Floating Tap Incorporation Proposal for Annex 93A

Richard Mellitz
Samtec

May 2019
IEEE 802.3 $100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Electrical Interfaces Task Force, Salt Lake City, Utah

Supporters

- Erdem Matoglu, Amphenol
- Howard Heck, Intel
- Nathan Tracy, TE
\square Samuel Kocsis, Amphenol
\square Scott Sommers, Molex
- Tom Palkert, Molex
- Upen Reddy Kareti, Cisco

Table of Contents

\square Problem

- Floating DFE Taps and Parameter Introduction
- Annex 93A Change Overview
- Brief Sample of Potential Results
\square Summary

Problem

Many channels have significant, but deterministic, ISI at timing locations outside of the temporal reach of a fixed tap DFE.

Introduction to Parameters for Floating Tap and Example Values

Annex 93A Change Overview

Implementation of floating DFE taps in Annex 93A
\square Add a few parameters which represent aspects of floating taps in a DFE
\square Small change to equation 93A-27
\square Add a few lines describing how to determine the location of the floating DFE taps in 93A.1.6

- Based on the few added parameters
\square Referring section calls out these parameters

Add parameter N_{f} which is the total reach of the DFE including floating taps

93A.1.6 Determination of variable equalizer parameters

COM is a function of the variables $c(-1), c(1), g_{\mathrm{DC}}$, and $g_{\mathrm{DC} 2}$. The following procedure is used to determine the values of these variables that are used to calculate COM.
a) Compute the pulse response $h^{(k)}(t)$ of each signal path k for a given $c(-1), c(1), g_{\mathrm{DC}}$, and $g_{\mathrm{DC} 2}$ using the procedure defined in 93A.1.5.
b) Define t_{s} to be the time that satisfies Equation (93A-25). If there are multiple values of t_{s} that satisfy the equation, then the first value prior to the peak of $h^{(0)}(t)$ is selected. The coefficients of the decision feedback equalizer $b(n)$ are computed as shown in Equation (93A-26). If N_{b} is 0 , then the $b(n)$ is considered to be zero for all n. If N_{f} is not defined in the referring section then considered $N_{f}=N_{b}$.

$h^{(0)}(t)$ is the Pulse Response, PR (Reference Background)

\square With all the linear filters applied

IEEE $802.3100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and 400 Gb/s Electrical Interfaces Task Force

Adjust $h_{i s i}$ equation 93A-27

We will leverage $b_{\text {max }}$
IEEE Std 802.3-2018, IEEE Standard for Ethernet SECTION SIX

	$\left.\begin{array}{l}\text { The DFE action is } \\ \text { controlled by vector } b(n) \\ h^{(0)}\left(t_{s}+n T_{b}\right) / h^{(0)}\left(t_{s}\right)<-b_{\max }(n) \\ h^{(0)}\left(t_{s}+n T_{b}\right) / h^{(0)}\left(t_{s}\right)>b_{\max }(n) \\ \text { otherwise }\end{array}\right\} \quad$ (93A-26)

$$
h_{I S I}(n)=\left\{\begin{array}{cc}
0 & n=0 \tag{93A-27}\\
N_{f} \\
h^{(0)}\left(t_{s}+n T_{b}\right)-h^{(0)}\left(t_{s}\right) b(n) & 1 \leq n \leq \chi_{b} \\
h^{(0)}\left(t_{s}+n T_{b}\right) & \text { otherwise }
\end{array}\right\}
$$

From here, $h_{i s i}(n)$ is used to compute ISI noise for computing COM for every combination of linear filter settings

The " n " in $b_{\max }(n)$ is in reference to the PR

$$
h^{(0)}\left(t_{s}+n T_{b}\right)
$$

is the sampled pulse response (red dots)

Example of 3 groups of 4 DFE taps

IEEE $802.3100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and 400 Gb/s Electrical Interfaces Task Force

Example of Residual ISI over the $b_{\text {max }}$ limit (Reference Background)

 \section*{\title{
Insert steps for
 \section*{\title{
Insert steps for adjusting $b_{\text {max }}(n)$ in adjusting $b_{\text {max }}(n)$ in 93A.1.6
}} 93A.1.6
}}

Insert rules to

determine $b_{\max }(n)$ here

93A.1.6 Determination of variable equalizer parameters

COM is a function of the variables $c(-1), c(1), g_{\mathrm{DC}}$, and $g_{\mathrm{DC} 2}$. The following procedure is used to determine the values of these variables that are used to calculate COM.
a) Compute the pulse response $h^{(k)}(t)$ of each signal path k for a given $c(-1), c(1), g_{\mathrm{DC}}$, and $g_{\mathrm{DC} 2}$ using the procedure defined in 93 A .1 .5 .
b) Define t_{s} to be the time that satisfies Equation $(93 \mathrm{~A}-25)$. If there are multiple values of t_{s} that satisfy the equation, then the first value prior to the peak of $h^{(0)}(t)$ is selected. The coefficients of the decision feedback equalizer $b(n)$ are computed as shown in Equation (93A-26). If N_{b} is 0 , then the $b(n)$ is considered to be zero for all n.
c) Define A_{s} to be $R_{L M} h^{(0)}\left(t_{s}\right) /(L-1)$.
d) Compute $\sigma_{T X}^{2}$ per Equation (93A-30) and Equation (93A-29). This represents the noise output from the transmitter.
e) Compute $h_{I S O}(n)$ per Equation (93A-27). This represents the residual intersymbol interference (ISI) after decision feedback equalization. The corresponding ISI amplitude variance $\sigma_{I S I}^{2}$ is computed per Equation (93A-31) and Equation (93A-29).
f) Compute the slope of the pulse response of the victim path $h(n)$ as shown in Equation (93A-28). The variance of the amplitude error due to timing jitter σ_{j}^{2} is computed per Equation ($93 \mathrm{~A}-32$) and Equation (93A-29).
g) The variance of the amplitude for path k is given by Equation ($93 \mathrm{~A}-33$) where the phase index m can assume any integer value from 0 to $M-1$. Denote the value of m that maximizes the variance for path k as i. The variance of the amplitude for the combination of all crosstalk paths $\sigma_{X T}^{2}$ is then computed using Equation ($93 \mathrm{~A}-34$), which is the sum of the maximum variances for the individual paths $k=1$ to $K-1$.
h) Compute the variance of the noise at the output of the receive equalizer σ_{N}^{2} based on the one-sided spectral density η_{0} referred to the receiver noise filter input per Equation ($93 \mathrm{~A}-35$).
i) Compute the figure of merit (FOM) per Equation ($93 \mathrm{~A}-36$).

$$
\begin{equation*}
h^{(0)}\left(t_{s}-T_{b}\right)=h^{(0)}\left(t_{y}+T_{b}\right)-h^{(0)}\left(t_{s}\right) b(1) \tag{93~A-25}
\end{equation*}
$$

Rules for Floating Tap Determination of $b(n)$

$$
\left.h_{I S I}(n)=\xlongequal[\begin{array}{cc}
0 & n=0 \\
N_{f} \\
h^{(0)}\left(t_{s}+n T_{b}\right)-h^{(0)}\left(t_{s}\right) b(n) & 1 \leq n \leq N_{\delta} \\
h^{(0)}\left(t_{s}+n T_{b}\right) & \text { otherwise }
\end{array}]\right]{ } \rightarrow h_{n f}(n)
$$

\square Define post cursor ISI vector as $h_{n f}(n)=h_{I S I}(n), l \leq n \leq N_{f}$
$\square b\left(1 \ldots N_{b}\right)$ is as specified in referring section (no change from prior)
Determine the location of non-zero $b(n)$ corresponding to each of $N_{b g}$ groups

1. Initially set $b\left(N_{b}+1 \ldots N_{f}\right)=0$
2. Determine the value for $N_{g x}$ which "minimizes" the $\sum h_{n f}(n)^{2}$

- Where $b\left(N_{g x} \ldots N_{g x}+N_{g f}\right)=b_{\text {maxg }}$ and $N_{b}+1 \leq N_{g x} \leq N_{f}-N_{g x}$
- I.e. set $\mathrm{b}_{\text {max }}$ for all the taps in the group

3. Find $N_{g x}$ for each of $N_{b g}$ groups by repeating step 2 not including locations $N_{g x} \ldots N_{g x}+N_{g f}$

Floating taps can improve COM up to to $1 / 2 \mathrm{~dB}$ compared to channels with DFE24 (fixed) COM which are near 3 dB

Summary

Floating can be added to Annex 93A (COM)
\square Only a few simple alterations to Annex 93A (COM) are required to implement floating DFE taps.
\square Referring sections need only to specify 4 parameters, $\mathrm{N}_{\mathrm{bg}}, \mathrm{N}_{\mathrm{bf}}, \mathrm{N}_{\mathrm{f}}$ and $\mathrm{b}_{\text {maxg }}$

Thank You!

IEEE $802.3100 \mathrm{~Gb} / \mathrm{s}, 200 \mathrm{~Gb} / \mathrm{s}$, and $400 \mathrm{~Gb} / \mathrm{s}$ Electrical Interfaces Task Force

