Floating Tap Benefit for Backplane Channels

Howard Heck, Subas Bastola, Jingbo Li, Cesar Mendez-Ruiz, Femi Akinwale Intel Corporation March 2019 IEEE 802.3ck 100 Gb/s, 200 Gb/s and 400 Gb/s Electrical Interfaces Task Force

Messages

- Floating DFE taps can provide 1.5+ dB of COM improvement in cabled backplane channels with up to 28dB insertion loss.
 - Significant COM deficit reduction for our 28dB contributed channels.
 - Little difference between 20taps and 24taps.
- Recommendation: Consider a reference receiver with
 - 20 tap DFE (total taps)
 - 4-6 floating taps
 - Span at least 40UI from the cursor
- Even with floating taps, more improvement is needed.

Contents

- Background
- COM Modification for Floating Taps
- Channels & Sim Cases
- Results
 - -COM
 - Tap Locations
 - Broader Channel Study 480 channels
- Messages

- kareti 3ck 01 1119.pdf showed 0.6dB to 1.8dB COM improvement with floating taps.
- This work applies the same floating tap characteristics to assess whether they can close the deficit to 3dB COM for our contributed cabled backplane channels.
- Considers DFE only.

Modification to COM 2.58

Config spreadsheet modification

c(0)	0.54		min	
c(-1)	[-0.34:0.02:0]		[min:step:max]	
c(-2)	[0:0.02:0.12]		[min:step:max]	
c(-3)	[-0.06:0.02:0]		[min:step:max]	
 c(1)	<u>[-0.1:0.05:0]</u>		[min:step:max]	
N_b	19	UI		
b_max(1)	0.85			Fixed DFE taps
b_max(2N_b)	0.2			
g_DC	[-20:1:0]	dB	[min:step:max]	
f_z	21.25	GHz		
f_p1	21.25	GHz		
f_p2	53.125	GHz		
g_DC_HP	[-6:1:0]		[min:step:max]	
f_HP_PZ	0.6640625	GHz		
ffe_pre_tap_len	0	UI		
ffe_post_tap_len	0	UI		
ffe_tap_step_size	0.02			
ffe_main_cursor_min	0.7			
ffe_pre_tap1_max	0.3			
ffe_post_tap1_max	0.3			
ffe_tapn_max	0.125			
ffe_backoff	0			
Nb_floating	1			
Floating_maxUI	100	UI	<pre>>N_b+Nb_floating</pre>	Floating DFE taps (new
Floating_maxBound	0.2			

• Code modification is transparent to the user

- same run as original COM
- Floating DFE location and coefficient write to output file (.csv)

fields)

Floating Tap Training Algorithm

- Apply the N_b fixed taps using the existing algorithm (zero forcing, subject to max coefficient constraint).
- For the N_b_floating floating taps, find the postcursor UIs
 - with the maximum ISI magnitudes
 - within the UI range from to N_b to the specified maximum distance from the cursor (in UI)
- Apply the floating taps: zero forcing, subject to max coefficient constraint.

COM	Spread	lsheet
-----	--------	--------

	Table 93A-1 parameters		I/O control			
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical
f_b	53.125	GBd		DISPLAY_WINDOW	1	logical
f_min	0.05	GHz		CSV_REPORT	1	logical
Delta_f	0.01	GHz		RESULT_DIR	.\results\100GEL_WG_{date}	
C_d	[1.3e-4 1.3e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical
z_p select	[12]		[test cases to run]	Port Order	[1324]	
z_p (TX)	[12 32; 1.8 1.8]	mm	[test cases]	RUNTAG	CR_eval_	
z_p (NEXT)	[12 32; 1.8 1.8]	mm	[test cases]	COM_CONTRIBUTION	0	logical
z_p (FEXT)	[12 32; 1.8 1.8]	mm	[test cases]		Operational	
z_p (RX)	[12 32; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	ERL Pass threshold	10.5	dB
R_0	50	Ohm	Second Contraction	DER_0	1.00E-04	
R_d	[50 50]	Ohm	[TX RX]	T_r	6.16E-03	ns
A_v	0.413	V	vp/vf=.694	FORCE_TR	1	logical
A_fe	0.413	V	vp/vf=.694	Include PCB	0	logical
A_ne	0.608	V		TD	R and ERL options	
L	4			TDR	1	logical
M	32			ERL	1	logical
	filter and Eq			ERL_ONLY	0	logical
f_r	0.75	*fb		TR_TDR	0.01	ns
c(0)	0.54		min	N	1000	
c(-1)	[-0.34:0.02:0]		[min:step:max]	TDR_Butterworth	1	logical
c(-2)	[0:0.02:0.12]		[min:step:max]	beta_x	1.70E+09	
c(-3)	[-0.06:0.02:0]		[min:step:max]	rho_x	0.18	
c(1)	[-0.1:0.05:0]		[min:step:max]	fixture delay time	0	enter sec
N_b	24	UI			Receiver testing	
b_max(1)	0.85			RX_CALIBRATION	0	logical
b_max(2N_b)	0.3			Sigma BBN step	5.00E-03	V
g_DC	[-20:1:0]	dB	[min:step:max]		Noise, jitter	
f_z	21.25	GHz		sigma_RJ	0.01	UI
f_p1	21.25	GHz		A_DD	0.02	UI
f_p2	53.125	GHz		eta_0	8.20E-09	V^2/GHz
g_DC_HP	[-6:1:0]		[min:step:max]	SNR_TX	33	dB
f HP PZ	0.6640625	GHz		R LM	0.95	li li

Plus the modifications shown on slide 5.

Channels

- Channels: see table
 - These are the channels that we contributed previously
 (heck 3ck 02 0119.pdf)

• DFE

- 20 & 24 total taps
- 0-6 floating
- independent location for each floating tap
- up to 100UI from cursor
- Package

– 12mm & 32mm

IL (dB)	Cable (mm)	Z _{PCB} mismatch	file		
	F7F	No	Cable_BKP_16dB_0p575m.zip		
10	5/5	Yes	Cable_BKP_16dB_0p575m_more_isi.zip(R)		
10	995	No	Cable_BKP_16dB_0p995m.zip		
		Yes	Cable_BKP_16dB_0p0p995m_more_isi.zip		
	575	No	Cable_BKP_20dB_0p575m.zip		
20		Yes	Cable_BKP_20dB_0p575m_more_isi.zip		
20	995	No	Cable_BKP_20dB_0p995m.zip		
		Yes	Cable_BKP_20dB_0p0p995m_more_isi.zip		
	575	No	Cable_BKP_24dB_0p575m.zip		
24		Yes	Cable_BKP_24dB_0p575m_more_isi.zip		
24	995	No	Cable_BKP_24dB_0p995m.zip		
		Yes	Cable_BKP_24dB_0p0p995m_more_isi.zip		
	575	No	Cable_BKP_28dB_0p575m.zip		
20	5/5	Yes	Cable_BKP_28dB_0p575m_more_isi.zip(L)		
28	995	No	Cable_BKP_28dB_0p995m.zip		
		Yes	Cable_BKP_28dB_0p0p995m_more_isi.zip		

COM Results w/ Contributed Channels

20 tap DFE

24 tap DFE

COM Sensitivity to # of Floating Taps

- For the 28dB channel we get 2.5-3dB COM with our contributed channels for:
 - 20taps with 5-6 floating
 - 24taps with 5-6 floating
- >2.5dB COM improvement with 5-6 floating taps out of 20 total taps.
- COM is relatively insensitive to the # of floating taps for 24 total taps.
- Neither case meets 3dB minimum.

Example Pulse Response & Taps

Channel: 28dB, 0.575m cable, Z_{PCB} mismatch

DFE Taps Weights & Locations

Results include

- all contributed channels
- 12mm & 32mm package lengths
- all fixed/floating configurations that we analyzed.

Selected tap locations span the full range that we considered.

ISI Location

- For these channels, we see
 ISI up to 160UI from the cursor.
 - Due to the delay of the cables used in these channels.
- We haven't seen much benefit for tap magnitude <0.02.

Broader Cabled Backplane Channel Analysis

- 480 Cases w/ varying:
 - Breakout Zpcb
 - Breakout PCB length
 - main Zpcb
 - main PCB length
 - cable length
 - cable temp
- 10.6 dB to 28.2dB insertion loss range
- Note: these results were obtained with 12mm and 30mm packages.

Better COM with 14+6 taps than with 24+0 taps.

Broader Cabled Backplane Channel Analysis

- 480 Cases w/ varying:
 - Breakout Zpcb
 - Breakout PCB length
 - main Zpcb
 - main PCB length
 - cable length
 - cable temp
- 10.6 dB to 28.2dB insertion loss range

Similar COM with 20taps or 24 taps.

Messages

- Floating DFE taps can provide 1.5+ dB of COM improvement in cabled backplane channels with up to 28dB insertion loss.
 - Significant COM deficit reduction for our 28dB contributed channels.
 - Little difference between 20taps and 24taps.
- Recommendation: Consider a reference receiver with
 - 20 tap DFE (total taps)
 - 4-6 floating taps
 - Span at least 40UI from the cursor
- Even with floating taps, more improvement is needed.

Thank you!

Broader Cabled Analysis – 20 Taps

20taps/0float

Bivariate Fit of 20-0-12 By ILchan (dB) 🖉 💌 Bivariate Fit of 20-0-30 By ILchan (dB) 30mm pkg 55 15 8 3.5 12mm pkg 18 20 22 26

6.5

5.5

2.5

1.5

2.5

17taps/3float Bivariate Fit of 17-3-12 By ILchan (dB) Bivariate Fit of 17-3-30 By ILchan (dB)

25

12 14

2.5 12mm pkg 18 20 22 26 28 10 12 14 16 24

12mm pkg

18 20 22 24 26 28

Bivariate Fit of 16-4-12 By ILchan (dB)

14

12

2.5

Bivariate Fit of 19-1-12 By ILchan (dB)

16taps/4float

5.5

19taps/1float

20

30mm pkg

20 22 24 26 28

Bivariate Fit of 16-4-30 By ILchan (dB)

12

18taps/2float

15taps/5float

24

14taps/6float

Little benefit from more than 4 floating taps.

30mm pkg

18 20 22 24 26 28

IEEE P802.3ck

12mm pkg

18 20 22 24 26 28

Broader Analysis – 24 Taps

18 20

Ilchan (dB

22 24 26 28

10 12 14

1.5

20 22 24 26 28

IEEE P802.3ck