Solutions for Multi-Tap DFE Error Propagation (Summary)

Yuchun Lu, Huawei Yan Zhuang, Huawei

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Solutions for Multi-Tap DFE Error Propagation

		PMD Solutions*		"PMA Remapping"	"Interleaved FEC"	
#		Constrain DFE weight	EoBD (<u>lu 3ck 01</u> <u>0319</u>)	"PMA re-mapping" / "4:1 symbol mux" (<u>lu_3ck_adhoc_01_041019</u>)	"2:1 bit mux" (gustlin_3ck_01_0119)	"4:1 bit mux" (<u>nicholl_3ck_adhoc_</u> <u>01b_042419</u>)
Performance		ОК	OK (Best)	OK? (Same performance for real	l istic channels)	OK (Slightly worse)
	Host IC	Negligible		Negligible	1x 50G RS(544, 514) Encoder/Decoder.	
Complexity Increase	CDR	0		0 FEC decoders have already been integrated inside CDR.	Duplex FECL processing 2x 50G + 1x 100G RS(544, 514) Encoder 1x 50G RS(544, 514) Decoder. All the functions are mandatory.	
Latency Increase	Host IC	0		0	>50ns	
	CDR	0		Ons w/o "FEC recovery" support; ~100ns w/ "FEC recovery" support.	>150ns 1 CDR; >250ns 2 CDR.	
Protocol independent "FEC recovery" support		No, Historical burden must be carried on.		Yes, FEC can be self-synchronized.	No, Has to process duplex FECL and do "FEC conversion".	
Define new Alignment Markers		No		Νο	Yes	No
Standard Effort		None		Minor **	A New Clause for "FEC conversion".	
Recommendation		Preferred		Optional , to support easy RS(544, 514) FEC termination.	Not	

* More PMD solutions are available.

** Optional PMA-remapping function within PMA Sublayer.

- No evidence shows that there is FEC performance concern of multi-tap DFE receiver that cannot be addressed by "PMA remapping" or PMD solutions (e.g. constraining DFE weights or EoBD). The EoBD provides the best performance with negligible cost in latency and complexity.
- No result shows that the "Interleaved FEC" has better performance than "PMA remapping (symbol mux)" in realistic channels.
- "Interleaved FEC" will introduce more latency and complicated CDR, which is unnecessary.
- Recommend to adopt PMD solutions and reuse the C2M clauses for 100G CR/KR.
- If we do need to consider the minor "difficult channels" (which are not found yet!), the optional "PMA remapping" function is suggested, since it has the same performance as "Interleaved FEC" and additional system benefit can be obtained i.e. Protocol independent "FEC recovery".

Thank you!

把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。

Bring digital to every person, home, and organization for a fully connected, intelligent world.

Reference

- FEC performance concern for 100GE-CR1/KR1 multi-tap DFEs with 4:1 bitmux PMA was shown in <u>anslow 3ck 01 0918</u> with [0.7 0 0.2 0 0.2] channel. [0.7 0 0.2 0 0.2] is not a realistic channel and is too pessimistic, which is shown in <u>lu_3ck_adhoc_01a_010219</u> and <u>lyubomirsky_3ck_01a_0319</u>.
- Interleaved FEC with 2:1 bit mux was proposed in <u>gustlin_3ck_01_1118</u>; Interleaved FEC with 4:1 bit mux was proposed in <u>nicholl_3ck_adhoc_01b_042419</u>. In-depth analysis of interleaved FEC was given in <u>lu_3ck_adhoc_01_022719</u>, which shown that Interleaved FEC will introduce more latency and complicated CDR, which is unnecessary and not affordable for some applications.
- PMD, PMA and FEC sublayer solutions for multi-tap DFE error propagation problem were analyzed in <u>lu 3ck 02_0319</u>. EoBD solution was discussed in <u>lu 3ck 01_0319</u>; PMA remapping was discussed in <u>lu 3ck adhoc 01_041019</u>. "PMA remapping" has the same performance as interleaved FEC with 2:1 bitmux PMA, and it can support "Protocol independent FEC recovery".
- Contributions that shown PMA remapping (symbol mux) and interleaved FEC with 2:1 bitmux has the same performance in realistic channels: <u>anslow_3ck_01_0119</u> page 12 &13, <u>anslow_3ck_adhoc_01_041019</u>, <u>lyubomirsky_3ck_01a_0319</u>. <u>wu_3ck_01b_0319</u> shown that the equivalent DFE weight is smaller than 0.85, it can be verified by checking DFE weight database <u>sun_3ck_02a_0119</u>.
- EoBD (<u>lu 3ck 01 0319</u>) provides the best performance with negligible cost in latency and complexity <u>anslow 3ck adhoc 01 041019</u>.

