

Baseline proposal for Receiver noise model in COM for KR/CR

Mau-Lin Wu, Pei-Rong Li, Yuan-Hao Tung MediaTek IEEE 802.3ck Task Force

Outline

- Motivations
- System noise model & impact
- Receiver noise model & impact
- Appropriate levels of RX noise
- Baseline proposal for noise model in COM

Motivation

- Currently, 'Eta_0' is applied in COM 2.60 for modeling system noise and/or receiver noise
- The following questions were raised
 - Which model is appropriate for system & receiver noise?
 - What's the impact to COM_{min} budget?
- In [1], the authors highlighted COM is sensitive to wideband 'Eta_0'
 - 1.0 dB COM loss comparing Eta_0 = 16e-9 to 8e-9
- In [2], Richard proposed new "Bandlimited" model for system noise
- In [3], Adam reviewed all implementation allowance "bucket"
- In [5], Mau-Lin shared the following information
 - Impact to COM from 'band-limited' system noise modeled by [2] is small
 - 3 dB COM_{min} budget may not cover impact from input-referred RX noise
- We tried to address the following topics here by publication search
 - What's the appropriate level of RX noise?
- Observations
 - Bandlimited system noise has small impact to COM, may be ignorable
 - Most publications show RX noise with larger than $\eta_0 = 1.64e-8$

System & Receiver Noise Models

- We model system & receiver noises in COM as below
- System noise
 - by Richard's 'Bandlimited' model [with 0.5 mV_{rms}]
- Receiver noise
 - by input-referred noise spectral density, η_0

Bandlimited System Noise – Impact

- In [2], Richard proposed to adopt new model for system noise
- Analysis of 42 channels as [1]
- By COM 2.60
 - By enabling Richard's new system noise model by 'Bandlimited' style [2]
 - C d = 120 fF
 - b_max[1] = 0.85, b_max[2..N_b] = 0.3

5

- We tried to evaluate performance impact by this new bandlimited system noise model
 - Case 1: 1mV system noise: use $\eta_0 = 2.1238e-06 V^2/GHz$
 - Case 2: 0.5mV system noise: use $\eta_0 = 5.3096e-07 V^2/GHz$
- We compared the COM loss by inc. system noise
- "Bandlimited" noise from external is NOT so critical to COM performance

ted" noise from	Noise (mV _{rms})	COM LOSS (dB, comparing to NO system noise)					
erformance		Mean	Min	Max	Std		
	1	0.58	0.22	0.93	0.15		
IEEE 802.3 100 Gb/s, 200 Gb/s, and	0.5	0.21	0.06	0.36	0.07		

Receiver Noise – Impact to COM_{min}

Conf. Sys.		RX Noise	COM loss in dB (to Conf. 1, which is w.o. RX noise)					
Nois	Noise		Mean	Min	Max	Std		
0	Off	Off	-0.21	-0.36	-0.06	0.07		
1	On	Off	0	0	0	0		
2	On	$\eta_0 = 0.82e-8 V^2/GHz$	1.52	0.18	3.61	0.83		
3	On	$\eta_0 = 1.23e-8 V^2/GHz$	2.03	0.25	4.55	1.05		
4	On	η ₀ = 1.64e-8 V ² /GHz	2.46	0.32	5.29	1.21		

- COM losses are quite different among different channels
 - Some are sensitive, while others are not
 - Would be better to include RX noise model in COM
- Take $\eta_0 = 1.64e 8$ as reasonable level
 - ~2.5 dB COM loss contribute a lot to COM budget, if we don't include RX noise in COM
 - Can we take 2.5 dB from 3 dB COM_{min} bucket just for two noise terms? \rightarrow definitely not!
- Detailed analysis in [5]

MEDIATEK

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

RX Noise Model – Noise Floor vs. Eta_0

- Boltzmann noise floor per Hz for a resistor is
 - $N_p = 10 \log 10(k_b * T_k) + 30$
 - -172.88 dBm/Hz at 100° C (~= -173 dBm/Hz)
- Implementation noise figure (NF) : 10 ~ 20 dB
- Noise (N_{RX}, dBm/Hz) = Thermal noise floor (-173) + receiver noise figure (NF)

•
$$N_{RX} = 10 \log 10 \left(\frac{\eta_0}{R}/1e9 * 1e3\right)$$

- What's the appropriate level?
 - ~15 dB NF? This is what we adopted in 802.3cd
 - Shall be independent of symbol rate!!
 - 0.5mV? It's critical to achieve this due to higher f_b!
- Action: tried to collect information from publications

η ₀ (ν²/gнz)	N_{RX} (dB m/Hz)	NF (dB)	V _{rms} (mV @ 0.75f _b)
5.0119e-10	-173.00	0.00	0.14
0.627e-8	-162.03	10.97	0.50
0.82e-8	-160.86	12.14	0.57
1.23e-8	-159.10	13.90	0.70
1.64e-8	-157.85	15.15	0.81
2.51e-8	-156.00	17.00	1.00

Values for RX Noise – Publications

 Compare RX noise (@ input of ADC/Slicer) from different publications

Pub. ID		1	2	3 [8]	4 [7]	5 [6]	6 [9]
Title/Affiliation		802.3cd	802.3ck	Esilicon	IBM	IBM	Huawei
Publisher / Yea	r	IEEE 2018	IEEE	ISSCC 2019	SVLSIC 2018	ISSCC 2019	2019 JSSC
Rate (GHz)		50	100	50	50	100	64
Modulation		PAM4	PAM4	PAM4	NRZ	PAM4/NRZ	PAM4
Channel IL (dB) – bump2bump		30+5	28+8	42.5	32.5	19.2/37	29.5
Process (nm)		-	-	7	14	14	16
Input-	<u>Level (mV_{RMS})</u>	<u>0.57</u>	<u>0.57</u> (TBD)	-	<u>1.8</u>	-	<u>1.2</u>
referred RX noise	η ₀ (V²/GHz)	1.64e-8	8.2e-9 (TBD)	-	8.64e-8	-	6.00e-8
	NF (dB)	15.15	12.14 (TBD)	-	22.37	-	20.78
RX Noise @ ADC/Slicer	Level (mV _{RMS})	-	_	2.2 (3.1 for 100G)	-	<u>4.5</u>	_

- Input-referred noise/NF: all are larger than 802.3cd
- RX noise @ ADC/Slicer: can't compare apple-to-apple
 - Esilicon has quit small value

RX noise @ input of ADC/Slicer

- RX noise @ input of ADC/slicer depends on
 - CTLE & VGA setting, input swing
- Applied COM analysis of 42 channels in [1] to calculate
 - Channel IL, CTLE setting •
 - Set VGA gain as signal peak = (input swing / 2)
 - Derive 'normalized RX noise' = RX noise @ input of ADC/slicer divided by signal peak

۰

RX noise – correlation

- By calculating 'normalized RX noise' of Esilicon and IBM & plot on the figure from COM analysis, we can derive η_0 as below
 - Pub. ID 3: η₀ ~= 6.0e-9
 - Pub. ID 5: $\eta_0 \approx 2.0e-8$
- From the above analysis, there are two groups by 'RX noise' viewpoint
 - Very 'small' RX noise ($\eta_0 < 8.2e-9$) : Pub ID. 3
 - Larger RX noise (η₀ > 1.64e-8) : Pub ID. 4, 5, 6

RX Noise Level – Publications Compare

Pub. ID		Opt. 1	Opt. 2	Opt. 3	3 [8]	4 [7]	5 [6]	6 [9]
Title/Affiliation		802.3ck		Esilicon	IBM	IBM	Huawei	
Publisher / Yea	·	IEEE		ISSCC 2019	SVLSIC 2018	ISSCC 2019	2019 JSSC	
Rate (GHz)		100		50	50	100	64	
Channel IL (dB)	- bump2bump	28+8			42.5	32.5	37	29.5
Process (nm)		-			7	14	14	16
Input-	η ₀ (V²/GHz)	0.82e-8	1.64e-8	1.23e-8	<u>6.0e-9</u>	8.64e-8	<u>2.0e-8</u>	6.00e-8
<u>referred RX</u> <u>noise</u>	NF (dB)	12.14	15.15	13.90	<u>10.78</u>	22.37	<u>16.01</u>	20.78
RX Noise @ ADC/Slicer	<u>Level (mV_{RMS})</u>	-	-	-	2.2 (3.1 for 100G)	-	<u>4.5</u>	-

- RX noise variation among vendors are large
 - NF from 11 dB to 22 dB
 - NF from 16 ~ 22 dB even in 14 or 16nm
- Analog design doesn't benefit a lot from advanced process
- NF of Pub. ID 3 is very good

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Conclusions

- Bandlimited system noise model
 - Impact to COM is small & may be ignorable
- Receiver noise impacts to COM_{min} bucket
 - Average of 2.46dB by $\eta_0 = 1.64e-8 V^2/GHz$
 - Variation is large, may require model for COM accuracy
- Appropriate RX noise level
 - Most publications show value larger than $\eta_0 = 1.64e-8$

Proposal Options

Based on the above analysis, we proposed the following proposal options for discussion

Option	RX noise		Sys. noise	COM _{min}	Comments for consensus discussion	
	η ₀ (V²/GHz) — "input referred"	Noise Factor, (dB)	η_0 (V ² /GHz) – bandlimited ^{*1}	(ab)		
Option 1	0.82e-8	12.14	NA	3.0	Present working spreadsheets	
Option 2	1.64e-8	15.15	5.3096e- 07	2.5	Balanced missing/false alarm	
Option 3	1.23e-8	13.90	NA	3.0	Model only RX noise with more appropriate levle	
Option 4	5.0119e-10	0	5.3096e- 07	3.0 or TBD	Only consider resistor thermal noise and system noise. NF included in COM _{min} budget	
Option 5	1.64e-8	15.15	NA	3.0	No system noise & 3.0dB margin	
Option 6					Something else	

*1 The bandlimited "system" noise is modeled as proposed by Richard [2]

References

- [1] Mau-Lin Wu, et al., "COM Parameters Proposal for KR", IEEE 802.3ck 2019 March Plenary Meeting [wu 3ck 01b 0319.pdf]
- [2] Richard Mellitz, "Exploring System Noise, n₀, for Usage in COM", IEEE 802.3ck
 2019 March Plenary Meeting [mellitz_3ck_01_0319.pdf]
- [3] Adam Healey, "Considerations for the minimum COM limit", IEEE 802.3ck 2019 March Plenary Meeting [healey_3ck_01_0319.pdf]
- [4] Beth Kochuparambil, "Summary of System Discussion of Backplane Channels", IEEE 802.3ck 2019 January interim Meeting [kochuparambil_3ck_01c_0119.pdf]
- [5] Mau-Lin Wu, et al., "Discussion of System Noise & Receiver Noise in COM", IEEE 802.3ck May 8th, 2019 ad-hoc meeting [wu 3ck adhoc 01a 050819.pdf]
- [6] A. Cevrero, et al., "<u>6.1 A 100Gb/s 1.1pJ/b PAM-4 RX with Dual-Mode 1-Tap</u> <u>PAM-4 / 3-Tap NRZ Speculative DFE in 14nm CMOS FinFET</u>", IEEE ISSCC, p. 112-114, 2019.
- [7] P.A. Francese, et al., "<u>A 50GB/S 1.6PJ/B RX Data-Path with Quarter-Rate 3-</u> <u>Tap Speculative DFE</u>", IEEE Symp. VLSI Circuits, pp. 267-268, June 2018.
- [8] M. Pisati, et al., "<u>6.3 A Sub-250mW 1-to-56Gb/s Continuous-Range PAM-442.5dB IL ADC/DAC-BasedTransceiver in 7nm FinFET</u>", IEEE ISSCC, p. 116-118, 2019
- [9] P. A. Francese, et al., "<u>A 50GB/S 1.6PJ/B RX Data-Path with Quarter-Rate 3-</u> <u>Tap Speculative DFE</u>", IEEE Symposium on VLSI Circuits, pp. 267-268, 2018

everyday genius