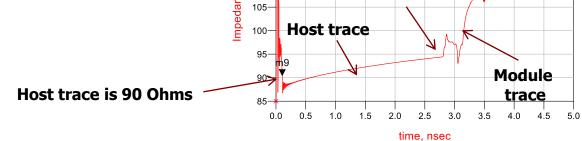
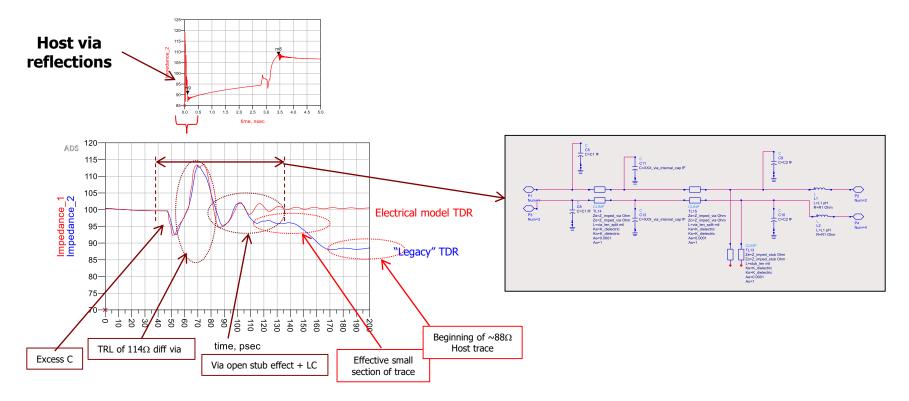

100G C2M TP1a Channel/System Analysis


M. Kimber, E. Frlan, July 2019, Vienna IEEE 802.3ck 100G Electrical

Overview

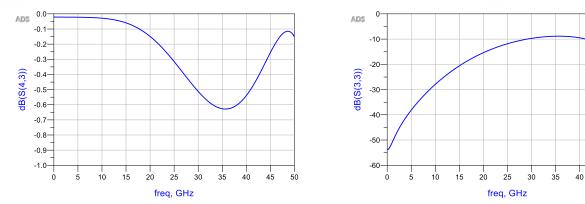
- An electrical equivalent model of one of the more difficult C2M channels is generated in order to determine penalties due to various channel elements
- An accurate, equivalent electrical model allows other scenarios to be evaluated such as the effect of artificially reducing host trace loss or possibly improving various channel elements to estimate expected gains in overall system performance
- Several cases were investigated for TP1a based on a 5-tap FFE reference receiver

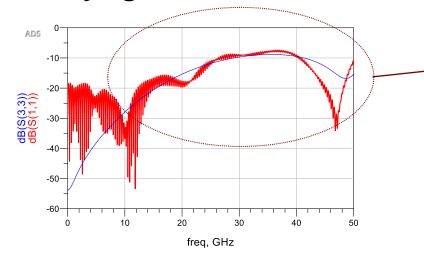
Jane Lim C2M channels (as described in lim_3ck_01_0319)



3

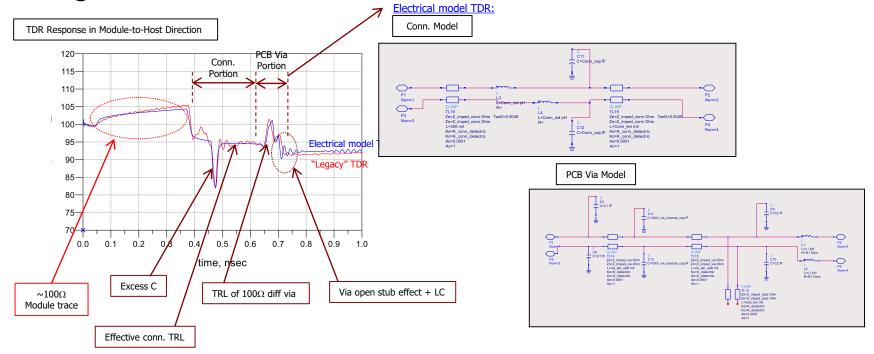
Host via transition modeling (1/2)


- Creating an equivalent electrical model of the host via interconnect region using a TDR step response
 - Channel TDR response was correlated with COM and ADS built-in TDR function


Electrical model is made up of transmission line and lumped component elements

Host via transition modeling (2/2)

Overlaying model S11 on channel S11

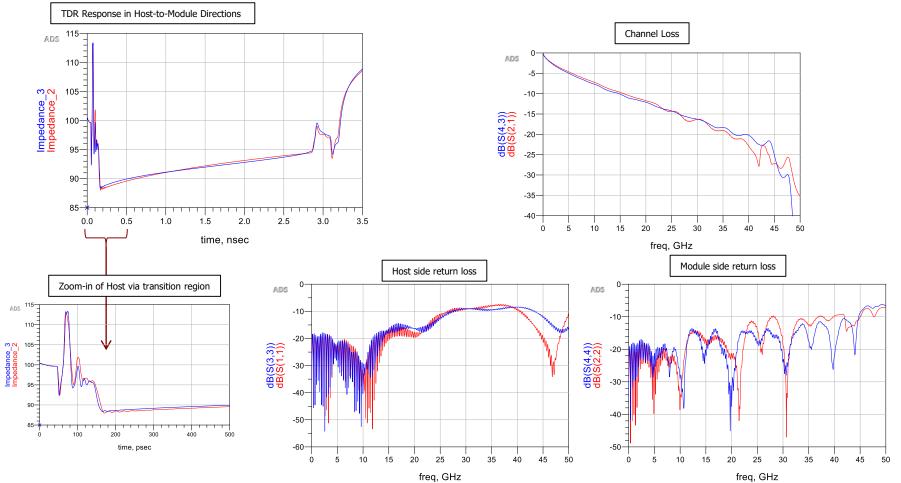


Appears that channel S11 performance is dominated by the via transition from 15-45 GHz !!

45 50

Module connector/via transition modeling

Creating an equivalent electrical model of the module connector/via region:


Observations:

- Connector "effective TRL" has 95Ω differential impedance
- Connector seems to show a capacitive discontinuity
- Module PCB via model approx. matches host via model

Electrical equivalent channel model responses vis-à-vis S-parameter channel

Red curves – "legacy" channel

Blue – Electrical equivalent model

7

Baseline COM setup

- COM results generated using com_ieee8023_93a_270.m
- Baseline COM excel configuration table in Backup section of this presentation for TP1a test point
- Equalization based on 3-tap Tx FIR (pre, main, post) and 5-tap Rx FFE (all post-cursors)
- Two test cases for Tx host package: z_p =12mm, z_p=31mm
- Comparing "legacy" with electrical equivalent channel performance with and without crosstalk

Channel Description	With Cross talk	FOM_ILD (dB)	12mm pack. VEC (dB)	12mm pack. COM (dB)	31mm pack. VEC (dB)	31mm pack. COM (dB)
"logov" choppol	No	0.474	8.17	4.30	9.76	3.42
"legacy" channel	Yes	0.174	9.95	3.84	10.6	3.05
"equiv. electrical" channel	No	0.400	9.77	3.68	11.2	2.79
	Yes	0.196	10.1	3.27	12.1	2.47

- Equivalent electrical channel results show ~0.6dB degradation in COM performance wrt "legacy" channel
- Reasonable agreement between measured and modeled and looking for relative degradations which are important in overall understanding

Degradations from various channel discontinuities at TP1a

Using the baseline electrical equivalent model and removing various channel transitions tells us the following:

Channel Description	Channel Construction	With Cross talk	FOM_ILD (dB)	12mm pack. VEC (dB)	12mm pack. COM (dB)	31mm pack. VEC (dB)	31mm pack. COM (dB)
"equiv. electrical" channel	Complete channel	Yes	0.196	10.1	3.27	12.1	2.47
"equiv. electrical" channel	Channel less host via transition	Yes	0.201	7.95	4.44	9.20	3.70
"equiv. electrical" channel	Channel less connector transition	Yes	0.131	8.44	4.13	9.78	3.41
"equiv. electrical" channel	Channel less host via and conn transitions	Yes	0.102	6.42	5.64	7.54	4.73

Results indicate that host via and module connector transitions are approximately equally complicit in overall channel degradation

Effect of host channel length on performance at TP1a

□ Decreasing electrical channel length to from ~6.8" to 0.5"

Channel Description	Channel Construction	With Cross talk	FOM_ILD (dB)	12mm pack. VEC (dB)	12mm pack. COM (dB)	31mm pack. VEC (dB)	31mm pack. COM (dB)
"equiv. electrical" channel	Complete channel – ~6.8" host trace	Yes	0.196	10.1	3.27	12.1	2.47
"equiv. electrical" channel	Channel with 4" host trace	Yes	0.188	7.10	5.06	8.15	4.71
"equiv. electrical" channel	Channel with 2" host trace	Yes	0.195	7.28	4.93	8.06	4.37
"equiv. electrical" channel	Channel with 1" host trace	Yes	0.210	6.61	5.46	7.90	4.48
"equiv. electrical" channel	Channel with 0.5" host trace	Yes	0.219	9.44	3.57	9.12	3.74

□ Shortest host trace has performance similar to long trace

□ Best COM margin obtained for the 4" host trace case

Degradations from various channel discontinuities at TP1a for very short channel

Using the baseline 0.5" host trace electrical equivalent model and removing various channel transitions tells us the following:

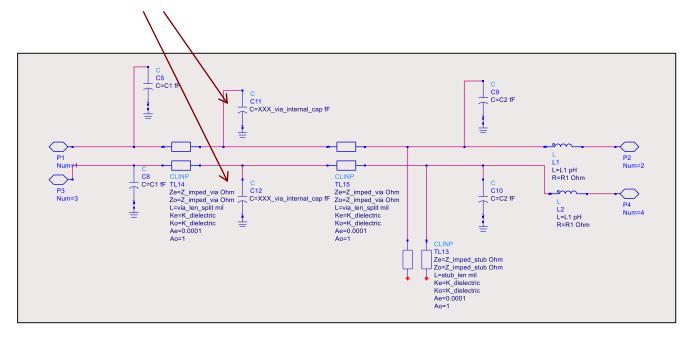
Channel Description	Channel Construction	With Cross talk	FOM_ILD (dB)	12mm pack. VEC (dB)	12mm pack. COM (dB)	31mm pack. VEC (dB)	31mm pack. COM (dB)
"equiv. electrical" channel	Complete channel	Yes	0.219	9.44	3.57	9.12	3.74
"equiv. electrical" channel	Channel less host via transition	Yes	0.210	7.43	4.81	8.39	4.16
"equiv. electrical" channel	Channel less connector transition	Yes	0.095	6.25	5.81	6.55	5.49
"equiv. electrical" channel	Channel less host via and conn transitions	Yes	0.038	4.19	8.35	5.01	7.16

Indication that for very short channels the connector interface impacts performance more significantly than the host via interface

Tuning approaches for long PCB vias

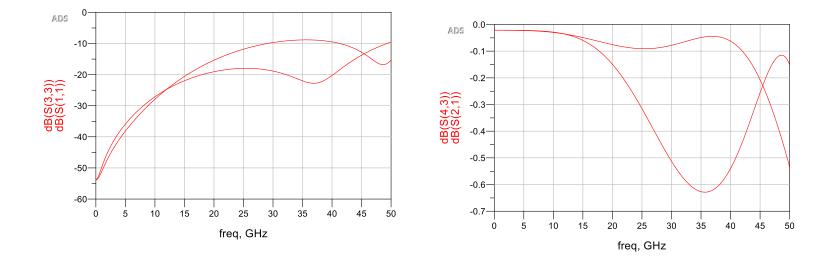
There are several common techniques for tuning or optimizing via structures for high frequency performance

Some examples include tuning by varying via antipad diameters to change effective via capacitances within the fF range. Also, terminating open via stubs into some impedance to minimize reflections is also a possibility


(e.g. see Sanmina-SCI "Matched Terminated Stub VIA Technology for Higher Bandwidth Transmission in Line Cards and Back Planes", 2008)

It may be possible to optimize the long vias a little bit better to buy back some performance, specifically the vias at the host interface and potentially the vias at the module connector interface

The following slides discuss one approach in more detail


Possible gains from improving host via interface (1/3)

- Host via appears to be inductive with a differential impedance of ~ 114Ω
- Perhaps some additional parasitic capacitance could be added by reducing the size of via antipad(s)
 - Addition of 40fF significantly improves electrical model via performance

Possible gains from improving host via interface (2/3)

Possible gains from improving host via interface (3/3)

Running COM on 6.8" and 0.5" channels with improved via performance yields:

Channel Description	Channel Construction	With Cross talk	FOM_ILD (dB)	12mm pack. VEC (dB)	12mm pack. COM (dB)	31mm pack. VEC (dB)	31mm pack. COM (dB)
6.8" "equiv. electrical" channel	Baseline channel	Yes	0.196	10.1	3.27	12.1	2.47
6.8" "equiv. electrical" channel	Baseline channel with improved vias	Yes	0210	8.77	3.93	10.0	3.28
0.5" "equiv. electrical" channel	Baseline channel	Yes	0.219	9.44.	3.57	9.12	3.74
0.5" "equiv. electrical" channel	Baseline channel with improved vias	Yes	0.232	8.17	4.30	8.88	3.87

 Higher performing vias on 6.8" channel yield a COM improvement of 0.6 - 0.8dB

□ For the very short 0.5" channel COM improvements are only significant for the 12mm package (i.e. ~ 0.7dB)

COM is passing here already

Summary and recommendations

- One of the more "difficult" channels from the submitted electrical channels has been analysed and an equivalent circuit model generated.
 - Good agreement shown between measured and modelled channel
- Discontinuities associated with vias and connectors appear to have the most impact on COM.
 - Reflections appear to be more important than loss
- Channel improvements are possible and need to be considered for power saving.
 - Capacitive tuning
 - Stub termination
- □ With channel improvements, 5 tap FFE is sufficient
 - No DFE required
 - No pre-cursors required
 - Keeping the channel equalization simple will keep the power dissipation lower

100G C2M should consider adopting a nominal 85Ω channel impedance as this appears to be used in practice

Backup Material

COM Parameters Table for TP1a simulations

	Table 93A-1 parame	eters			control			Table 93A–3 parame	ters	
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units	
fb	53.125	GBd		DISPLAY WINDOW	1	logical	package tl gamma0 a1 a2	[0 0.0009909 0.0002772]		1
f min	0.05	GHz		CSV REPORT	1	logical	package tl tau	6.141E-03	ns/mm	1
Delta f	0.01	GHz		RESULT DIR	.\results\100GEL		package Z c	[87.5 87.5 ; 92.5 92.5]	Ohm	-
C d	[1.2e-4 0]	nF	[TX RX]	SAVE FIGURES	1	logical	puckuge_2_c	[07.5 07.5 , 52.5 52.5]	Cim	
L s	[0.12, 0]	nH	[TX RX]	Port Order	[1324]	Togical	т	able 92–12 parameters 5.2dl		
C b	[0.12, 0]	nF	[TX RX]	RUNTAG	KR eval	+	Parameter		5 at 20.500 HZ	
		nF	. ,					Setting		
z_p select	[12]		[test cases to run]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	• •	1.286 dB/in or 0.0506 dB/mm at 100 ohms	
z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]		rational		board_tl_tau	6.200E-03	ns/mm	
z_p (NEXT)	[12 29; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	90	Ohm	
z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]	ERL Pass threshold	10	dB	z_bp (TX)	102.7	mm	
z_p (RX)	[0.1 0.1; 0.1 0.1]	mm	[test cases]	DER_0	1.00E-05		z_bp (NEXT)	102.7	mm	
C_p	[0.87e-4 0]	nF	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	102.7	mm	
R_0	50	Ohm		FORCE_TR	1	logical	z_bp (RX)	102.7	mm	
R_d	[45 45]	Ohm	[TX RX]	Include PCB	0	logical				
A_v	0.39	V	vp/vf=.694	TDR and	ERL options					
A_fe	0.39	V	vp/vf=.694	TDR	0	logical		Floating Tap Contr	ol	
A ne	0.578	V		ERL	0	logical	N_bg	0	0 1 2 or 3 groups	
L	4			ERL ONLY	0	logical	N bf	0	taps per group	
M	32	1	1	TR TDR	0.01	ns	N f	0	UI span for floating taps	1
	filter and Eq		1	N	3000		bmaxg	0.1	max DFE value for floating taps	
fr	0.75	*fb		beta x	2.53E+09		onitizity	0.1	max bre value for nouting taps	
c(0)	0.5	15	min	rho_x	0.25					
c(-1)	[-0.3:0.02:0]	_			0.25					
	0	-	[min:step:max]	fixture delay time		S				-
c(-2)			[min:step:max]	TDR_W_TXPKG	0					
c(-3)	0		[min:step:max]	N_bx	24	UI	yellow indicates WIP			
c(1)	[-0.2:0.05:0]		[min:step:max]		ver testing					
N_b	0	UI		RX_CALIBRATION	0	logical				
b_max(1)	0.85			Sigma BBN step	5.00E-03	V				
o_max(2N_b)	0.3			Nois	se, jitter					
g_DC	[-20:1:0]	dB	[min:step:max]	sigma_RJ	0.01	UI				
f_z	21.25	GHz		A_DD	0.02	UI				
f_p1	21.25	GHz		eta_0	8.20E-09	V^2/GHz				
f p2	53.125	GHz		SNR TX	33	dB				
g DC HP	[-6:1:0]	1	[min:step:max]	R LM	0.95					
f HP PZ	0.6640625	GHz		_						
e pre tap len	0	UI								
e post tap len	4	UI	+							
		U	4							
e_tap_step_size	0	+								
main_cursor_mi	0.7		4							
_pre_tap1_max	0.3		4							
_post_tap1_max	0.3		Į							
		1								
ffe_tapn_max	0.125									

Thank You!