Floating Tap Incorporation Proposal for Annex 93A

Richard Mellitz Samtec

May 2019

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force, Salt Lake City, Utah

Supporters

- □ Erdem Matoglu, Amphenol
- □ Howard Heck, Intel
- □ Nathan Tracy, TE
- □ Samuel Kocsis, Amphenol
- □ Scott Sommers, Molex
- □ Tom Palkert, Molex
- Upen Reddy Kareti, Cisco

Table of Contents

Problem

- □ Floating DFE Taps and Parameter Introduction
- □ Annex 93A Change Overview
- □ Brief Sample of Potential Results
- □ Summary

Problem

Many channels have significant, but deterministic, ISI at timing locations outside of the temporal reach of a fixed tap DFE.

Introduction to Parameters for Floating Tap and Example Values

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Annex 93A Change Overview

Implementation of floating DFE taps in Annex 93A

- Add a few parameters which represent aspects of floating taps in a DFE
- □ Small change to equation 93A-27
- □ Add a few lines describing how to determine the location of the floating DFE taps in 93A.1.6
 - Based on the few added parameters

□ Referring section calls out these parameters

Add parameter $N_{\rm f}$ which is the total reach of the DFE including floating taps

93A.1.6 Determination of variable equalizer parameters

COM is a function of the variables c(-1), c(1), g_{DC} , and g_{DC2} . The following procedure is used to determine the values of these variables that are used to calculate COM.

- a) Compute the pulse response $h^{(k)}(t)$ of each signal path k for a given c(-1), c(1), g_{DC} , and g_{DC2} using the procedure defined in 93A.1.5.
- b) Define t_s to be the time that satisfies Equation (93A-25). If there are multiple values of t_s that satisfy the equation, then the first value prior to the peak of $h^{(0)}(t)$ is selected. The coefficients of the decision feedback equalizer b(n) are computed as shown in Equation (93A-26). If N_b is 0, then the b(n) is considered to be zero for all n. If N_f is not defined in the referring section then considered $N_f = N_b$.

h⁽⁰⁾(t) is the Pulse Response, PR (Reference Background)

□ With all the linear filters applied

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Adjust h_{isi} equation 93A-27

$$b(n) = \begin{cases} 0 & n = 0 \\ h^{(0)}(t_s + nT_b) - h^{(0)}(t_s) & 1 \le n \le N_b \\ h^{(0)}(t_s + nT_b) - h^{(0)}(t_s) & 0 \\ h^{(0)}(t_s + nT_b) & 0 \\ h^{(0)}(t_s +$$

From here, $h_{isi}(n)$ is used to compute ISI noise for computing COM for every combination of linear filter settings

The "*n*" in $b_{max}(n)$ is in reference to the PR

Example of 3 groups of 4 DFE taps

Example of Residual ISI over the b_{max} limit (Reference Background)

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Insert steps for adjusting $b_{max}(n)$ in 93A.1.6

> Insert rules to -determine $b_{max}(n)$ here

93A.1.6 Determination of variable equalizer parameters

COM is a function of the variables c(-1), c(1), g_{DC} , and g_{DC2} . The following procedure is used to determine the values of these variables that are used to calculate COM.

- a) Compute the pulse response h^(k)(t) of each signal path k for a given c(-1), c(1), g_{DC}, and g_{DC2} using the procedure defined in 93A.1.5.
- b) Define t_s to be the time that satisfies Equation (93A-25). If there are multiple values of t_s that satisfy the equation, then the first value prior to the peak of h⁽⁰⁾(t) is selected. The coefficients of the decision feedback equalizer b(n) are computed as shown in Equation (93A-26). If N_b is 0, then the b(n) is considered to be zero for all n.
- c) Define A_s to be $R_{LM}h^{(0)}(t_s)/(L-1)$.
- Compute σ²_{TX} per Equation (93A–30) and Equation (93A–29). This represents the noise output from the transmitter.
- Compute h_{ISI}(n) per Equation (93A-27). This represents the residual intersymbol interference (ISI) after decision feedback equalization. The corresponding ISI amplitude variance σ²_{ISI} is computed per Equation (93A-31) and Equation (93A-29).
- f) Compute the slope of the pulse response of the victim path h_j(n) as shown in Equation (93A-28). The variance of the amplitude error due to timing jitter σ²_j is computed per Equation (93A-32) and Equation (93A-29).
- g) The variance of the amplitude for path k is given by Equation (93A-33) where the phase index m can assume any integer value from 0 to M-1. Denote the value of m that maximizes the variance for path k as i. The variance of the amplitude for the combination of all crosstalk paths σ_{XT}^2 is then computed using Equation (93A-34), which is the sum of the maximum variances for the individual paths k=1 to K-1.
- h) Compute the variance of the noise at the output of the receive equalizer σ_N² based on the one-sided spectral density η₀ referred to the receiver noise filter input per Equation (93A–35).
- Compute the figure of merit (FOM) per Equation (93A-36).

$$h^{(0)}(t_s - T_b) = h^{(0)}(t_s + T_b) - h^{(0)}(t_s)b(1)$$
(93A-25)

Rules for Floating Tap Determination of b(n)

$$h_{ISI}(n) = \begin{cases} 0 & n = 0 \\ h^{(0)}(t_s + nT_b) - h^{(0)}(t_s)b(n) & 1 \le n \le N_b \\ h^{(0)}(t_s + nT_b) & \text{otherwise} \end{cases} \to h_{nf}(n)$$

 \Box Define post cursor ISI vector as $h_{nf}(n) = h_{ISI}(n)$, $1 \le n \le N_f$ \Box $b(1 \dots N_h)$ is as specified in referring section (no change from prior) Determine the location of non-zero b(n) corresponding to each of N_{bg} groups

- 1. Initially set $b(N_b + 1 ... N_f) = 0$
- 2. Determine the value for N_{gx} which "minimizes" the $\sum h_{nf}(n)^2$
 - Where $b(N_{gx} \dots N_{gx} + N_{gf}) = b_{maxg}^{sx}$ and $N_b + 1 \le N_{gx} \le N_f N_{gx}$ I.e. set b_{max} for all the taps in the group
- 3. Find N_{gx} for each of N_{bg} groups by repeating step 2 not including locations $N_{ox} \dots N_{ox} + N_{of}$

Floating taps can improve COM up to to $\frac{1}{2}$ dB compared to channels with DFE24 (fixed) COM which are near 3 dB

Summary

- □ Floating can be added to Annex 93A (COM)
- Only a few simple alterations to Annex 93A (COM) are required to implement floating DFE taps.
- Referring sections need only to specify 4 parameters, N_{bg}, N_{bf}, N_f and b_{maxg}

Thank You!