P802.3ck C2M AUI Small Group Update

July 2019 Plenary

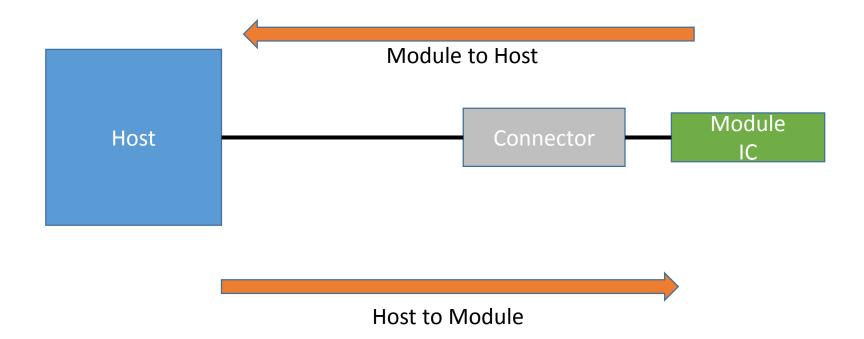
Kent Lusted, Intel Corporation

C2M Small Group Participants

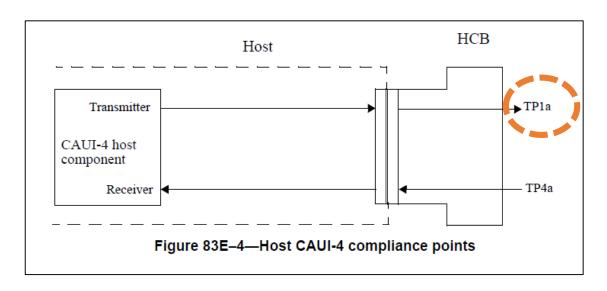
- Adam Healey, Broadcom
- Ali Ghiasi, Ghiasi-Quantum
- Phil Sun, Credo
- Jane Lim, Cisco
- Karthik Gopalakrishnan, Inphi
- Mike Dudek, Marvell
- Mike Li, Intel
- Ed Frlan, Semtech
- Matt Brown, Independent
- Tom Palkert, MACOM
- Piers Dawe, Mellanox

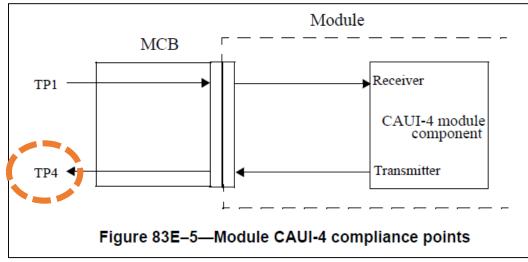
- Mark Kimber, Semtech
- Nathan Tracy, TE
- Matt Schumacher, TE
- Hsinho Wu, Intel
- Masashi Simanouchi, Intel
- Bruce Champion, TE
- Clint Walker, AlphaWave
- Rich Mellitz, Samtec
- Margaret Johnson, Cadence
- Athos Kasapi, Cadence
- Inho Kim, Marvell

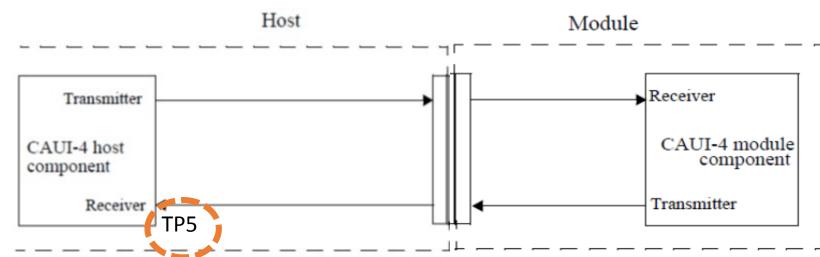
Agenda


- Updates
- Summaries
- Next steps

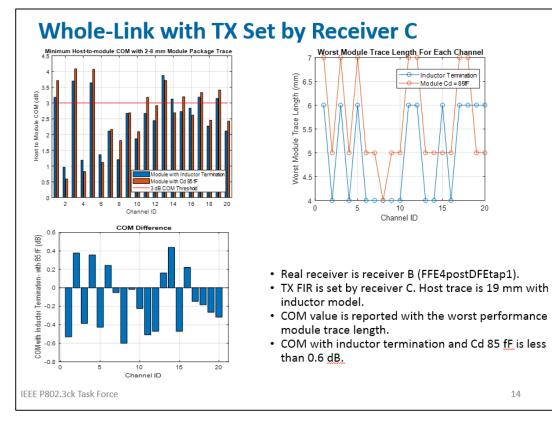
July 2019 Goals for C2M AUI


- Primary Goal:
 - Select the C2M specification parameters, including the TP1a and TP4 reference receiver model


C2M AUI High Level Block Diagram


Two directions to consider

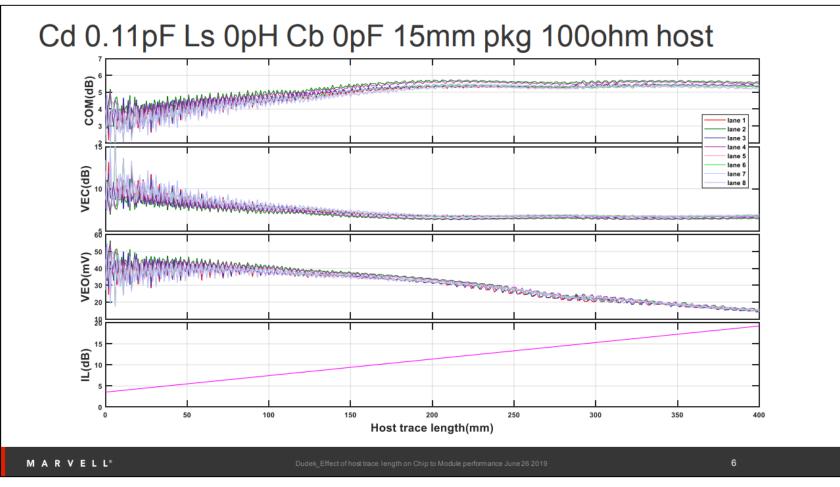
C2M Reference Points (TP1a, TP4, TP5)



Overview of C2M Small Group Work Items

- Channel qualification method and contributed channels to support (pass vs. fail @ TP1a)
 - Module package parameters for informative comparison of channels
- TP1a Ref RX model parameters, including reference equalizer
 - Host TXFIR assumptions are used for informative comparison
- TP1a method and specifications (COM <-> EW & EH mapping contribution)
- Module-side specifications @ TP4.
 - Including how to specify TXFIR settings that work for the MCB and the range of expected hosts
 - Potentially host will need adaptive pre-cursor tap or assumed to be stronger receiver.
- Proposed values for TBD and missing items listed in brown_3ck_01_0519
- Precoding or not

C2M Termination Considerations


- Analysis shows that the inductor termination model improved COM margin @ TP1a
 - Potentially enabling path to weaker reference receiver per http://www.ieee802.org/3/ck/public/adhoc/jun2
 6 19/sun 3ck adhoc 01 062619.pdf
- There was group consensus to use the proposed inductor termination model for the host-side ASIC package on the C2M interface.
 - The group preferred to use the current termination parameter model for the moduleside package until more analysis with the inductor termination on the module-side is available.

Source: sun_3ck_01_0719

C2M Channel Length

- Work to date primarily focused on higher loss C2M channels
- Short channels need more study

Module-to-host Considerations

- Jane Lim's previous C2M channel contributions were intended for host-to-module direction, not module-to-host.
 - New channel contributions for July 2019 plenary meeting are on the Task Force website
- Small group looking at three module-to-host cases, initially:
 - Case1: MCB like
 - Case2: TP5 short host trace with BGA footprint
 - Case3: TP5 long host trace with BGA footprint
- Actively soliciting feedback on the number of cases

Summary

- Great work completed to date! Thank you!
- C2M baseline progress slowed by package termination investigations and uncertainty of TP1a/TP4 reference receiver model and parameters
 - We have a potential path to close on these at this meeting
- There is much more work to do to make the C2M interface portion of the specification technically complete.

Next Steps & Asks

- Select a TP1a and TP4 reference receiver model(s) and parameters
- Further explore short C2M channels

- Need for a module PCB model contribution that has AC caps on it.
- Need a mated test fixture S-parameter contribution and MCB model to use with TP4 simulation.

Potential Straw Poll Topics

- For C2M, I support trying to use the same reference receiver type for TP1a "host-to-module" and for TP4 "module-to-host". Y/N/A.
- For TP1a (and/or TP4), I would support the reference receiver to be:
 - C: 5-tap FFE (post 1-4)
 - C2: 3-tap FFE (post 1-2)
 - D: 4-tap DFE (tap 2-4)
 - D2: 1-tap DFE (tap 2 only)
- Please chat with me about other straw poll ideas

Thanks!

BACKUP

General Observations on C2M AUI

- The contributions to date have been *primarily* focused on 4 reference receiver model candidates:
 - A: 4-tap DFE (b1max=0.5)
 - B: 5-tap FFE with 1-tap DFE (FFE4post with DFE b1max=0.5)
 - C: 5-tap FFE (FFE4post)
 - D: 4-tap DFE (b1max = 0.0. I.e. only three DFE taps.)
 - Note: Some analysis done with other types, such as 12-tap FFE, etc.
- The COM and VEC/VEO results change depending on the channel, Cd, Cp, host and module package trace lengths, reference receiver model architecture & settings, etc.
- 100G/lane C2M is a challenging problem; one that is compelling us to reexamine assumptions and explore different solution techniques than in the past