Error Statistics Study for 802.3ck Channels

- a brief study of short-bursts observed

Xiang He, Sina Naderi Shahi Huawei Technologies

IEEE 802.3ck Task Force July 2019

Background

- <u>he_3ck_01a_0119</u> simulated four different FEC architectures, showing the benefit of symbol interleaving.
 - Case 1 1 codeword, 1 lane, direct symbol output
 - Case 2 1 codeword, 2 lanes, bit mux
 - Case 3 2 codewords, 1 lane, symbol mux
 - Case 4 2 codewords, 2 lanes, bit mux
- <u>he_3ck_01a_0319</u> and <u>he_3ck_01a_0519</u> analyzed error statistics based on some of the channels recommended in <u>kochuparambil_3ck_01c_0119</u>.
- Simulation was conducted from a higher raw BER down to ~1e-4.
- Error statistics analysis was performed on Case 1, in order to see the behavior of the channel without any data manipulation, and a large amount of short-burst errors were observed (~50% of the time).

- Questions were received on the large number of 2-consecutive symbol errors, and why longer bursts still exists after precoding is turned on.
- We will provide some raw data of the symbol streams with short bursts, and address the cause for longer bursts.

Previous Discussions

Pre-FEC BER HIGH to LOW												
BER_pre = 3.3	441E-04	BER_pre = 2.8	079E-04	BER_pre = 2.5	895E-04	BER_pre = 1.1256E-04						
Burst Probability	49.90%	Burst Probability	49.2 8%	Burst Probability	49.90%	Burst Probability	52.97%					
Uncorrectable CWs	8	Uncorrectable CWs	1	Uncorrectable CWs	2	Uncorrectable CWs	0					
Consecutive Errors	Occurrences	Consecutive Errors	Occurrences	Consecutive Errors	Occurrences	Consecutive Errors	Occurrences					
1	2565	1	2213	1	1998	1	830					
2	1391	2	1200	2	1110	2	642					
3	985	3	828	3	756	3	241					
4	110	4	80	4	70	4	40					
5	61	5	36	5	47	5	10					
6	4	6	3	6	4	6	2					
7	3	7	3	7	2	7	0					
8	0	8	0	8	0	8	0					
9	1	9	0	9	1	9	0					

One big concern is the large number of two-consecutive errors.

From Page 4, <u>he_3ck_01a_0519</u>.

- As pre-FEC BER goes down to 1e-4, the probability of consecutive errors did not go down.
 - \sim ~50% of total errors were in the form of short bursts.

Example Data for Single Errors

Sym #	in	out	Sym #	in	out	
1593	-3	-3	197	-3	-3	
1594	-1	-1	198	1	1	
1595	-1	-1	199	-1	-1	
1596	1	1	200	-3	-3	
1597	1	1	201	-3	-3	
1598	3	3	202	1	1	
1599	-1	-1	203	-1	-1	
1600	1	1	204	-3		
1601	-3	-3	205	3	3	
1602	-3	-3	206	-3	-3	
1603	-3		207	-3	-1	
1604	3	3	208	3	3	
1605	-3	-3	209	-1	-1	
1606	3	3	210	3	3	
1607	1	1	211	-3		
1608	-1	-1	212	3	3	
1609	3	3	213	-3	-3	
1610	-1	-1	214	3	3	
1611	1	1	215	1	1	
1612	-3	-3	216	-1	-1	
1613	-1	-1	217	1	1	

Gray coding

anslow_3ck_01_0918

Assume the use of Gray coding (see IEEE Std 802.3-2018 120.5.7) as illustrated below:

If noise causes any of the 4 levels to be mistaken for an adjacent level, this causes one of the two bits to be in error.

If there is just enough Gaussian noise to cause a BER of 3.8E-4* due to single level errors, then the probability of that noise causing both bits to be in error is 2.8E-23.

This analysis therefore assumes that only one of the two bits is in error. * FLR = 6.2E-10 (equivalent to BER = 1E-12 with random errors) after RS(544,514) FEC

• All errors observed in our simulation are single level errors.

22

Example Data for 2-Symbol Errors

Sym #	in d	out	Sym #	in	out	Sym #	in	out	Sym # in o	ut	Sym # in o	out	Sym # in	out	Sym #	in c	but
1327	1	1	485	-1	-1	1095	3	3	1684 -1	-1	1919 -1	-1	1866 3	3	1142	-1	-1
1328	-1	-1	486	-1	-1	1096	1	1	1685 -3	-3	1920 1	1	1867 -1	-1	1143	-1	-1
1329	1	1	487	3	3	1097	-3	-3	1686 -1	-1	1921 1	1	1868 3	3	1144	1	1
1330	-1	-1	488	-1	-1	1098	1	1	1687 -1	-1	1922 3	3	1869 -1	-1	1145	3	3
1331	3	3	489	-1	-1	1099	-1	-1	1688 -1	-1	1923 3	3	1870 -1	-1	1146	1	1
1332	-3	-3	490	-1	-1	1100	-3	-3	1689 -3	-3	1924 -3	-3	1871 3	3	1147	3	3
1333	-3	-3	491	1	1	1101	1	1	1690 -1	-1	1925 -1	-1	1872 3	3	1148	-3	-3
1334	-3	-3	492	-3	-3	1102	1	1	1691 -1	-1	1926 -3	-3	1873 -1	-1	1149	-3	-3
1335	-1	-1	493	1	1	1103	-3	-3	1692 -3	-3	1927 3	3	1874 -3	-3	1150	-3	-3
1336	3	3	494	3	3	1104	3	3	1693 -3	-3	1928 -3	-3	1875 3	3	1151	-3	-3
1337	-3	-1	495	1	-1	1105	-1	-3	1694 1	3	1929 1	3	1876 -1	-3	1152	-3	-1
1338	-1	-3	496	-3	-1	1106	-3	-1	1695 1	-1	1930 3	1	1877 -3	-1	1153	1	-1
1339	3	3	497	3	3	1107	1	1	1696 -3	-3	1931 -3	-3	1878 3	3	1154	3	3
1340	-1	-1	498	-1	-1	1108	-3	-3	1697 -3	-3	1932 -1	-1	1879 -3	-3	1155	-1	-3
1341	-3	-3	499	3	3	1109	3	3	1698 -3	-3	1933 -3	-3	1880 3	3	1156	-1	-1
1342	-1	-3	500	1	1	1110	3	1	1699 3	3	1934 3	3	1881 3	3	1157	-3	-3
1343	3	3	501	1	1	1111	-3	-1	1700 1	1	1935 3	3	1882 -1	-1	1158	-3	-3
1344	-3	-3	502	-3	-3	1112	3	3	1701 -1	-1	1936 3	3	1883 1	1	1159	1	1
1345	3	3	503	3	3	1113	-3	-3	1702 -3	-3	1937 3	3	1884 1	1	1160	3	3
1346	3	3	504	1	1	1114	3	3	1703 -3	-3	1938 -3	-3	1885 -1	-1	1161	3	3
1347	-1	-1	505	1	1	1115	1	1	1704 3	3	1939 -3	-3	1886 -1	-1	1162	3	3

- The table above shows some sections of the input PAM4 symbol streams that suffered 2-consecutive errors.
- Low weight DFE could cause these errors, but there could be other sources like crosstalk, jitter, etc...

Precoding Effect on Single and Short Bursts

- Precoding could not help single or two errors in a row.
 - Precoding will turn single error into two.
 - Precoding will turn two-consecutive errors into two separate errors.
- Effect on FEC symbol errors
 - Under Case 1 situation, assuming PAM 4 symbols and FEC symbols are aligned for easier analysis.
 - Two consecutive PAM4 symbol errors could affect two FEC symbols, the chance is 20%.
 - Two PAM4 symbol errors separated by one correct PAM4 symbol have a higher chance to affect two FEC symbls.

Cause for Longer Bursts

- Another question raised is why there are bursts as long as 6 after precoding is turned on.
- Closely located separated errors could cause longer consecutive errors after precoding.
 - □ For example, 2 separated errors could become 3 consecutive errors after precoding.
 - □ Similarly, 3 separated errors could become 6 consecutive errors.

- □ There are more complicated combinations of error patterns that could generate different length of consecutive errors.
- Not all errors are following the continuous zig-zag pattern which can be effectively cleared by precoding.

Summary

- Error statistics were further displayed, showing some example raw data flow running through the channels where errors occurred.
- The cause for longer bursts after precoding is briefly explained.

Thank you