Baseline Proposal for 100, 200 and 400 Gb/s Backplane

Howard Heck, Intel

March 2019

IEEE 802.3ck 100 Gb/s, 200 Gb/s and 400 Gb/s Electrical Interfaces Task Force

Acknowledgements

- Thank you to Beth Kochuparambil, Rich Mellitz, Phil Sun and Adam Healey for guidance, feedback and questions.
- This proposal follows the approach used in <u>li 3cd 01b 0916.pdf</u> From Mike Li and Mike Dudek.

Method

- Leverage the 802.3cd specification with modifications for updated COM reference package, reference receiver and SerDes parameters.
 - Clause 137
 - Annex 93A
- Propose to use the same per lane specifications for 100GBASE-KR1, 200GBASE-KR2 and 400GBASE-KR4. The presentation refers to 100GBASE-KR for all of these per lane specifications.
- Some specific values are marked as TBD. Others have proposed values with acknowledgment that they are expected to require further analysis and discussion.
- Presentation is broken into two sections:
 - Clause structure: propose to adopt it
 - COM Rx arch: expect discussion

Contents

- Clause Structure
 - -PMD
 - Compliance Points
 - Transmitter Characteristics
 - Receiver Characteristics
 - Channel
 - Environmental Specs & PICS
- COM Specifics

Clause Structure

PMD

• PMD clause structure

- Follow the structure contained in 137.1-137.8.
- Several functional specifications in 137.8 (PMD functional specifications) refer to requirements in Clause 136. Need to coordinate this with the corresponding 100GBASE-CR Clause.

• MDI

- The MDI for 50GBASE-KR PHY is an implementation-dependent direct electrical connection between the PMD and the medium.
- The MDI comprises two differential pairs, one for the transmit function and one for the receive function, marked by TPO and TP5 in Figure 137–2.
- Transmitter and receiver characteristics are defined at TPOa and TP5a, which are connected to the MDI through the test fixtures described in 93.8.1.1 and 93.8.2.1.

Compliance Points

- Compliance point definition
 - The electrical characteristics for the 100GBASE-KR interfaces are defined at compliance points for the transmitter (TP0a) and receiver (TP5a), respectively.
 - The location of TPOa and electrical characteristics of the test fixture used to measure transmitter characteristics are defined in Figure 93-5 and 93.8.1.1, respectively.
 - The location of TP5a and electrical characteristics of the test fixture used to measure the receiver are defined in Figure 93-10 and 93.8.2.1, respectively.

Transmitter Characteristics

- Transmitter electrical characteristics at TPOa for 100GBASE-KR are the same as those summarized in Table 120D-1 and detailed in 120D.3.1.1 through 120D.3.1.2.2, except
 - Steady state voltage v_f (max): 0.60 V
 - Steady state voltage v_f (min): 0.40 V
 - Linear fit pulse peak (min): $0.75 \times v_f$
 - Signal-to-noise-and-distortion ratio (min): TBD dB Equalization: defined in slide 7
- ERL: pass/fail spec = TBD dB, using same parameters as in Table 137-5, except

 $-T_r = 0.01 \text{ ns}, \rho_x = 0.32, N = 100 \text{ UI}$

Transmitter Equalization

Coefficient	Amplitude		Step
	Min	Max	Size
<i>c</i> (-3)	-0.06	0	0.02
<i>c</i> (-2)	0	0.12	0.02
<i>c</i> (-1)	-0.34	0	0.02
<i>c</i> (0)	0.54		
<i>c</i> (1)	-0.1	0	0.05

TxEQ values go in the COM Table (refer to Table 137-6 for an example). Refer to "config_com_ieee8023_93a=100GEL-KR_DFE_121918.xls" in

http://www.ieee802.org/3/ck/public/tools/tools/mellitz 3ck adhoc 01 121918 COM2p57.zip.

Receiver Spec

- Receiver characteristics at TP5a for 100GBASE-KR are the same as those in 137.9, except:
 - Insertion loss @ 26.5625 GHz values for Test 1 are TBD (min) and TBD (max).
 - Insertion loss @ 26.5625 GHz values for Test 2 are TBD (min) and TBD (max).
- ERL: pass/fail spec = TBD dB, using same parameters as in Table 137-5, except
 - $-T_r = 0.01 \text{ ns}$
 - $-\rho_{x}$ = 0.32
 - -N = 100 UI

Channel Spec

- COM: base upon table 137-6 with modifications per "config_com_ieee8023_93a=100GEL-KR_DFE_121918.xls" in mellitz 3ck adhoc 01 121918 COM2p57.zip.
 - Transmit equalizer per the values in slide 8.
 - Flexible reference package per slide 13.
 - TBD items: SNR_{Tx} (dB), η_0 , C_d , Rx equalizer architecture
- Insertion Loss: Follow Clause 137.10.1, scaling to achieve 28dB @ 26.5625 GHz, and extending to 53.125 GHz.
- ERL: Follow Clause 137.10.2, pass/fail spec = TBD dB, using parameters in Table 137-5, except

 $-T_r = 0.01$ ns, $\rho_x = 0.25$, N = 2000

Channel Spec – Reference Package

- Adopt the flexible package model proposed in <u>http://www.ieee802.org/3/ck/public/19_01/benartsi_3ck_01_0119.pdf</u>.
- Modify 93.A.1.2 to comprehend the flexible package model.

Environmental Specs & PICS

- Environmental Specs: Base on 137-11.
- PICS: Base on 137-12 with updates as needed.

COM Rx Arch

COM Proposal

- Reference Rx: DFE-based as in existing Clause 137 & Annex 93A with modifications:
 - 16 contiguous taps & 4 floating taps with location range up to 40 UI from cursor.
 - Tap selection method described in heck_3ck_01_0319.pdf.
 - $-b_{max}(1)=0.85, b_{max}(2...N_b)=0.2$
 - Requires modification to Annex 93A.

Summary

- Propose that the P802.3ck task force adopt the Clause Structure contained on slides 6-13.
- Separately propose that the P802.3ck task force adopt the specific COM proposal described on slide 15.

Thank you!