Backplane COM Analysis for Reference Rx Baseline

Howard Heck, Subas Bastola, Jingbo Li, Femi Akinwale, Cesar Mendez-Ruiz – Intel Corporation

May 2019

IEEE 802.3ck 100 Gb/s, 200 Gb/s and 400 Gb/s Electrical Interfaces Task Force

Contents

- Summary & Recommendations
- Channels
- Sub-29dB Contributed Channel Analysis
- 'Must Have' Channel Analysis

Summary & Recommendations

- Objective: Develop reference equalizer recommendations for KR.
- Criteria: Choose equalizer to
 - maximize the percentage of contributed channels with \geq 3dB COM.
 - get all of the 'highlighted' (a.k.a. 'must work') channels to \geq 3dB COM.

•	Proposed	reference	equalizer:		Param
---	----------	-----------	------------	--	-------

- 80%-83% of sub-29dB channels meet 3dB COM (C_d dependent).
- All but 3 of the 'highlighted' channels meet 3dB COM.
 None of the options analyzed achieved 3dB.
- We also analyzed the impact of C_d , as part of the analysis to help the TF select the C_d baseline.
- To address the COM deficit for the failing channels we analyzed package trace loss & length mismatch.
 - Results were negative. They are included in backup.

Parameter	Recommendation
TxFFE $c(-3)$	[-0.06: 0.02: 0.00]
# Fixed DFE taps	16
# Floating DFE banks	2
# taps per bank	4
max bank span	40UI from cursor
$b_{max}(1)$	0.85

Channels

Channels – Full Set

#	Main File	Folder	Files	Documentation	#	Main File	Folder	Files	Documentation
1		Cable_BKP_16dB_0p575m.zip	Cable_BKP_16dB_0p575m_*.s4p		55			Bch1_3p5	
2	sable CKD 164D sin	Cable_BKP_16dB_0p575m_more_isi.zip	Cable_BKP_16dB_0p575m_more_isi_*.s4p	1	56	1		Bch2_7	
3	cable_CKP_16dB.zip	Cable_BKP_16dB_0p995m_updated.zip	Cable_BKP_16dB_0p995m_updated_*.s4p	1	57			Bch2_a0_7	
4		Cable_BKP_16dB_0p0p995m_more_isi_updated.zip	Cable_BKP_16dB_0p0p995m_more_isi_updated_*.s4p	1	58	8		Bch2_a10_7	
5		Cable_BKP_20dB_0p575m.zip	Cable_BKP_20dB_0p575m_*.s4p	1	59			Bch2_a12p5_7	
6		Cable_BKP_20dB_0p575m_more_isi.zip	Cable_BKP_20dB_0p575m_more_isi_*.s4p	-	60	1		Bch2_a15_7	
7	cable_CKP_20dB.zip	Cable_BKP_20dB_0p995m_updated.zip	Cable_BKP_20dB_0p995m_updated_*.s4p		61	1		Bch2_a2p5_7	
8		Cable_BKP_20dB_0p0p995m_more_isi_updated.zip	Cable_BKP_20dB_0p0p995m_more_isi_updated_*.s4p		62	1		Bch2_a5_7	1
9		Cable_BKP_24dB_0p575m.zip	Cable_BKP_24dB_0p575m_*.s4p	neck_3ck_02_0119.pdf	63	1		Bch2_a7p5_7	1
10	while own hadness	Cable_BKP_24dB_0p575m_more_isi.zip	Cable_BKP_24dB_0p575m_more_isi_*.s4p]	64	kareti_3ck_01_1118_backplane.zip		Bch2_b10_7	
11	cable_CKP_240B.2lp	Cable_BKP_24dB_0p995m_updated.zip	Cable_BKP_24dB_0p995m_updated_*.s4p	1	65			Bch2_b15_7	1
12		Cable_BKP_24dB_0p0p995m_more_isi_updated.zip	Cable_BKP_24dB_0p0p995m_more_isi_updated_*.s4p]	66			Bch2_b2p5_7	1
13		Cable_BKP_28dB_0p575m.zip	Cable_BKP_28dB_0p575m_*.s4p		67]		Bch2_b2_7	
14	coble CKD 28dP zin	Cable_BKP_28dB_0p575m_more_isi.zip	Cable_BKP_28dB_0p575m_more_isi_*.s4p]	68]		Bch2_b4_7	
15	Cable_CKP_280B.21p	Cable_BKP_28dB_0p995m_updated.zip	Cable_BKP_28dB_0p995m_updated_*.s4p]	69]		Bch2_b6_7	
16		Cable_BKP_28dB_0p0p995m_more_isi_updated.zip	Cable_BKP_28dB_0p0p995m_more_isi_updated_*.s4p		70	>		Bch2_b7p5_7	
17		DPO_IL_12dB	DPO_4in_Meg7_*.s4p		71]		Bch2_b8_7	
18	tracy 2ck 02 0119 orthoBB tip	DPO_IL_24dB	DPO_10in_Meg7_*.s4p]	72	72 73		Bch3_14	
19	uacy_sck_oz_orrs_ormose.zip	DPO_IL_28dB	DPO_12in_Meg7_*.s4p	tracy_3ck_01b_0119.pdf	73			Bch4_30	
20		DPO_IL_32dB	DPO_14in_Meg7_*.s4p]	74			CAch1_b2	
21	tracy_3ck_03_0119_tradBP.zip	-	Std_BP_12inch_Meg7_*.s4p		75]		CAch1	
22		Link_1			76			CAch2_a0	
23		Link_2			77			CAch2_a10	
24		Link_3			78			CAch2_a2p5	
25	5	Link_4			79			CAch2_a5	
26	zambell_3ck_01_1118_links01to09.zip	Link_5			80			CAch2_a7p5	
27		Link_6			81			CAch2_b10	kareti_3ck_01a_1118.pdf
28		Link_7			82	kareti_3ck_01_1118_cabled8P.zip		CAch2_b2p5	
29		Link_8			83			CAch2_b2	
30		Link_9			84			CAch2_b4	
31		Link_10			85			CAch2_b6	
32		Link_11			86			CAch2_b7p5	
33		Link_12	_		87			CAch2_b8	
34		Link_13			88			CAch2	
35	zambell_3ck_01_1118_links10to18.zip	Link_14	See the folder	zambell_3ck_01_1118.pdf	89	4		CAch3_b2	
36		Link_15	-		90	-		CAch3	
37		Link_16	-		91	-		CAch4_b2	
38		Link_17	-		92			CAch4	
39		Link_18	-		93	-		OAch1	
40		Link_19	-		94	-		OAch2	
41		Link_20	-		95	-		OAch3	
42		Link_21	-		96	-		OAch4	
43	searchall ask of 1110 halvetot-270 als	Link_22	-		97	-		OAch5	
44	zambell_3ck_01_1118_links19t0278.zip	Link_23	-		98	-		OAch6	
45		Link_24	-		99			OAch7	
46		Link_25	-		100	kareti_3ck_01_1118_orthoBP.2lp		Ochi	
4/	47	Lifik_20	4		101	4		0-12	
48		CaRD BCAVIa Opt1 24dB siz	CaRD RCAV/a Ont1 24dB # sta		102	-		Och	
49		Cabp_BOAVIA_Opt1_2408.20p	CaBP_BGAVia_Opt1_2408_1.54p	- I	103	-		Och4	
50		Capp_BGAVia_Opt1_2808.2ip	CaRP_BGAVia_Opt1_2808_5.54p	-	104	-		Och6	
51	mellitz_3ck_adhoc_02_081518_cabledbackplane.zip	CaRP_BGAVia_Opt1_3208.2ip	CaRP_BGAVia_Opt1_320B54p	mellitz_3ck_adhoc_02_081518.pdf	105	-		Och7	
52		Capp_BGAVia_Opt2_240B.2Ip	CaRP_BGAVia_Opt2_240B54p		106	4		Och8	
54		CaBP_BGAVia_Opt2_2008.2ip	CaBP_BGAVia_Opt2_200B54p	- I	107			ocio	
54		Cape_powvia_opiz_szub.zip	Cabe_boxvia_optz_szdb_154p						

107 channels pulled from the p802.3ck repository.

COM spreadsheet is included in backup slides.

P802.3ck Highlighted Channel Subset

Contribution	Channel	#	Name	IL (dB)
hook Jok 01 1119	28dB Cabled Backplane/Cable_BKP_28dB_0p575m_more_isi	14	Heck1	28.8
<u>neck 3ck 01 1118</u>	16dB Cabled Backplane/Cable_BKP_16dB_0p575m_more_isi	2	Heck2	15.2
mellitz 3ck adhoc 02 081518	24,28,30dB including BGA Via/CaBP_BGAVia_Opt2_28dB	53	Mellitz1	26.3
	Traditional Backplane Channels/Std_BP_12inch_Meg7	21	Tracy1	15.7
Tracy 3CK UI UI19	Orthogonal Backplane Channels/DPO_IL_12dB	17	Tracy2	12.2
	Measured Orthogonal Backplane Channels/OAch4	96	Kareti1	27.7
	Measured Orthogonal Backplane Channels/Och4	103	Kareti2	28.1
<u>kareti 3ck 01a 1118</u>	Measured Cabled Backplane Channels/CAch3_b2	89	Kareti3	28.5
	Measured Traditional Backplane Channels/Bch2_a7p5_7	63	Kareti4	-28.4
	Measured_Traditional_Backplane_Channels/Bch2_b7p5_7	70	Kareti5	28.9

Source: kochuparambil_3ck_01a_0119.pdf.

Channel Selection

- Approach: Restrict analysis to sub-29dB channels.
- Reasoning:
 - –Our 28dB objective doesn't require that all channels with 28dB insertion loss meet COM≥3.0dB.
 - –Nor does it mean that some channels with more than 28dB insertion loss won't meet COM≥3.0dB.
 - All of our highlighted channels have less than 29dB insertion loss. Three of them fall between 28dB & 29dB.

Floating Tap Algorithm

- 1) Get the ISI waveform vector, $X = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}$.
- 2) Compute the norm, \overline{X} , of the ISI vector.
- 3) Apply a bank (e.g. 3 taps) to each successive ISI sample set: $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}, \begin{bmatrix} x_2 & x_3 & x_4 \end{bmatrix}, \dots, \begin{bmatrix} x_{n-2} & x_{n-1} & x_n \end{bmatrix}$
- 4) Compute the norm for each location from step 3): \overline{X}_1 , \overline{X}_2 ,..., \overline{X}_{n-2}
- 5) Select the location that gives max difference in the norm: $\max_{i}(\bar{X} - \bar{X}_{i}).$
- 6) Repeat steps 1-5 for each bank.

Sub-29dB Contributed Channel Analysis

Experiment Definition

Case	b1 max	Nupb	UImf	Cd (fF)	c(-3)	L _{pkg} (mm)	Case	b1 _{max}	Nupb	UImf	Cd (fF)	c(-3)	L _{pkg} (mm)
1	0.85	3	40	110	0	12,32	25	0.7	3	40	110	0	12,32
2	0.85	3	80	110	0	12,32	26	0.7	3	80	110	0	12,32
3	0.85	3	40	110	1	12,32	27	0.7	3	40	110	1	12,32
4	0.85	3	80	110	1	12,32	28	0.7	3	80	110	1	12,32
5	0.85	3	40	120	0	12,32	29	0.7	3	40	120	0	12,32
6	0.85	3	80	120	0	12,32	30	0.7	3	80	120	0	12,32
7	0.85	3	40	120	1	12,32	31	0.7	3	40	120	1	12,32
8	0.85	3	80	120	1	12,32	32	0.7	3	80	120	1	12,32
9	0.85	3	40	130	0	12,32	33	0.7	3	40	130	0	12,32
10	0.85	3	80	130	0	12,32	34	0.7	3	80	130	0	12,32
11	0.85	3	40	130	1	12,32	35	0.7	3	40	130	1	12,32
12	0.85	3	80	130	1	12,32	36	0.7	3	80	130	1	12,32
13	0.85	4	40	110	0	12,32	37	0.7	4	40	110	0	12,32
14	0.85	4	80	110	0	12,32	38	0.7	4	80	110	0	12,32
15	0.85	4	40	110	1	12,32	39	0.7	4	40	110	1	12,32
16	0.85	4	80	110	1	12,32	40	0.7	4	80	110	1	12,32
17	0.85	4	40	120	0	12,32	41	0.7	4	40	120	0	12,32
18	0.85	4	80	120	0	12,32	42	0.7	4	80	120	0	12,32
19	0.85	4	40	120	1	12,32	43	0.7	4	40	120	1	12,32
20	0.85	4	80	120	1	12,32	44	0.7	4	80	120	1	12,32
21	0.85	4	40	130	0	12,32	45	0.7	4	40	130	0	12,32
22	0.85	4	80	130	0	12,32	46	0.7	4	80	130	0	12,32
23	0.85	4	40	130	1	12,32	47	0.7	4	40	130	1	12,32
24	0.85	4	80	130	1	12,32	48	0.7	4	80	130	1	12,32

Symbol	Description	Min	Mid	Max
b max (1)	Max coefficient value for DFE 1 st postcursor	0.7		0.85
N _{tpb}	# of taps per floating bank	3		4
UI mf	Max distance of floating bank from cursor	40		80
C _d	Device capacitance	110 fF	120 fF	130 fF
c(-3)	3 rd precursor for TxFFE5	-0.06		None
Lpkg	Package main route length	12 mm		32 mm

All cases use 16 fixed taps and 2 banks of floating taps.

 $b_{max}(n) = 0.3$ for n > 1.

The 3^{rd} precursor tap range is from -0.06 to 0 w/ 0.02 step size.

of COM runs =10,292

'Baseline' Case

Variable	Value	Units
b max (1)	0.85	
N _{tpb}	4	#taps
UI mf	40	UI
C _d	130	fF
TxFFE	4	#taps

Notes: Each case is run with both package lengths and with 107 contributed backplane channels (see the "channels" worksheet). Case 21 is treated as the baseline: b_{max} (1)=0.85, N_{rpb} =4, UI_{mf} =40, C_d =130fF, no 3rd TxEQ precursor.

Parameter Significance

- Statistical model fitted to raw data.
 - Identify significant effects & use them to select cases of interest.
- % meeting 3dB COM primarily depends on 1st order terms:

TxFFE	# of Tx taps
Ulmax	max bank span from cursor
Cd	device capacitance
b1max	max coefficient, 1 st Rx postcursor
Ntpb	# of taps per bank

Effect Summary

Source	LogWorth		PValue
TxFFE	23.277		0.00000
Ulmax	11.335		0.00000
Cd	9.993		0.00000
b1max	8.422	Significant	0.00000
Ntpb	3.771		0.00017
Ulmax*TxFFE	1.528		0.02966
Cd*Cd	1.125		0.07501
Ulmax*Cd	0.801		0.15823
b1max*TxFFE	0.785		0.16419
Ntpb*TxFFE	0.222		0.60041
Ntpb*Ulmax	0.202	Non significant	0.62862
b1max*Ulmax	0.202	NOITSIgnificant	0.62862
b1max*Ntpb	0.182		0.65740
Cd*TxFFE	0.137		0.72944
b1max*Cd	0.115		0.76682
Ntpb*Cd	0.094		0.80478

Summarized Results for Select Cases

	Case		Baseline	+TwFFE5	$+UI_{mf}$	$+C_d$	-b1 _{max}	-N _{tpb}	+ T_{wFFES} + UI_{mf}	+TwFFE5 +C _d	$+C_d$ $+Ui_{mf}$	W orst Case	Best Case
	Sim Case	6	21	23	22	13	45	9	24	15	14	33	16
	b1 max		0.85	0.85	0.85	0.85	0.7	0.85	0.85	0.85	0.85	0.7	0.85
N	tpb (# taps	5)	4	4	4	4	4	3	4	4	4	3	4
1	UI mf (#UI)		40	40	80	40	40	40	80	40	80	40	80
	C_d (fF)		130	130	130	110	130	130	130	110	110	130	110
Tx	FFE (# taj	ps)	4	5	4	4	4	4	5	5	4	4	5
%	ILchan	28.0	80.3	86.7	83.9	82.8	79.2	79.0	89.3	89.4	85.5	78.1	91.0
Pass	(dB)	29.0	73.7	80.4	76.6	76.3	72.1	72.7	82.4	83.1	78.4	70.4	84.3
	ILchan	28.0	0.0	6.4	3.6	2.5	-1.1	-1.3	9.0	9.1	5.2	-2.2	10.7
Δ	(dB)	29.0	0.0	6.7	2.9	2.6	-1.6	-1.0	8.7	9.4	4.7	-3.3	10.6
			Baseline	TxFFE5	UI _{mf} =80	C_d =110fF	$bI_{max}=0.7$	N_{tpb} =3	TxFFE5+ <i>UI_{mf}=</i> 80	TxFFE5+ C_d =110fF	C_d =110fF + UI_{mf} =80	Worst case	Best case

% Channels Meeting 3.0dB Com for Selected Cases

Selected Case Impact

Case

Statistics for Select Cases

IEEE P802.3ck

TxFFE5 Coefficient Statistics for sub-29dB Channels

<u>Tap</u>	<u>Mode</u>	\overline{X}	<u>S</u>
c(-3)	-0.02	-0.02	0.003
c(-2)	0.08	0.08	0.014
c(-1)	-0.26	-0.27	0.0254
<i>c</i> (0)	0.64	0.63	0.034
<i>c</i> (1)	0.00	-0.01	0.0202

'Highlighted' Channel Analysis

P802.3ck Highlighted Channel Subset

Contribution	Channel	#	Name	IL (dB)
haak 2ak 01 1110	28dB Cabled Backplane/Cable_BKP_28dB_0p575m_more_isi	14	Heck1	28.8
<u>neck 3ck 01 1118</u>	16dB Cabled Backplane/Cable_BKP_16dB_0p575m_more_isi	2	Heck2	15.2
mellitz 3ck adhoc 02 081518	24,28,30dB including BGA Via/CaBP_BGAVia_Opt2_28dB	53	Mellitz1	26.3
2 01 0110	Traditional Backplane Channels/Std_BP_12inch_Meg7	21	Tracy1	15.7
Tracy 3CK UI UI19	Orthogonal Backplane Channels/DPO_IL_12dB	17	Tracy2	12.2
	Measured Orthogonal Backplane Channels/OAch4	96	Kareti1	27.7
	Measured Orthogonal Backplane Channels/Och4	103	Kareti2	28.1
<u>kareti 3ck 01a 1118</u>	Measured Cabled Backplane Channels/CAch3_b2	89	Kareti3	28.5
	Measured Traditional Backplane Channels/Bch2_a7p5_7	63	Kareti4	-28.4
	Measured_Traditional_Backplane_Channels/Bch2_b7p5_7	70	Kareti5	28.9

Source: kochuparambil_3ck_01a_0119.pdf.

Highlighted Channel Experiment Results

Summary & Recommendations

- Objective: Develop reference equalizer recommendations for KR.
- Criteria: Choose equalizer to
 - maximize the percentage of contributed channels with \geq 3dB COM.
 - get all of the 'highlighted' (a.k.a. 'must work') channels to \geq 3dB COM.

Proposed reference equalizer:	Parame
-------------------------------	--------

- 80%-83% of sub-29dB channels meet 3dB COM (C_d dependent).
- All but 3 of the 'highlighted' channels meet 3dB COM.
 None of the options analyzed achieved 3dB.
- We also analyzed the impact of C_d , as part of the analysis to help the TF select the C_d baseline.
- To address the COM deficit for the failing channels we analyzed package trace loss & length mismatch.
 - Results were negative. They are included in backup.

	Parameter	Recommendation
	TxFFE $c(-3)$	[-0.06: 0.02: 0.00]
	# Fixed DFE taps	16
	# Floating DFE banks	2
	# taps per bank	4
	max bank span	40UI from cursor
5	$b_{max}(1)$	0.85

Thank you!

Additional data

COM Template w/ 2 Floating Banks

	Table 93A-1 parameters				I/O control			Table 93A–3 parameters		
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units	
f_b	53.125	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]		
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	6.141E-03	ns/mm	
Delta_f	0.01	GHz		RESULT_DIR	.\TestCaseFloatingBank\		package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm	
C_d	[1.3e-4 1.3e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical				
z_p select	[12]		[test cases to run]	Port Order	[1324]			Table 92–12 parameters		
z_p (TX)	[12 32; 1.8 1.8]	mm	[test cases]	RUNTAG	testBank		Parameter	Setting		
z_p (NEXT)	[12 32; 1.8 1.8]	mm	[test cases]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]		
z_p (FEXT)	[12 32; 1.8 1.8]	mm	[test cases]		Operational		board_tl_tau	5.790E-03	ns/mm	
z_p (RX)	[12 32; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	90	Ohm	
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	ERL Pass threshold	10.5	dB	z_bp (TX)	119	mm	
R_0	50	Ohm		DER_0	1.00E-04		z_bp (NEXT)	119	mm	
R_d	[50 50]	Ohm	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	119	mm	
A_v	0.413	V	vp/vf=.694	FORCE_TR	1	logical	z_bp (RX)	119	mm	
A_fe	0.413	V	vp/vf=.694	Include PCB	0	logical				
A_ne	0.608	V		TDR	and ERL options					
L	4			TDR	1	logical				
M	32			ERL	0	logical				
	filter and Eq			ERL_ONLY	0	logical				
f_r	0.75	*fb		TR_TDR	0.01	ns				
c(0)	0.54		min	N	1000					
c(-1)	[-0.34:0.02:0]		[min:step:max]	TDR_Butterworth	1	logical				
c(-2)	[0:0.02:0.12]		[min:step:max]	beta_x	1.70E+09					
c(-3)	[-0.06:0.02:0]		[min:step:max]	rho_x	0.18					
c(1)	[-0.1:0.05:0]		[min:step:max]	fixture delay time	0	enter sec				
N_b	20	UI		Re	ceiver testing					
b_max(1)	0.85			RX_CALIBRATION	0	logical				
b_max(2N_b)	0.3			Sigma BBN step	5.00E-03	V				
g_DC	[-20:1:0]	dB	[min:step:max]	1	Noise, jitter					
f_z	21.25	GHz		sigma_RJ	0.01	UI				
f_p1	21.25	GHz		A_DD	0.02	UI				
f_p2	53.125	GHz		eta_0	8.20E-09	V^2/GHz				
g_DC_HP	[-6:1:0]		[min:step:max]	SNR_TX	33	dB				
f_HP_PZ	0.6640625	GHz		R_LM	0.95					
ffe_pre_tap_len	0	UI								
ffe_post_tap_len	0	UI								
ffe_tap_step_size	0.02									
ffe_main_cursor_min	0.7									
ffe_pre_tap1_max	0.3									
ffe_post_tap1_max	0.3									
ffe_tapn_max	0.125									
ffe_backoff	0									
Nb_floatingbank	2									
Nb_tapperbank	3									
Floating_maxUI	100	UI	>N_b+Nb_floating				Used with ve	rsion 2.58 of th	ne tool 🗌	
Floating_maxBound	0.3									

COM Template – 24 Fixed Taps

Table 93A-1 parameters				I/O control			Table 93A–3 parameters		
Parameter	Setting	Units	Information	DIAGNOSTICS	0	logical	Parameter	Setting	Units
f_b	53.125	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	6.141E-03	ns/mm
Delta_f	0.01	GHz		RESULT_DIR	.\TestCaseFloatingBank\		package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
C_d	[1.3e-4 1.3e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical			
z_p select	[12]		[test cases to run]	Port Order	[1324]			Table 92–12 parameters	
z_p (TX)	[12 32; 1.8 1.8]	mm	[test cases]	RUNTAG	testBank		Parameter	Setting	
z_p (NEXT)	[12 32; 1.8 1.8]	mm	[test cases]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (FEXT)	[12 32; 1.8 1.8]	mm	[test cases]	Operational			board_tl_tau	5.790E-03	ns/mm
z_p (RX)	[12 32; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	90	Ohm
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	ERL Pass threshold	10.5	dB	z_bp (TX)	119	mm
R_0	50	Ohm		DER_0	1.00E-04		z_bp (NEXT)	119	mm
R_d	[50 50]	Ohm	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	119	mm
A_v	0.413	V	vp/vf=.694	FORCE_TR	1	logical	z_bp (RX)	119	mm
A_fe	0.413	V	vp/vf=.694	Include PCB	0	logical			
A_ne	0.608	V		TDR and ERL options					
L	4			TDR	1	logical			
M	32			ERL	0	logical			
filter and Eq				ERL_ONLY	0	logical			
f_r	0.75	*fb		TR_TDR	0.01	ns			
c(0)	0.54		min	N	1000				
c(-1)	[-0.34:0.02:0]		[min:step:max]	TDR_Butterworth	1	logical			
c(-2)	[0:0.02:0.12]		[min:step:max]	beta_x	1.70E+09				
c(-3)	[-0.06:0.02:0]		[min:step:max]	rho_x	0.18				
c(1)	[-0.1:0.05:0]		[min:step:max]	fixture delay time	0	enter sec			
N_b	20	UI		Re	ceiver testing				
b_max(1)	0.85			RX_CALIBRATION	0	logical			
b_max(2N_b)	0.3	1		Sigma BBN step	5.00E-03	V			
g_DC	[-20:1:0]	dB	[min:step:max]	Noise, jitter					
f_z	21.25	GHz		sigma_RJ	0.01	UI			
f_p1	21.25	GHz		A_DD	0.02	UI			
f_p2	53.125	GHz		eta_0	8.20E-09	V^2/GHz			
g_DC_HP	[-6:1:0]		[min:step:max]	SNR_TX	33	dB			
f_HP_PZ	0.6640625	GHz		R_LM	0.95				
ffe_pre_tap_len	0	UI							
ffe_post_tap_len	0	UI							

Used with version 2.58 of the tool

Distribution for Case 15 w/ Sub-29dB Channels

Parameter Significance 2

From fit of mean COM to the 5 variables

TxFFE5 Coefficients for sub-29dB Channels

Includes coefficients obtained with 12 mm & 32 mm package routes.

Package 'Improvement' Analysis

Highlighted Channel COM vs. Die-Die IL

Highlighted Channel Die-Die Insertion Loss

Two 32mm packages contribute ~11.3dB.

Estimated package contribution to insertion loss:

- 12mm pkg: 5.35dB/2 = 2.68dB
- 32mm pkg: 11.30dB/2 = 5.65dB

Estimated package trace loss ~0.15dB/mm

Reduced Reference Package Loss

Package Length Mismatch

- RxEQ: 16 fixed taps + 2 banks of 4 floating taps with 40UI span.
- Tx/Rx package length mismatch can give COM improvement, but not enough to close the gap to 3dB.