## Error Statistics Study for 802.3ck Channels

- a brief study of short-bursts observed

Xiang He, Sina Naderi Shahi
Huawei Technologies

## Background

- he_3ck_01a_0119 simulated four different FEC architectures, showing the benefit of symbol interleaving.
- Case 1-1 codeword, 1 lane, direct symbol output
- Case 2-1 codeword, 2 lanes, bit mux
- Case 3-2 codewords, 1 lane, symbol mux
- Case 4-2 codewords, 2 lanes, bit mux
- he_3ck_01a_0319 and he_3ck_01a_0519 analyzed error statistics based on some of the channels recommended in kochuparambil_3ck_01c_0119.
- Simulation was conducted from a higher raw BER down to $\sim 1 \mathrm{e}-4$.
- Error statistics analysis was performed on Case 1, in order to see the behavior of the channel without any data manipulation, and a large amount of short-burst errors were observed ( $\sim 50 \%$ of the time).

- Questions were received on the large number of 2-consecutive symbol errors, and why longer bursts still exists after precoding is turned on.
- We will provide some raw data of the symbol streams with short bursts, and address the cause for longer bursts.


## Previous Discussions



- As pre-FEC BER goes down to $1 \mathrm{e}-4$, the probability of consecutive errors did not go down. - $\sim 50 \%$ of total errors were in the form of short bursts.


## Example Data for Single Errors

| Sym \# in out | Sym \# in out |
| :---: | :---: |
| 1593-3 -3 | $\begin{array}{llll}197 & -3 & -3\end{array}$ |
| 1594-1 -1 | 1981 |
| 1595-1 -1 | 199-1 -1 |
| 15961 | 200-3 -3 |
| 15971 | 201-3 -3 |
| 15983 | 2021 |
| 1599-1 -1 | 203-1-1 |
| 16001 | 204-3 -3 |
| 1601-3 -3 | 20533 |
| 1602-3 -3 | 206-3-3 |
| 1603-3 -1 | 207-3 -1 |
| 16043 | 2083 |
| 1605-3 -3 | 209-1 -1 |
| 16063 3 | 2103 |
| 16071 | 211-3 -3 |
| 1608-1 -1 | 21233 |
| 16093 3 | 213-3-3 |
| 1610-1 -1 | 21433 |
| 1611 1 1 | 2151 |
| 1612-3 -3 | 216-1 -1 |
| 1613-1 -1 | 2171 |

## Gray coding

anslow_3ck_01_0918
Assume the use of Gray coding (see IEEE Std 802.3-2018 120.5.7) as illustrated below:


If noise causes any of the 4 levels to be mistaken for an adjacent level, this causes one of the two bits to be in error.

If there is just enough Gaussian noise to cause a BER of 3.8E-4* due to single level errors, then the probability of that noise causing both bits to be in error is $2.8 \mathrm{E}-23$

This analysis therefore assumes that only one of the two bits is in error.

* $F L R=6.2 \mathrm{E}$-10 (equivalent to $\mathrm{BER}=1 \mathrm{E}-12$ with random errors) after $\mathrm{RS}(544,514)$ FEC
- All errors observed in our simulation are single level errors.


## Example Data for 2-Symbol Errors

| Sym \# in |  | out | Sym \# |  | out | Sym \# in |  | Sym \# |  | out | Sym \# |  | out | Sym \# in | out | Sym \#in | out |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1327 | 1 | 1 | 485 | -1 | -1 | 10953 | 3 | 1684 | -1 | -1 | 1919 | -1 | -1 | 1866 3 | 3 | 1142-1 | -1 |
| 1328 | -1 | -1 | 486 | -1 | -1 | 10961 | 1 | 1685 | -3 | -3 | 1920 | 1 | 1 | 1867 -1 | -1 | 1143-1 | -1 |
| 1329 | 1 | 1 | 487 | 3 | 3 | 1097 -3 | -3 | 1686 | -1 | -1 | 1921 | 1 | 1 | 1868 3 | 3 | 11441 | 1 |
| 1330 | -1 | -1 | 488 | -1 | -1 | 10981 | 1 | 1687 | -1 | -1 | 1922 | 3 | 3 | 1869 -1 | -1 | 11453 | 3 |
| 1331 | 3 | 3 | 489 | -1 | -1 | 1099 -1 | -1 | 1688 | -1 | -1 | 1923 | 3 | 3 | $1870-1$ | -1 | 11461 | 1 |
| 1332 | -3 | -3 | 490 | -1 | -1 | 1100 -3 | -3 | 1689 | -3 | -3 | 1924 | -3 | -3 | 1871 3 | 3 | 11473 | 3 |
| 1333 | -3 | -3 | 491 | 1 | 1 | 11011 | 1 | 1690 | -1 | -1 | 1925 | -1 | -1 | 18723 | 3 | 1148 -3 | -3 |
| 1334 | -3 | -3 | 492 | -3 | -3 | 11021 | 1 | 1691 | -1 | -1 | 1926 | -3 | -3 | 1873-1 | -1 | 1149 -3 | -3 |
| 1335 | -1 | -1 | 493 | 1 | 1 | 1103 -3 | -3 | 1692 | -3 | -3 | 1927 | 3 | 3 | 1874 -3 | -3 | 1150-3 | -3 |
| 1336 | 3 | 3 | 494 | 3 | 3 | 11043 | 3 | 1693 | -3 | -3 | 1928 | -3 | -3 | 1875 3 | 3 | 1151 -3 | -3 |
| 1337 | -3 | -1 | 495 | 1 | -1 | 1105-1 | -3 | 1694 | 1 | 3 | 1929 | 1 | 3 | 1876-1 | -3 | 1152 -3 | -1 |
| 1338 | -1 | -3 | 496 | -3 | -1 | 1106 -3 | -1 | 1695 | 1 | -1 | 1930 | 3 | 1 | 1877 -3 | -1 | 11531 | -1 |
| 1339 | 3 | 3 | 497 | 3 | 3 | 11071 | 1 | 1696 | -3 | -3 | 1931 | -3 | -3 | 1878 3 | 3 | 11543 | 3 |
| 1340 | -1 | -1 | 498 | -1 | -1 | 1108 -3 | -3 | 1697 | -3 | -3 | 1932 | -1 | -1 | 1879 -3 | -3 | 1155-1 | -3 |
| 1341 | -3 | -3 | 499 | 3 | 3 | 11093 | 3 | 1698 | -3 | -3 | 1933 | -3 | -3 | 1880 3 | 3 | 1156-1 | -1 |
| 1342 | -1 | -3 | 500 | 1 | 1 | 11103 | 1 | 1699 | 3 | 3 | 1934 | 3 | 3 | 1881 3 | 3 | 1157-3 | -3 |
| 1343 | 3 | 3 | 501 | 1 | 1 | 1111 -3 | -1 | 1700 | 1 | 1 | 1935 | 3 | 3 | 1882-1 | -1 | 1158 -3 | -3 |
| 1344 | -3 | -3 | 502 | -3 | -3 | 11123 | 3 | 1701 | -1 | -1 | 1936 | 3 | 3 | 18831 | 1 | 11591 | 1 |
| 1345 | 3 | 3 | 503 | 3 | 3 | 1113 -3 | -3 | 1702 | -3 | -3 | 1937 | 3 | 3 | 18841 | 1 | 11603 | 3 |
| 1346 | 3 | 3 | 504 | 1 | 1 | 11143 | 3 | 1703 | -3 | -3 | 1938 | -3 | -3 | 1885-1 | -1 | 11613 | 3 |
| 1347 | -1 | -1 | 505 | 1 | 1 | 11151 | 1 | 1704 | 3 | 3 | 1939 | -3 | -3 | 1886 -1 | -1 | 11623 | 3 |

- The table above shows some sections of the input PAM4 symbol streams that suffered 2-consecutive errors.
- Low weight DFE could cause these errors, but there could be other sources like crosstalk, jitter, etc...


## Precoding Effect on Single and Short Bursts

- Precoding could not help single or two errors in a row.
- Precoding will turn single error into two.
- Precoding will turn two-consecutive errors into two separate errors.
- Effect on FEC symbol errors
- Under Case 1 situation, assuming PAM 4 symbols and FEC symbols are aligned for easier analysis.
- Two consecutive PAM4 symbol errors could affect two FEC symbols, the chance is $20 \%$.
- Two PAM4 symbol errors separated by one correct PAM4


2 Consecutive Errored PAM4 symbols

$\square$

## Cause for Longer Bursts

- Another question raised is why there are bursts as long as 6 after precoding is turned on.
- Closely located separated errors could cause longer consecutive errors after precoding.
- For example, 2 separated errors could become 3 consecutive errors after precoding.
- Similarly, 3 separated errors could become 6 consecutive errors.

- There are more complicated combinations of error patterns that could generate different length of consecutive errors.
- Not all errors are following the continuous zig-zag pattern which can be effectively cleared by precoding.


## Summary

- Error statistics were further displayed, showing some example raw data flow running through the channels where errors occurred.
- The cause for longer bursts after precoding is briefly explained.


## Thank you

