IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

| Cl 120F SC 120F.4.1 | P210 |  |
| :--- | :---: | :---: |
| Sun, Junqing | Credo Semiconductor | \# 11 |

Sun, Junging Credo Semiconductor
Comment Type TR Comment Status A RR DFE length
Simulations show 5 tap DFE is sufficient to cover contributed channels. $\mathrm{Nb}=5$ will be a good starting point. Simulation results will be provided.

## SuggestedRemedy

set $\mathrm{Nb}=5$.

## Response <br> Response Status C

ACCEPT IN PRINCIPLE
Based on the result of straw poll \#1, set Nb to 6 .
Straw Poll \#1
For the C2C AUI, I support the Nb value (Chicago rules):
4 fixed: 5
5 fixed: 13
6 fixed: 29

| Cl 120F | $S C$ 120F.4.1 | $P 210$ | $L 14$ |
| :--- | :---: | :---: | :---: |

Sun, Junqing

## Credo Semiconductor

RR DFE bmax
Comment Type TR Comment Status A
simulation shows $\operatorname{bmax}(1)=0.85$. bmax(2:5)=0.2 are sufficient to cover contributed channels. Simulation results will be provided.
SuggestedRemedy
set $\operatorname{bmax}(1)=0.85$ and $\operatorname{bmax}(2: 4)=0.2$.

## Response

Response Status C
ACCEPT IN PRINCIPLE.
The response to comment \#16 changed the Nb value to 6 .
Based on straw poll \#3, set bmax(1) to 0.85 and $\operatorname{bmax}(2: 6)$ to 0.2 .
Straw poll \#2:
For the C2C AUI, I support:
A: $\operatorname{bmax}(1)=0.85, \operatorname{bmax}(2: 6)=0.2--20$
B: $\operatorname{bmax}(1)=0.7, \operatorname{bmax}(2: 6)=0.15--8$
C: no opinion -- 28
Select 1.
Straw poll \#3
I support closing comment \#17, \#134, and \#159 with $\operatorname{bmax}(1)=0.85$ and $\operatorname{bmax}(2: 6)=0.2$.
Yes: 27
No: 6

| Cl $161 \quad$ SC 161.6 | P123 | L25 | \# 21 |
| :--- | :---: | :---: | :---: |
| Slavick, Jeff | Broadcom |  |  |

Comment Type TR Comment Status A
PHY stackup is based upon the given PHY type. When layers within that stackup is optional to implement then the existence of that layer in the stackup maybe there or not. When the layer is mandatory to implement the layer is always there. If a layer is optional to use then a method to bypass it's function is provided for the cases when it's implemented but functionality is being skipped. Cl74 (74.8.2), Cl108 (108.6.3), Cl73 (73.6.10) all provide methods to "bypass" the functionality of the clause when not in use. Cl91 and Cl161 don't have this bypass function in the draft.

## SuggestedRemedy

In Table 161-1 add mapping to register 1.200 .5 as RS_FEC_Int_enable. Add sub-clause describing this bit as "161.6,. 14 RS_FEC_Int_enable
The RS-FEC-Int sublayer shall have the capability to enable or disable the FEC function.
An MDIO interface or an equivalent management interface shall be provided to access the variable RS FEC Int Enable for the RS-FEC-Int sublayer. When RS FEC Int Enable variable is set to a one, the RS-FEC-Int sublayer performs the transmit function as specified in 161.5.2 and the receive function as specified in 161.5.3. When the variable is set to zero, the transmit and receive functions are disabled, and the RS-FEC-Int sublayer is bypassed, effectively connecting its service interface to the service interface of its underlying sublayer. This variable is mapped to the bit defined in 45.2.1.110.aa."
In Table 45-88 assign bit 6 to be RS-FEC Enable with 1 -RS-FEC is enabled, $0-$ RS-FEC is disabled, R/W
Description for this bit "Bit 1.200.6 enables the Reed-Solomon FEC described in Clause 91 for PHYs that include both Clause 161 and Clause 91.
Bring in Table 91-2 from 802.3cd-2018 and add a row for RS-FEC Enable,
RS_FEC_enable, 1.200.6, RS_FEC_enable
Add new sub-clause to describe the FEC_enable variable as "91.6.2a RS_FEC_enable For PHYs supporting RS-FEC-Int operation this sublayer shall have the capability to enable or disable its FEC function. An MDIO interface or an equivalent management interface shall be provided to access the variable RS_FEC_Enable for the RS-FEC sublayer. When RS FEC Enable variable is set to zero, the RS-FEC sublayer performs the transmit
function as specified in 91.5 .2 and the receive function as specified in 91.5 .3. When the
function as specified in 91.5.2 and the receive function as specified in 91.5.3. When the
variable is set to a one, the transmit and receive functions are disabled, and the RS-FEC
variable is set to a one, the transmit and receive functions are disabled, and the RS-FEC its underlying sublayer. This variable is mapped to the bit defined in 45.2.1.110.xx."

Response
Response Status C
ACCEPT IN PRINCIPLE.
The following presentation was reviewed by the task force
http://www.ieee802.org/3/ck/public/20_03/slavick_3ck_01_0320.pdf
Implement slides 8 to 11 of the presentation referenced above with editorial.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

| CI 73 | SC 73.6.5.a | P69 | L31 |
| :--- | :---: | :---: | :---: |
| Brown, Matt | Huawei Technologies Canada |  |  |


| Cl 120F | SC 120F.4.1 | P209 |
| :--- | ---: | ---: |
| Mellitz, Richard | Samtec | L52 |

Mellitz, Richard Samtec
Comment Type
Comment Status A

C2C, KR, and CR devices may be the same ports on chips. Align Av, Afe, and Ane with table 163-10

SuggestedRemedy
replace the TBD"s with $\mathrm{Av}=0.0413$, $\mathrm{Afe}=0.413$,Ane $=0.608$
sponse
Response Status C

ACCEPT.

| CI 120F | SC 120F.4.1 | P209 | L52 |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali |  | Ghiasi Quantum/lnphi | \# 132 |

## Comment Type TR Comment Status A

Transmitter differential peak output is TBD
SuggestedRemedy
Replace Av with 0.413 V
Replace Afe with 0.413 V
Replace Ane with 0.608 V
Response
Response Status
ACCEPT.

| Cl 120F | SC 120F.4.1 | P210 | L11 |
| :--- | :---: | :---: | :---: |
| Ghiasi, Ali | Ghiasi Quantum/Inphi | \# 133 |  |

Comment Type TR Comment Status A RR DFE length DFE tap length missing
SuggestedRemedy
Replace TBD with 5 or alternatively with 3 fixed +2 floating taps with span of 12 UI to support full range of channels and packages, for supporting material see ghiasi_3ck_02_0320.pd
Response
Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#16.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments


Note that recommended channel loss is specified as 20 dB at Nyquist along with and insertion loss equation in 120F.4.2.

There is no consensus to make the proposed change at this time.

The C2C channel is only a little harder than the C2M one so a similar reference receiver could be used. Low power silicon will be needed if this application is to be viable.
SuggestedRemedy
4 taps, or 5 as Ali proposed. See my C2M comments for proposed tap weight limits.
Response
Response Status C
ACCEPT IN PRINCIPLE.
Resolve using the response to comment \#16.

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

| Cl 120F SC 120F.4.1 | P208 | L40 | \# 157 |
| :---: | :---: | :---: | :---: |
| Li, Mike | Intel |  |  |
| Comment Type TR Tr TBD | Comment Status A |  |  |
| SuggestedRemedy Change it to $\mathrm{Tr}=6.5 \mathrm{ps}$ | hich is consistent with | G-P/ |  |
| Response <br> ACCEPT IN PRINCIPL <br> Based on the result of <br> Straw poll \#4: <br> I support closing comm <br> Yes: 18 <br> No: 13 <br> Abstain: 21 | Response Status C <br> raw poll \#4 implement <br> \# \#157 with the sugge | sted <br> edy. |  |
| Cl 120F SC 120F.4.1 | $P 210$ | L11 | \# 158 |
| Li, Mike | Intel |  |  |
| Comment Type TR Nb TBD | Comment Status D |  | RR DFE length |
| SuggestedRemedy <br> Change it to $\mathrm{Nb}=14$, | ch is consistent with | PAM |  |
| Proposed Response <br> REJECT. <br> This comment was WI | Response Status Z <br> HDRAWN by the comm |  |  |
| Cl 120F SC 120F.4.1 | P210 | L13 | \# 159 |
| Li, Mike | Intel |  |  |
| $\begin{gathered} \text { Comment Type } \quad \text { TR } \\ \text { bmax TBD } \end{gathered}$ | Comment Status A |  | RR DFE bmax |
| SuggestedRemedy Change it to $\mathrm{bmax}=0$. | which is consistent | 12G- |  |
| Response <br> ACCEPT IN PRINCIPL <br> Resolve using the resp | Response Status C <br> se to comment \#17. |  |  |

