New Insights on DFE Burst Error Impact for 100G KR/CR FEC

Ilya Lyubomirsky, Jamal Riani, and Sudeep Bhoja, Inphi Corp.
IEEE P802.3ck Task Force Meeting, Vancouver, March 2019

Summary

■ A new interleaved RS $(544,514)$ FEC has been proposed in gustlin_3ck_01_0119 for mitigating potential burst error issues in 100G-KR/CR systems based on multi-tap DFE Rx architectures

- Some analysis has been provided in anslow_3ck_01_0918 showing BER error flaring can occur in multi-tap DFE Rx architectures when DFE taps are sufficiently large, and simulation results showed interleaved FEC may improve performance for some cases considered
- A major disadvantage of interleaved FEC is a significant increase of the FEC latency, as discussed in lyubomirsky_3ck_01a_0119. Moreover, detailed system analysis in lu_3ck_adhoc_01_022719 pointed out additional compatibility and complexity issues.

■ As an alternative approach to interleaved FEC, the DFE burst error issue can be mitigated by properly constraining the DFE tap values, as shown in anslow_3ck_01_0119, and proposed in lyubomirsky_3ck_01a_0119

- In this work, we present new analysis on multi-tap DFE burst error effects: 1). showing the importance of accurately computing burst error statistics at each SNR; 2). simulations revealing small penalties on non-interleaved FEC when the DFE tap values are reasonably constrained 2

Simulation Method

1). We employ a Markov Chain technique to compute DFE burst error patterns and their probabilities (up to a maximum number of PAM4 symbol burst errors = 100 in our sims)
2). Using the results of 1)., compute a list L of Reed-Solomon (RS) symbol error patterns and their probabilities,
$L=\left\{E_{0}, E_{1}, E_{2}, \ldots, E_{M}\right\}$
E_{j} is an error event of R symbol span $S\left(E_{j}\right)$ and number of errors $N\left(E_{j}\right)$
(E_{0} is a special "zero" event with $S\left(E_{0}\right)=1$ and $N\left(E_{0}\right)=0$)
3). Using the list L and associated probabilities $P\left(E_{j}\right)$, spans $S\left(E_{j}\right)$, and number $R S$ symbol errors $N\left(E_{j}\right)$, solve a recursive equation for $\pi(\mathbf{n}, \mathbf{i})$, the probability of i or more $R S$ symbol errors in a block size n. See next slide for more details on this step.

Recursive Equation for $\pi(n, i)$

$$
\pi(\mathrm{n}, \mathrm{i})=\sum_{j} P\left(E_{j}\right) \pi\left(\mathrm{n}-\mathrm{S}\left(E_{j}\right), \mathrm{i}-\mathrm{N}\left(E_{j}\right)\right)
$$

Initial conditions:

$$
\begin{aligned}
& \pi(1,0)=1 \\
& \pi(1,1)=\sum_{j \neq 0} P\left(E_{j}\right) \\
& \pi(1,2: \text { end })=0
\end{aligned}
$$

Simulation Results for 1-tap DFE

DFE Burst Error Length Statistics vs. SNR

Simulation Results for Multi-Tap DFE $[0.7-0.1$ 0.1-0.1 0.1]

Impact of Reducing DFE Taps

RS(544,514), 1 codeword, symbol mux, pre-coding on

Simulation Results for Multi-Tap DFE [0.7 00.200 .2]

RS(544,514), 1 codeword, symbol mux, pre-coding on

Frequency Response for $\mathrm{h}=\left[\begin{array}{llllll}1 & 0.7 & 0 & 0.2 & 0 & 0.2\end{array}\right]$

Conclusions

■ We presented new simulation results on the impact of DFE burst errors on non-interleaved RS $(544,514)$ FEC, taking care to re-compute burst error statistics at each SNR value for higher accuracy.

■ The simulation results confirm that multi-tap DFE implementations can mitigate the impact of burst errors by properly constraining the tap values. More work is required to determine the optimum tap constrains.

■ We recommend not to burden 100G KR/CR system designs with the additional complexity and increased latency of interleaved FEC just to improve performance for some extreme cases of multi-tap DFE Rx implementations. Alternative high performance architectures exist, such as FFE+1-tap DFE.

