Baseline Proposal for 100, 200 and 400 Gb/s Backplane (Update)

Howard Heck – Intel Mike Li – Intel Mau-Lin Wu – MediaTek Phil Sun – Credo Semiconductor

March 2019

IEEE 802.3ck 100 Gb/s, 200 Gb/s and 400 Gb/s Electrical Interfaces Task Force

Acknowledgements

- Thank you to Beth Kochuparambil, Rich Mellitz, Phil Sun, Adam Healey, Kent Lusted, Mike Dudek and Upen Kareti for guidance, feedback and questions.
- This proposal follows the approach used in li 3cd 01b 0916.pdf from Mike Li and Mike Dudek.

Method

- Leverage the 802.3cd specification with modifications for updated COM reference package, reference receiver and SerDes parameters.
 - -Clause 137
 - -Annex 93A
- Propose to use the same per lane specifications for 100GBASE-KR1, 200GBASE-KR2 and 400GBASE-KR4. The presentation refers to 100GBASE-KR1 for all of these per lane specifications.

Contents

- PMD
- Compliance Points
- Transmitter Characteristics
- Receiver Characteristics
- Channel
- Environmental Specs & PICS

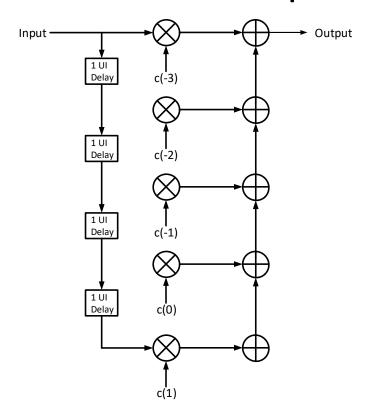
PMD

PMD clause structure

- Follow the structure contained in 137.1-137.8.
- Several functional specifications in 137.8 (PMD functional specifications) refer to requirements in Clause 136. Need to coordinate this with the corresponding 100GBASE-CR1 Clause.

MDI

- The MDI for 50GBASE-KR1 PHY is an implementation-dependent direct electrical connection between the PMD and the medium.
- The MDI comprises two differential pairs, one for the transmit function and one for the receive function, marked by TPO and TP5 in Figure 137–2.
- Transmitter and receiver characteristics are defined at TP0a and TP5a, which are connected to the MDI through the test fixtures described in 93.8.1.1 and 93.8.2.1.


Compliance Points

- Compliance point definition
 - -The electrical characteristics for the 100GBASE-KR interfaces are defined at compliance points for the transmitter (TP0a) and receiver (TP5a), respectively.
 - -The location of TP0a and electrical characteristics of the test fixture used to measure transmitter characteristics are defined in Figure 93-5 and 93.8.1.1, respectively.
 - -The location of TP5a and electrical characteristics of the test fixture used to measure the receiver are defined in Figure 93-10 and 93.8.2.1, respectively.

Transmitter Characteristics

- Transmitter electrical characteristics at TP0a for 100GBASE-KR1 are the same as those summarized in Table 120D-1 and detailed in 120D.3.1.1 through 120D.3.1.2.2, except
 - -Steady state voltage v_f (max): 0.60 V
 - -Steady state voltage v_f (min): 0.40 V
 - Linear fit pulse peak (min): TBD
 - -Signal-to-noise-and-distortion ratio (min): TBD dB
- Equalization: See slide 8
- ERL: See slide 10

Transmitter Equalization

Coefficient	Ampl	Step	
Coefficient	Min	Max	Size
<i>c</i> (-3)	-0.06	0	0.02
c(-2)	0	0.12	0.02
<i>c</i> (-1)	-0.34	0	0.02
<i>c</i> (0)	0.54		
<i>c</i> (1)	-0.2	0	0.05

TxEQ values go in the COM Table (refer to Table 137-6 for an example). Refer to "config_com_ieee8023_93a=100GEL-KR_DFE_121918.xls" in

http://www.ieee802.org/3/ck/public/tools/tools/mellitz 3ck adhoc 01 121918 COM2p57.zip.

Receiver Spec

- Receiver characteristics at TP5a for 100GBASE-KR1 are the same as those in 137.9, except:
 - -Insertion loss @ 26.5625 GHz values for Test 1 are 13.5 (min) and 14.5 (max).
 - -Insertion loss @ 26.5625 GHz values for Test 2 are 27.5 (min) and 28.5 (max).
- ERL: See Slide 10.

Transmitter/Receiver ERL

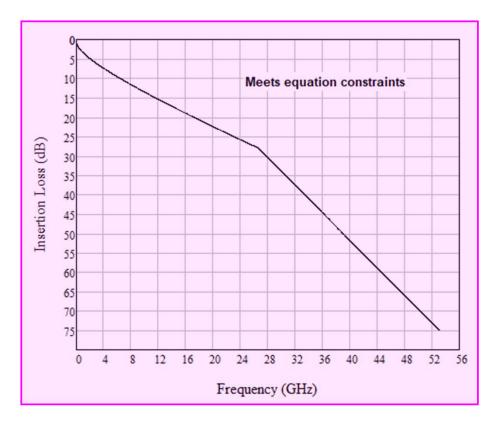
Parameter	Symbol	Value	Units
Transition time associated with a pulse	T_r	0.01	ns
Incremental available signal loss factor	β_x	1.7	GHz
Permitted reflection from a transmission line external to the device under test	ρ_{x}	0.32	e
Length of the reflection signal	N	200	UI

Minimum spec = TBD dB

Channel Spec

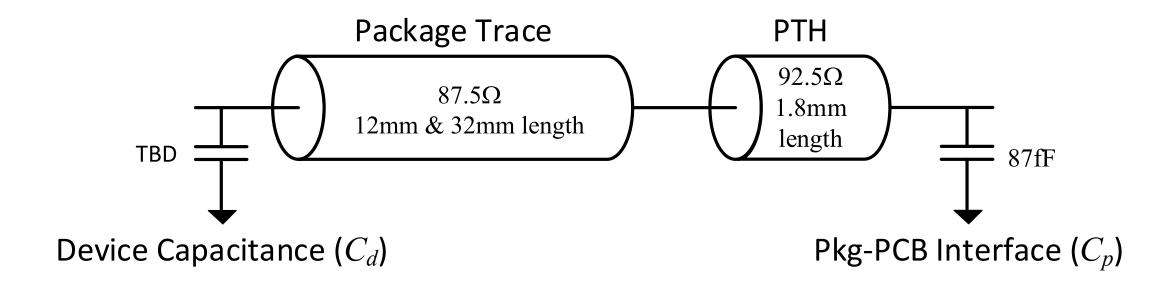
- ERL: See Slide 12
- Insertion Loss: See Slide 13
- COM: base upon table 137-6 with modifications per "config_com_ieee8023_93a=100GEL-KR_DFE_121918.xls" in mellitz 3ck adhoc 01 121918 COM2p57.zip.
 - -Transmit equalizer per the values in slide 8.
 - Flexible reference package per slide 14.
 - Parameter values that differ from Table 137-6 are shown on slides 15-17.

Channel ERL


Parameter		Value	Units
Transition time associated with a pulse	T_r	0.010	ns
Incremental available signal loss factor	β_x	1.7	GHz
Permitted reflection from a transmission line external to the device under test	ρ_{x}	0.25	
Length of the reflection signal	N	2000	UI

pass/fail spec = 10 dB

Channel Insertion Loss


- Insertion loss (informative): maximum 28 dB at Nyquist.
- Use a modified version of equation 137-1.
- Proposed equation:

$$IL(f) \le \begin{cases} 0.693 + 2.161\sqrt{f} + 0.607f & 0.01 \le f \le f_b/2 \\ -19.12 + 1.773f & f_b/2 < f \le 53.135GHz \end{cases}$$

Channel Spec – Reference Package

- Adopt the flexible package model proposed in http://www.ieee802.org/3/ck/public/19 01/benartsi 3ck 01 0119.pdf.
- Modify 93.A.1.2 to comprehend the flexible package model.

COM

Differences from Table 137-6:

Parameter	Symbol	Value	Units
Device package model			
Single-ended device capacitance	C_d	TBD	nF
Transmission line length, Test 1	Z_p	12; 1.8	mm
Transmission line length, Test 2	Z_p	32; 1.8	mm
Single-ended package capacitance at package-to-board interface	C_p	0.087×10^{-3}	nF
Package transmission line nominal characteristic impedance	Z_c	87.5; 92.5	Ω

COM (2)

Parameter	Symbol	Value	Units
Transmit equalizer minimum coefficient, minimum	c(0)	0.54	_
Transmit equalizer, 1st pre-cursor coefficient	c(-1)		_
Minimum value		-0.34	
Maximum value		0	
Step size		0.02	
Transmit equalizer, 2 nd pre-cursor coefficient	c(-2)		<u> </u>
Minimum value		0	
Maximum value		0.12	
Step size		0.02	

COM (3)

Parameter	Symbol	Value	Units
Transmit equalizer, 3 rd pre-cursor coefficient	<i>c</i> (-3)		
Minimum value		-0.06	
Maximum value		0	
Step size		0.02	
Transmit equalizer, post-cursor coefficient	c(1)		_
Minimum value		-0.2	
Maximum value		0	
Step size		0.05	

Environmental Specs & PICS

- Environmental Specs: Base on 137-11.
- PICS: Base on 137-12 with updates as needed.

IEEE P802.3ck March 2019 18

COM Reference Receiver

DFE-based as in existing Clause 137 & Annex 93A with the following exceptions:

- Nb = TBD, location of DFE taps is TBD.
- bmax(1)=TBD, bmax(2...Nb)=TBD

Proposal

• Propose that the P802.3ck task force adopt the baseline proposal contained on slides 4-18.

Thank you!