Backplane Reference Receiver Analysis

July 2019

Howard Heck (Intel), Phil Sun (Credo Semiconductor)
Backplane Consensus Group

Contributors

- Howard Heck, Intel
- Upen Kareti, Cisco
- Adam Healey, Broadcom
- Clint Walker, Alphawave IP
- Phil Sun, Credo Semiconductor
- Mau-lin Wu, Mediatek
- Matt Brown
- Mike Li, Intel
- Beth Kochuparambil, Cisco
- Kent Lusted, Intel

Supporters

- Clint Walker, AlphaWave IP
- Rich Mellitz, Samtec
- Upen Kareti, Cisco Systems
- Adam Healey, Broadcom

Objectives \& Recommendations

Provide analysis \& recommendations for

- Reference receiver (\# taps, \# banks, span)
\Rightarrow Group recommendation: 12 fixed taps, 3 banks of 3 or 4 floating taps with 40UI span
- Termination model
\Rightarrow Group recommendation: Adopt the termination model described in http://www.ieee802.org/3/ck/public/adhoc/jun12_19/healey_3ck_adhoc_01_061219.pdf.
- Rx noise figure (η_{0})
\Rightarrow Group recommendation: Adopt the baseline value $\left(8.2 \times 10^{-9}\right.$ $\mathrm{V}^{2} / \mathrm{GHz}$) that we have been using.

Contents

- COM Worksheets
- Channels
- Reference Rx Analysis
- Initial
- Final
- Termination Model Analysis
- Rx Noise Impact Analysis

COM Worksheet - Proposed Termination

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f_b	53.125	GBd	
f_min	0.05	GHz	
Delta_f	0.01	GHz	
C_d	[1.2e-4, 1.2e-4]	nF	[$7 \times \mathrm{RX}$]
L_s	[0.12, 0.12]	nH	[TXRX]
c_b	[0.3e-40.3e-4]	nF	[TX RX]
2_p select	[2]		[test cases to run]
2_p (TX)	[1231; 1.81.8]	mm	[test cases]
2_p(NEXT)	[12 30; 1.81.8]	mm	[test cases]
2_p (FEXT)	[1230; 1.81.8]	mm	[test cases]
$\underline{2}$ ¢ (RX)	[1229; 1.81.8]	mm	[test cases]
c_p	[0.87e-40.87e-4]	nF	[TXRX]
R_0	50	Ohm	
R_d	[50,50$]$	Ohm	[TXRX]
A_V	0.412	v	vp/vf=. 694
A_fe	0.412	v	vp/vf=. 694
A_ne	0.608	v	
L	4		
M	32		
filter and Eq			
f_r	0.75	*fb	
c(0)	0.54		min
c(-1)	[-0.344:0.02:0]		[min:step:max]
c(-2)	[0:0:02:0.12]		[min:step:max]
c(-3)	[-0.06:0.02:0]		[min:step:max]
c(1)	[-0.1:0:005:0]		[min:step:max]
N_b	20	UI	
b_max(1)	0.85		
b_max(2.N_ ${ }^{\text {b }}$)	0.3		
g_DC	[-20:1:0]	dB	[min:step:max]
$\mathrm{f}_{\text {_ }}$	21.25	6 Hz	
$\mathrm{f}_{\mathrm{p} 1}$	21.25	GHz	
$\mathrm{f}_{\mathrm{p}} \mathrm{p} 2$	53.125	6 Hz	
g_DC_HP	[-6:6:0]		[min:step:max]
f_HP_PZ	0.6640625	GHz	
ffe pre tap len	0	UI	
ffe post tap len	0	UI	
ffe tap step size	0.02		
ffe main cursor min	0.7		
ffe pre tap 1 max	0.3		
ffe post tap1 max	0.3		
ffe tapn max	0.125		
ffe backoff	0		
Floating Tap Control			
N_bg	1		012 or 3 groups
N_bf			taps per group
N_f	40		UI span for floating taps
bmaxg	0.3		max DFE value for floating taps

COM Worksheet - Simple Termination

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f_b	53.125	GBd	
f_min	0.05	GHz	
Delta_f	0.01	GHz	
c_d	[0.9e-4, 0.9e-4]	nF	[$7 \times \mathrm{RX}$]
L_s	$[0,0]$	nH	[TXRX]
c_b	[00]	nF	[TX RX]
2_p select	[2]		[test cases to run]
$2 _p$ (TX)	[1231; 1.81.8]	mm	[test cases]
2_p ${ }^{\text {(}}$ (EXT)	[1230; 1.81 .8]	mm	[test cases]
2_p (FEXT)	[1230; 1.81.8]	mm	[test cases]
$2 _p(\mathrm{RX})$	[1229; 1.81.8]	mm	[test cases]
c_p	[0.87e-40.87e-4]	nF	[$\mathrm{T} \times \mathrm{RX]}$
R_0	50	Ohm	
R_d	[50,50$]$	Ohm	[$\mathrm{T} \times \mathrm{RX}$]
A_v	0.412	v	vp/vf= 694
A_fe	0.412	v	vp/vf= 694
A_ne	0.608	v	
L	4		
M	32		
filter and Eq			
f_r	0.75	*fb	
c(0)	0.54		min
c(-1)	[-0.34:0.002:0]		[min:step:max]
c-2)	[0:0:02:0.012]		[min:step:max]
c(-3)	[-0.066:002:0]		[min:step:max]
c(1)	[-0.1:0:005:0]		[min:step:max]
N_b	20	UI	
b_max(1)	0.85		
b_max(2.N_b)	0.3		
g_DC	[-20:1:0]	dB	[min:step:max]
f_工	21.25	6Hz	
$f_{\text {f_p }}$	21.25	GHz	
$\mathrm{f}_{\mathrm{p}} \mathrm{p} 2$	53.125	GHz	
g_DC_HP	[-6:1:0]		[min:step:max]
f_HP_PZ	0.6640625	GHz	
ffe pre tap len	0	UI	
ffe post tap len	0	UI	
ffe tap step size	0.02		
ffe main cursor min	0.7		
ffe pre tapl max	0.3		
ffe post tap1 max	0.3		
ffe tapn max	0.125		
ffe backoff	-		
Floating Tap Control			
N_bg	1		012 or 3 groups
N_bf			taps per group
N_f	40		UI span for floating taps
bmaxg	0.3		max DFE value for floating taps

Channels - Full Set

	Main file	Folder	files	Documentation
		Cable_SKP_16dB_Op575m.2ip		
2		Cable_EKP_ 16d_ _ops 575 m_more_ Sisizip		
4				
	cable_Cxp_2oderaip	Cable_EkP_20d_ Oop 57 m .zip		
6		Cable_gkp_2odi_Op575m_more_Lsizip		hed_3ck_02_0119.pdf
		Cable_BP_ 20dB_Op995m_uddateditip	Cable_SkP_20dB_Op995__updated_ .s4p	
8				
	cable_CX_2ads.zip	Cable_gkP_2dd__op57m.zip		
10		Cable_gkP_2ddB_Op575m_more_sisizip		
11		Cable_BKP_2dib_Op9995m_udatededip		
			Cable_ExP_2did_opopo9sm_more_ is_ updated_*s.	
	cable_CX_2888.2ip	Cable_gkP_28d__op57m.zip		
${ }_{5}^{14}$				
		Cable_BxP_28dB_09995m_udatadedip	Cable_SkP_28di_Op995m_updated_.s4p	
16				
		Dpoollur	Dpoosin Meg7 - 5 Sp	trac_3ck_01b_011.pdf
18		Dpooll2adi		
		-	DPo	
21				
	zambel_3ck_0__1118_Inincoltoos.ip	Lunk_1	See the folder	zambel_3ck_01_1118.pdf
		Lunk.2		
		Lunk 3		
26		Lunks 5		
${ }^{27}$		Lunk. 6		
288		Link. ${ }_{\text {Link }}$		
30		Lnk. 9		
-	zambel_Sck_01_1118_Inins100018.2ip	Lnk_10		
,		Link_11		
34		Lun 13		
		Lnk. 14		
6		Link. 15		
- ${ }_{\text {37 }}^{38}$		$\begin{gathered} \text { Link_16 } \\ \hline \text { Link_17 } \end{gathered}$		
		Link_18		
40		Link. 19		
$4{ }_{4}^{4}$		Link_20		
43		Lunk 22		
44		Lnkk 23		
46		Link 25		
		Lunk26		
48		Lnk_27		
5				
50				
51				
53				
54				

*	Main file	Folder	files	kretel_3k_01a__1118.pdt
55	etil_ck_01_1118_baskplane.zip		Bch12 305	
56			Bch2.7	
57			Bch2 2007	
			Bch2_a10-7	
			${ }^{\text {Bch2 } 215} 7$	
61			Bccle 22 P 5 5 7	
62			Bchz_a57 7	
${ }_{6}^{63}$ 64			Bch2.97p 5	
5			Bch2 2015	
66			Bccre 222 P 57	
67			Bch2 262.7	
68			Bch2_64, 7	
69			Bch2_66.7	
70			Bch2 -67p5-7	
71 72			Bch2_b8_7 Bch3 1	
73			Bch4 30	
74			Cach1_b2	
75			Cach1	
76			CAch2.a	
78 78 8			${ }_{\text {Cachl } 210}{ }_{\text {Cach } 20205}$	
79			CAAch2as	
80			CAchzap7p	
81			CACA2_b10	
${ }^{82}$				
- 83	kreeti_3k_01_1118_cablede8._2p		CAch2_b2	
${ }^{85}$			CAch2.b6	
${ }^{86}$				
${ }^{87}$			CAch2.b8	
${ }^{88}$			${ }^{\text {Cach }}$	
			$\begin{aligned} & \text { CAch3_b2 } \\ & \hline \text { CAch3 } \end{aligned}$	
91			Cach4_b2	
92			Cach4	
${ }^{93}$.	OAch1	
94			OACh2	
958			OACh3	
97			Oach	
98			OAch6	
99			OAch7	
${ }^{201}$			Ooch	
102			Och 3	
${ }^{103}$			Och4	
${ }^{205}$			Och5	
106			Och7	
107			Och8	

107 channels pulled from the p802.3ck repository.

As in the past, we analyzed two subsets:

- <29dB
- $<28 \mathrm{~dB}$

Updated P802.3ck Critical Channels

Contribution	Channel	\#	Name	IL (dB)
heck 3ck 011118	20docabled_Eaekplane/Cable_ovn_20do_0p575m_more_isi	14 Heck 20.0		
	16 dB Cabled Backplane/Cable_BKP_16dB_0p575m_more_isi	2	Heck2	15.2
mellitz 3ck adhoc 02081518		53	Mellitz1	26.3
tracy 3ck 010119	Traditional Backplane Channels/Std_BP_12inch_Meg7	21	Tracy1	15.7
	Orthogonal Backplane Channels/DPO_IL_12dB		Tracy2	12.2
(Modified to fix non-physical response)	Measured Orthogonal Backplane Channels/OAch4		Kareti1	27.7
kareti 3ck 01a 1118		103 Kareti2 28.1		
	Measured Cabled Backplane Channels/CAch3_b2	89	Kareti3	28.5
		63 Kareti4 28.4		
(Replacement for Heck1)	Measured_Traditional Backplane_Channels/Bch2_b7p5_7	70	Kareti5	28.9
	28dB_Cabled_Backplane/Cable_BKP_28dB_Op575	13	Heck3	29.0

Notes:

- Kareti1 channel model was modified to remove non-physical artifacts from the pulse response.
- Heck3 replaced Heck1 in final analysis.

Reference Receiver

Analysis Cases - Round 1

Case	Total \# Taps	\# Fixed Taps	Banks	\# Taps per Bank	Span
1	24	24	-	-	-
2	28	28	-	-	-
3	40	40	-	-	-
4	20	12	2	4	40UI
5	24	12	3	4	40UI
6	24	12	3	4	80UI
7	21	12	3	3	40UI
8	23	12	4	3	40UI
9	20	16	1	4	40UI
10	24	16	2	4	40UI
11	24	16	2	4	80UI
12	28	24	1	4	40UI
13	30	24	2	3	40UI
14	32	24	2	4	80UI

Conditions:

- $\eta_{0}=0.82 \times 10^{-8} \mathrm{~V}^{2} / \mathrm{GHz}$
- $z_{p}=31 \mathrm{~mm}(\mathrm{Tx}), 29 \mathrm{~mm}(\mathrm{Rx})$
- COM version $=2.70^{*}$ w/ new termination model:
- $R_{d}=50$ ohms
- $C_{d}=120 \mathrm{fF}$
- $L_{s}=120 \mathrm{pH}$
- $C_{b}=30 \mathrm{fF}$
- $C_{p}=87 \mathrm{fF}$
- Channels with <29dB IL (93), <28dB IL (77)

\% Passing Channels

Critical Channels

	18	21	22	23	23	24	25	27	30	30	40	Total Taps
	12	12	16	20	20	24	16	24	24	24	40	\#Fixed Taps
	2	3	2	1	1	0	3	1	2	2	0	\# Banks
	40	40	40	80	40	-	40	40	80	40	40	Float Span (UI)
Heck2	5.747	5.8486	5.7807	5.7302	5.7302	5.7977	5.8827	5.8998	6.2494	5.9808	6.0119	HH_CABP16
Heck1	2.5802	2.6389	2.6389	2.6271	2.6271	2.6389	2.6743	2.6743	2.9871	2.6861	2.7454	HH_CABP28
Tracy2	4.1681	4.2273	4.2273	4.3349	4.2035	4.2035	4.2511	4.263	4.8299	4.263	4.2749	NT_BP_12in_16
Tracy1	4.0685	4.1102	4.0824	4.0408	4.0408	4.1242	4.1242	4.1382	4.2084	4.1522	4.1943	NT_OR_12in_28
Mellitz1	4.8825	4.8978	4.8978	4.913	4.913	4.913	4.913	4.9283	4.959	4.9437	5.0673	RM_CABP28
Kareti5	2.9504	3.0733	3.0733	3.1979	3.0733	3.0239	3.1229	3.1229	3.4526	3.1603	3.1853	UK_28BCh2_b7p5_7
Kareti3	4.0132	4.1242	4.1522	4.1522	4.1522	4.1662	4.1943	4.2084	4.6125	4.2225	4.265	UK_28CAch3_b2
Kareti1	3.0609	3.1353	3.1105	3.0485	2.9017	2.9017	3.1979	3.1229	3.5175	3.2104	3.3116	UK_280Ach4
	*	?	*	*	*	*	\checkmark	\times	$\checkmark \checkmark$	\checkmark	\checkmark	

Taps/Bank		3
Termination	C_{d}	120 fF
	L_{s}	120 pH
	C_{b}	30 fF
Package trace	Tx	31 mm
	Rx	29 mm
η_{0}	$0.82 \times 10^{-8} \mathrm{~V}^{2} / \mathrm{GHz}$	

Analysis Cases - Final Experiment

Objective: Finalize the reference DFE details (see the blue table)

- Want to minimize complexity (min \# of banks, min span)

Metrics:

- \% passing channels \& mean COM for sub-29dB, sub-28dB
- COM results for critical channels

Analysis Features:

- 24 taps total in each case

$\begin{aligned} & \text { M } \\ & \text { ® } \end{aligned}$		$\begin{aligned} & \frac{n}{c} \\ & \tilde{\omega} \\ & \# \\ & \# \end{aligned}$		¢
1	24	0	-	-
15	20	1	4	40
10	16	2	4	40
5	12	3	4	40
11	16	2	4	80

- $\eta_{0}=0.82 \times 10^{-8} \mathrm{~V}^{2} / \mathrm{GHz}$
- Termination model: $C_{\mathrm{d}}=120 \mathrm{ff}, L_{\mathrm{s}}=120 \mathrm{pH}, C_{\mathrm{b}}=30 \mathrm{fF}$

Sub-29/28dB Channel Analysis

Reference Rx Trends for Critical Channels

2 or 3 banks of 4 were needed to get all critical channels to meet 3dB COM.

$\rightarrow-\mathrm{H} 2$
$\rightarrow-\mathrm{H} 3$
\rightarrow T2
\rightarrow T1
\rightarrow M1
\rightarrow K5
$\rightarrow-K 3$
$\rightarrow-K 1$

Group recommendation:
12 fixed taps, 3 banks of 3 or 4 floating taps with 40UI span.

Termination Analysis

Proposed vs. Simple Termination Analysis

- Objective: Determine whether the proposed termination model gives different COM performance than a simple model with $C_{d}=90 f \mathrm{fF}$.
- Analysis:
- All sub-29dB channels \& sub-28dB channels
$-\eta_{0}=0.82 \times 10^{-8} \mathrm{~V}^{2} / \mathrm{GHz}$
- Reference Rx cases per the table

$\begin{aligned} & \ddot{y} \\ & \text { ®i } \end{aligned}$		$\begin{aligned} & \frac{\ddot{y}}{\bar{N}} \\ & \text { \# } \\ & \# \end{aligned}$		-
1	24	0	-	-
15	20	1	4	40
10	16	2	4	40
5	12	3	4	40
11	16	2	4	80

Proposed Termination \& Flex Package

Proposed Termination v Simple 90fF Termination

- Bivariate Normal Ellipse $\mathrm{P}=0.950$
Δ Linear Fit

-Linear Fit
- Bivariate Normal Ellipse $\mathrm{P}=0.950$
\triangle Linear Fit
COM $(\mathrm{p})=0.028082+0.9952797 *$ COM(s)

$\begin{array}{lrrrrr}\text { Variable } & \begin{array}{c}\text { Mean }\end{array} & \begin{array}{c}\text { Std Dev Correlation }\end{array} & \text { Signif. Prob } & \text { Number } \\ \text { COM(s) } & 4.621344 & 1.288808 & 0.996083 & <.0001^{*} & 186\end{array}$

-Linear Fit
- Bivariate Normal Ellipse $\mathrm{P}=0.950$
Δ Linear Fit
$\operatorname{COM}(\mathrm{p})=0.0664946+0.9869931^{*}$ COM (s)

Δ Summary of Fit	
RSquare	0.99144
RSquare Adj	0.991393
Root Mean Square Error	0.11836
Mean of Response	4.658029
Observations (or Sum Wgts)	186

COM results are strongly correlated between the two termination types.

Proposed Termination v Simple 90fF Termination

Termination Recommendation

Group recommendation: Adopt the proposed termination.

- The more complex reference Rx (e.g. DFE w/ floating taps) washes out the differences between the two termination models.
- With simpler equalizers (e.g. chip-to-module) the difference appears to be larger.
- For example, refer to http://www.ieee802.org/3/ck/public/adhoc/jun26 19/sun 3ck adhoc 0106 2619.pdf.

Rx Noise

Rx Noise Sensitivity

Objective: Determine the impact of increasing η_{0} on channel performance.

Metrics:

- \% passing channels \& mean COM for sub-29dB,

Case	$\eta_{0}\left(\mathrm{~V}^{2} / \mathrm{GHz}\right)$
i	0.82×10^{-8}
ii	0.92×10^{-8}
iii	1.02×10^{-8}
iv	1.12×10^{-8}
v	1.23×10^{-8}

- COM results for critical channels

Analysis Features:

- 24 taps total in each case
- Termination model: $C_{\mathrm{d}}=120 \mathrm{fF}, L_{\mathrm{s}}=120 \mathrm{pH}, C_{\mathrm{b}}=30 \mathrm{fF}$

¢				¢
1	24	0	-	-
15	20	1	4	40
10	16	2	4	40
5	12	3	4	40
11	16	2	4	80

Rx Noise Impactw/ sub-29/28dB Channels

Increasing η_{0} by 50% reduces the \% passing channels by 6\%-8\%.

Noise Sensitivity w/ sub-29/28dB Channels

COM impact is roughly 0.1 dB per 10^{-9} $\mathrm{V}^{2} / \mathrm{GHz}$ beyond the baseline value ($8.2 \times 10^{-9} \mathrm{~V}^{2} / \mathrm{GHz}$).

Recommendation: Adopt the baseline value $\left(8.2 \times 10^{-9} \mathrm{~V}^{2} / \mathrm{GHz}\right)$ that we have been using.

Rx Noise Impact on Critical Channels

- All sims used:
- Fixed: 12 taps
- Floating: 3 banks, 4 taps/bank
- Proposed termination model
- Flex package with 31mm Tx, 29mm Rx
- Results show that increasing η_{0} beyond $0.82 \mathrm{e}-8 \mathrm{~V}^{2} / \mathrm{GHz}$ causes three of the channels to fail.

Group Recommendation:
Adopt the baseline value $\left(8.2 \times 10^{-9} \mathrm{~V}^{2} / \mathrm{GHz}\right)$ that we have been using.

Objectives \& Recommendations

Provide analysis \& recommendations for

- Reference receiver (\# taps, \# banks, span)
\Rightarrow Group recommendation: 12 fixed taps, 3 banks of 3 or 4 floating taps with 40UI span
- Termination model
\Rightarrow Group recommendation: Adopt the termination model described in http://www.ieee802.org/3/ck/public/adhoc/jun12_19/healey_3ck_adhoc_01_061219.pdf.
- Rx noise figure (η_{0})
\Rightarrow Group recommendation: Adopt the baseline value $\left(8.2 \times 10^{-9}\right.$ $\mathrm{V}^{2} / \mathrm{GHz}$) that we have been using.

Additional Data

Channel Insertion Loss Statistics

IL (dB)	\# Channels	Cum \%
28.0	68	63.6%
28.1	74	69.2%
28.2	77	72.0%
28.3	80	74.8%
28.5	82	76.6%
29.0	86	80.4%
30.0	93	86.9%
31.0	97	90.7%
32.0	99	92.5%
33.0	103	96.3%
34.0	105	98.1%
35.0	105	98.1%
36.0	106	99.1%
37.0	106	99.1%
38.0	107	100.0%

All of the .ck 'highlighted' channels fit within 29dB.

Analysis: \% Passing Channels

Proposed Termination v Simple 90fF Termination

\triangle Linear Fit

$\operatorname{COM}(\mathrm{p})=0.0553345+0.9898595^{*} \mathrm{COM}(\mathrm{s})$
\triangle Summary of Fit

RSquare

RSquare Adj
Root Mean Square Error Mean of Response
0.990546
0.990536
0.124593
4.67717

930
Observations (or Sum Wgts)

\triangleright Lack Of Fit

\triangle Analysis of Variance

| Source | DF | Sum of
 Squares | Mean Square | F Ratio |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Model | 1 | 1509.3561 | 1509.36 | 97231.65 |
| Error | 928 | 14.4056 | 0.015523 | Prob $>$ F |
| C. Total | 929 | 1523.7617 | | $<.0001^{*}$ |

\triangle Parameter Estimates

Term Estimate Std Error t Ratio Prob> $|\mathbf{t}|$
Intercept $0.05533450 .0153753 .600 .0003^{*}$ COM(s) 0.98985950 .003174 311.82<.0001*

Δ Bivariate Normal Ellipse $\mathbf{P}=\mathbf{0 . 9 5 0}$

Variable Mean Std Dev Correlation Signif. Prob Number COM(s) $4.6691831 .2876990 .995262<.0001^{*} 930$ COM(p) $4.67717 \quad 1.28071$

- Bivariate Fit of COM(p) By COM(s)

$\eta_{0}=0.82 \mathrm{e}-8$
Rx Cases:

$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \frac{n}{c} \\ & \stackrel{\sim}{\omega} \\ & \# \\ & \# \end{aligned}$		¢
1	24	0	-	-
15	20	1	4	40
10	16	2	4	40
5	12	3	4	40
11	16	2	4	80

$\operatorname{COM}(\mathrm{p})=$ proposed term with $C_{\mathrm{d}}=120 \mathrm{fF}, C_{b}=30 \mathrm{fF}, L_{\mathrm{s}}=120 \mathrm{pH}$ $\operatorname{COM}(\mathrm{s})=$ simple term with $C_{\mathrm{d}}=90 \mathrm{fF}$

COM results are strongly correlated between the two termination types.

