.48 dB .

Channel	COM(dB) with MDFE0.7	COM(dB) with MFFE0.7	COM(dB) with MPDFE0.7
Channel \#37, Bch2_7	4.66	4.42	5.08
Channel \#38, Bch3_14	4.39	4.31	4.93
Channel \#74, Och1	4.41	3.93	4.76
Channel \#75, Och2	4.41	4.19	4.91

Impairment Breakdown

MDFEO. 7

■ISI ■TX ■ nOnoise ■ p DD ■ Xtalk ■ jitter

MFFE0.7

MPDFE0.7

■ISI \square TX \square nOnoise $\square \mathrm{p}$ DD $■$ Xtalk $■$ jitter

FFEO.85(X) vs MFFEO.85Enob(Y)

COM (MFFE0.85)
> These are ISI dominant channels. SNR_noise are very similar for FFE and DFE receivers.
> These channels are relatively easy for a FFE with ENOB considered. These channels should be supported.

Channel \#	37	38	74	75
File name	Bch2_7	Bch3_14	Och1	Och2
Lu's Channel ID	65	81	109	110
Fitted IL	15.65 dB	21.21 dB	15.65 dB	19.52 dB
FOM_ILD	0.47 dB	0.45 dB	0.69 dB	0.73 dB
ERL (Nb=24)	11.34 dB	11.84 dB	13.28 dB	13.97 dB
ERL (Nb=1)	10.75 dB	11.16 dB	11.77 dB	13.72 dB
ICN	1.78 mV	1.12 mV	1.14 mV	1.14 mV

Simulation Time

>FFE execution time is about 4 times of DFE. FFE execution time increases rapidly with the number of taps.
$>$ One case of FFE with 24 taps took about 50 minutes.

Excel File of Simulation Results

> Excel spread sheet of this contribution is uploaded for future analysis work. It provides information such as TX range, DFE tap weights, COM comparison, etc.

Conclusions

$>2 \%$ or finer TX FIR resolution is recommended to reflect real designs and achieve better performance at very low cost.
$>$ DFE model is about $4 x$ faster than FFE model. FFE model execution time increases rapidly with the number of FFE taps.
$>$ COM simulation shows DFE and FFE model tracks each other's performance. A receiver with DFE + FFE precursor (PDFE) is an ideal analog SERDES architecture. But as a reference model it passes channels that cannot be supported by typical DFE and FFE based implementations.

- With 5.2 bit ENOB, FFE model performance is significantly degraded.
- Without proper noise assumption, FFE model behavior is not realistic.
> For DFE model, b1max and COM threshold can be easily tuned to match performance of DFE and FFE based implementations. For example, b1max=0.85 and COM threshold is about 3 dB , or $\mathrm{b} 1 \mathrm{max}=0.7$, and COM threshold is about 2.5 dB .

References

[1] P. Sun, Y. Hidaka, "Comparison of KR/CR Reference Receivers," IEEE 802.3ck Task Force Ad Hoc, December 5, 2018.
[2] C. Menolfi, et al., "A 112Gb/s 2.6pJ/b 8-Tap FFE PAM-4 SST TX in 14nm CMOS", ISSCC, pp. 103-104, Feb. 2018.
[3] Y. Hidaka, P. Sun, "COM Simulation for 100G KR/CR Channels, update ," IEEE 802.3ck Task Force Ad Hoc, December 12, 2018.
[4] P. Sun, Y. Hidaka, "What is important for a Reference Receiver," IEEE 802.3ck Task Force Meeting, January 2019.
[5] P. Sun, "100G SERDES Power Study," IEEE 802.3ck Task Force Meeting,
September 2018.
[6] P. Sun, et al., "Achieving BER/FLR targets with clause 74 FEC," IEEE 802.3by Task Force Ad Hoc, February 2015.
[7] L. Wang, et al., "A 64Gb/s PAM-4 Transceiver Utilizing an Adaptive Threshold ADC in 16nm FinFET", ISSCC, pp. 110-111, Feb. 2018.

Backup Slides

COM Values for Marked Channels

Group : CH\#	RM2 : CH7	HH2 : CH21	HH2 : CH33	UK1 : CH36	UK1 : CH46	UK2 : CH68	UK3 : CH80	UK3 : CH81
Description	$\begin{aligned} & \text { CaBP_BGAVia } \\ & \text { _Opt2_28dB } \end{aligned}$	16dB 575mm high ISI	28dB 575mm high ISI	Bch1_3p5	Bch2_a7p5_7	CAch3_b2	OAch4	Och4
MDFE1.0	4.7314	5.9342	2.7335	3.9565	1.7662	3.9172	2.2928	1.0906
MDFE0.85	4.7314	5.9342	2.6743	3.9565	1.6604	3.9172	2.2928	1.0220
CDFE0.85	4.7614	5.8486	2.5220	3.9424	1.1301	3.7284	2.2252	0.43639
MDFE0.7	4.6717	5.9342	2.3268	3.9565	1.2496	3.6355	2.1581	0.72424
CDFE0.7	4.5389	5.8486	2.2928	3.9424	0.72424	3.5697	2.1693	0.41814
MFFE0.85	5.0053	5.6134	2.8052	3.6139	1.9927	3.8900	2.3268	1.3505
CFFE0.85	5.0518	5.6300	2.7932	3.6223	1.9057	3.8764	2.2928	1.2196
MFFE0.7	5.0053	5.6134	2.8052	3.6139	1.9927	3.8900	2.3268	1.3505
CFFE0.7	5.0518	5.6300	2.7932	3.6223	1.8196	3.8764	2.2928	1.1103
MPDFE0.85	5.3521	6.4321	3.1478	4.3885	2.4641	4.3505	2.8293	1.8625
CPDFE0.85	5.3844	6.3761	3.1229	4.3771	2.4872	4.3505	2.8413	1.9382
MPDFE0.7	5.2721	6.4321	2.8293	4.3885	2.2815	4.1802	2.7454	1.8625
CPDFE0.7	5.3040	6.3761	2.8654	4.3771	1.9491	4.1802	2.7693	1.8089
MDFE0.85(Nb16)	2.9309	2.3381	1.1797	2.9096	0.62101	2.7693	1.1897	0.21991
CDFE0.85(Nb16)	3.9172	2.4296	1.1202	2.8843	-0.0086815	2.6624	1.1499	-0.14642
MFFE0.85(pst16)	4.3077	2.2477	1.1698	2.5627	0.73369	2.6271	1.1202	0.34553
CFFE0.85(pst16)	4.2792	2.2815	1.1797	2.5649	0.64904	2.6271	1.1301	0.24667

Comparison with COM (MDFE0.85) as X axis

Comparison with COM (CDFE0.85) as X axis

Comparison with COM (MFFE0.7) as X axis

Comparison with COM (MPDFE0.7) as X axis

Comparison with COM (MPDFE0.85) as X axis

CFFE0. 85

MDFE1.0

MDFEO. 7

MPDFEO. 7

MFFEO. 7

CDFEO. 7

CPDFE0. 7

CFFEO. 7

